
Evaluation of Different Processor Architecture
Organizations for On-Site Electronics in Harsh
Environments

Sven Gesper1 • Moritz Weißbrich1 • Tobias Stuckenberg1 •

Pekka Jääskeläinen2 • Holger Blume1 • Guillermo Payá-Vayá1

Received: 27 April 2020 / Accepted: 3 November 2020
� The Author(s) 2020

Abstract
Microcontrollers to be used in harsh environmental conditions, e.g., at high tem-

peratures or radiation exposition, need to be fabricated in robust technology nodes

in order to operate reliably. However, these nodes are considerably larger than

cutting-edge semiconductor technologies and provide less speed, drastically

reducing system performance. In order to achieve low silicon area costs, low power

consumption and reasonable performance, the processor architecture organization

itself is a major influential design point. Parameters like data path width, instruction

execution paradigm, code density, memory requirements, advanced control flow

mechanisms etc., may have large effects on the design constraints. Application

characteristics, like exploitable data parallelism and required arithmetic operations,

have to be considered in order to use the implemented processor resources effi-

ciently. In this paper, a design space exploration of five different architectures with

MIPS- or ARM-compatible instruction set architectures, as well as transport-trig-

gered instruction execution is presented. Using a 0.18 lm SOI CMOS technology

for high temperature and an exemplary case study from the fields of communication,

i.e., powerline communication encoder, the influence of architectural parameters on

performance and hardware efficiency is compared. For this application, a transport-

triggered architecture configuration has an 8.5� higher performance and 2.4�
higher computational energy efficiency at a 1.6� larger total silicon area than an

off-the-shelf ARM Cortex-M0 embedded processor, showing the considerable range

of design trade-offs for different architectures.

Keywords ASIC � Design tradeoff analysis � Harsh environment � Processor
architecture organization � Transport-triggered architecture

& Guillermo Payá-Vayá

guipava@ims.uni-hannover.de

1 Institute of Microelectronic Systems, Leibniz Universität Hannover, Hannover, Germany

2 Customized Parallel Computing Group, Tampere University, Tampere, Finland

123

International Journal of Parallel Programming
https://doi.org/10.1007/s10766-020-00686-8(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-3503-8386
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-020-00686-8&domain=pdf
https://doi.org/10.1007/s10766-020-00686-8

1 Introduction

Automotive, deep-drilling and aerospace applications with on-site microcontroller-

like systems are still an important field of research. These systems should provide

enough flexibility to facilitate continuous maintainability. Moreover, the electronic

components themselves have to ensure reliable operation even in harsh environ-

mental situations, such as high temperatures or increased radiation.

Nowadays, integrated circuits for harsh environments are manufactured using

relatively large technology nodes and silicon on insulator (SOI) stacks to reduce

leakage current and latch-up effect probability [8]. Current node sizes are in the

range of 1 lm down to 130 nm provided by, e.g., Fraunhofer H035 (350 nm, 250 �C,
[7]), Vorago HARDSIL (130 nm, 200 �C, [6]), Tekmos (0.6 lm, 210 �C, [29]), or
X-Fab XT018 (180 nm, 175 �C, [36]). As a drawback, these large technology nodes

only provide a moderate operating frequency, reducing the overall system

performance. Furthermore, the number of transistors and consequently, the circuit

complexity on a die is limited. Considering that the power consumption is usually

restricted for embedded applications, the according system’s processor architecture

organization has a high impact on the overall efficiency.

The instruction set architecture (ISA) and the way how this ISA is implemented

in hardware (i.e., processor architecture organization or microarchitecture) deter-

mine the performance of a processor architecture, which is constrained by the above

mentioned technology node limitations. On the hardware implementation side, two

of the most significant design parameters are the data path width and the instruction

execution paradigm. Predominant microcontroller data path widths can be classified

into 8-, 16-, or 32-bit architectures. The most common instruction execution

paradigms are single-cycle, multi-cycle or pipelined execution, i.e., RISC- or CISC-

like design concept. A completely different design concept is presented by the

transport-triggered architecture [9]. This architecture performs instructions as side

effects to move operations. On the other side, different design decisions in the ISA,

e.g., register- or memory-based computation, the number and utilization of pipeline

stages, the existence of branch delay and stall cycles, instruction and immediate

operand width, the availability of hardware acceleration for multiplication and

division operations, as well as the possibilities for conditional instruction execution,
have a significant impact on operation execution throughput, instruction memory

size and code density of a processor [35]. All of these parameters highly influence

the processor’s performance as well as silicon area and energy requirements.

One exemplary application for harsh environment systems is the powerline

communication. This technology offers the benefit of reducing the hardware points

of failure in the application systems by reducing the amount of communication

wires used for data transfers. Since replacing a broken wire in, e.g., a satellite

system is extremely costly or not possible, the powerline communication bus

protocol can reduce the amount of wiring significantly when adding more and more

communication nodes to the system [11]. In case of a harsh environment system,

sensor and control data are the most common types of information that are

transferred. The required data rates of such information usually reach few kbit/s, but

123

International Journal of Parallel Programming

modern powerline communication standards can provide several Mbit/s, which

enables the connection of over 100 sensors and actors onto a single wire [27]. The

main challenge for communication systems in a harsh environment is to provide a

stable and reliable link even at low Signal-to-Noise-Ratio (SNR) or over frequency

fading channels. Here, the powerline communication uses Orthogonal Frequency

Division Multiplex (OFDM) and can disable certain frequency carriers to ensure

communication over frequency selective channels. Additionally, the use of a

repeated preamble allows the receiver to measure the current SNR precisely and

perform an exact synchronization, making the powerline communication system a

good case study as a harsh environment application [1, 20].

This paper is an extension of a previously published paper [13], where a Reed–

Solomon encoder was used to evaluate different instruction execution paradigms

(i.e., single-cycle, multi-cycle, and pipeline) of five processor architectures. Based

on this case study, the design space has been explored, regarding processing

performance, silicon area, and power consumption. The design exploration is

extended in this paper to a more complete application, including more implemen-

tation details and other processor architectures. The main contributions of this paper

are:

• Description of five different processor architectures, which can be used as a

microcontroller in harsh environment systems. This includes a microarchitec-

ture, which can execute two instructions at the same time and implements the

MIPS ISA. These architectures are implemented in HDL.

• Use of a real application for communication, i.e., powerline physical layer

encoder, which is used in harsh environments.

• Design space exploration, regarding processing performance, silicon area and

power consumption, using a high-temperature capable technology, is presented

and analyzed to compare the different architecture organizations.

This paper is organized as follows: in Sect. 2, exemplary commercial microcon-

trollers for harsh environments are compared. Section 3 describes the features of

five different processor architectures, making emphasis on their hardware imple-

mentation. The evaluation of these architectures, using the aforementioned

powerline application is given in Sect. 4. Finally, a conclusion is drawn in Sect. 5.

2 Related Work

For both high-performance computers and low-power embedded systems, the

choice of a suitable instruction set architecture is crucial for the overall processor

performance as well as the hardware and energy efficiency of the system. In [35],

the properties, advantages and drawbacks of several popular RISC-style ISAs, i.e.,

MIPS, SPARC, Alpha, ARMv7 and ARMv8, and OpenRISC, are discussed.

Furthermore, the 80 9 86 ISA, being most popular in desktop computers, is

considered. All of these ISAs are intended to be used on 32-bit or 64-bit data path

processors with pipelined instruction execution for a high instruction throughput.

However, especially for smaller 8-bit or 16-bit microcontrollers, more simple

123

International Journal of Parallel Programming

single-cycle or multi-cycle processor organizations may still be used, as shown in

our previous work [13] for the AVR and MSP430 architectures. These organizations

can lead to implementations with lower silicon area requirements when performance

is not the major design issue, which is important in area-constrained large

technology nodes for high-temperature applications.

Table 1 shows exemplary commercial microcontrollers specialized for harsh

environments. They differ regarding their maximum operating temperature, which

ranges from 150 �C up to 225 �C, and clock frequency due to their semiconductor

technology and the underlying processor architecture organization. For many

architectures, the execution is pipelined in 2 to 8 stages or is performed by a multi-

cycle structure. Architectures with a deeper pipeline have a higher operating

frequency, which is not a direct increase in performance due to data and control

hazards in the pipelined execution. Most cores follow the RISC-like design

paradigm and include a multiplication unit. The core in [31] also features a floating-

point unit. The available space for programs in the instruction memory ranges from

2 kB up to 4MB when using external Flash memory. This exemplary portfolio

shows 8-, 16- and 32-bit architectures, allowing a wide spectrum of applications

being efficiently implemented.

3 Processor Architecture Organizations

In this paper, five different processor architectures, representing a wide variety of

different design concepts and implemented in HDL, are described. These are an

ARM Cortex-M0, an ARM Cortex-M3, a MIPS32-ISA-compatible, a VLIW-MIPS

processor with two issue slots, and a transport-triggered architecture (TTA) [19]. A

Table 1 Commercial architectures for digital signal processing in high temperature environment

Company Model Features Tmax

(�C)
fmax

(MHz)

Instruction

memory

TI [31] 32-bit, RISC, 8-stage pipeline, MAC,

FPU

125/

210

150/

100

Flash 512 kB

TI [30] 32-bit, RISC, 8-stage pipeline, MAC 220 150 128 kB (ext.

Flash 4 MB)

TI [32] 16-/32-bit, RISC, 3-stage pipeline, MUL 220 60 64kB(ext. Flash 1

MB)

Tekmos [29] 8-bit, RISC, 2 to 3-stage pipeline, DIV and

MUL

210 16 2 kB (ext. 64 kB)

Honeywell [16] 8-bit, RISC, 2 to 3-stage pipeline 225 16 64 kB

VORAGO [34] 32-bit, RISC, 3-stage pipeline, MUL 200 50 128 kB

Microchip [21] 16-bit, CISC, 2-stage pipeline, DIV and

MUL

150 80 16 kB / 32 kB

Freescale [10] 16-bit, RISC, multi-cycle, DIV and MUL 150 25 16 kB

T Temperature, MUL multiplier, DIV divider, FPU floating-point unit

123

International Journal of Parallel Programming

selection of the most important features for this work is given for the aforemen-

tioned five cores and the AVR8 and the MSP430-compatible NEO430, implemented

in [13], in Table 2. Each processor executes C-Code, compiled and assembled by

toolchains based on LLVM (MIPS, VLIW-MIPS and TTA) or GCC (ARM). The

optimization flags are set to –O3 for best throughput. According to [35], the main

distinctive ISA features of architecture organizations are instruction execution

paradigm (pipeline/multi-cycle/transport-triggered), number of registers and pipe-

line stages, branch delay, stall and conditional execution mechanisms, instruction

and immediate operand width, as well as the configuration of a dedicated hardware

accelerator for integer division and multiplication. These main distinctive ISA

features are covered in the following. The implemented architectures directly

accesses instructions and data memory without additional cache systems.

For a fixed application, the performance and hardware efficiency of a processor

can be increased by applying the application-specific instruction-set processor
(ASIP) concept. This could be especially interesting for the TTA, which allows

complete customization of the data flow and operations required by the application

at hand. However, it should be emphasized that this paper is focused on the inherent

properties of the different baseline ISAs and their hardware implementation for a

given application only. For the TTA, this is achieved by exclusively using non-

specialized functional units, which provide general ALU operations comparable to

the other evaluated architectures.

The aforementioned single-cycle AVR8 and multi-cycle NEO430 microcon-

trollers are not further considered due to their low performance results and

inefficient data processing, evaluated previously in [13]. This is mainly caused by

the 8- and 16-bit data path and the lack of a dedicated multiply unit in the AVR8,

which are not appropriate for the performance requirements of the selected

application case study used in this work. All five evaluated architectures have a

Table 2 Main distinctive architectural features of the presented cores

CORE Data word

size, design

Regs. Dataflow type Instruction execution Multiplier/divider

unit (latency)

ARM CM0 32-bit, RISC 17 R , R Pipelined (3 stages)

and multi-cycle

Yes (1 cycle)/no

ARM CM3 32-bit, RISC 17 R , R Pipelined (3 stages)

and multi-cycle

Yes (1/2..12 cycle)

MIPS32 32-bit, RISC 32 R , R Pipelined (5 stages) Yes (1..32 cycles)

VLIW-MIPS 32-bit, RISC 32 R , R Pipelined (4 stages) Yes (1..32 cycles)

TTA 32-bit (variable) var. R/FU , R/FU Transport-triggered Yes (1..32 cycles)

AVR8 8-bit, RISC 32 R , R Pipelined (2 stages) No

NEO430 16-bit, CISC 16 R/M , R/M Multi-cycle Yes (16 cycles)/no

Regs/R Register(s), M memory, FU functional unit

123

International Journal of Parallel Programming

32-bit data path and therefore support the 32-bit data processing required by the case

study of this work.

3.1 ARM Cortex-M Processors

The Cortex-M processor series from ARM Limited is designed to operate as

microcontroller-like processors. In this paper, the Cortex-M0 (hereafter named

CM0) and Cortex-M3 (hereafter named CM3) processors, which are two of the

smallest processors in this series, are used for evaluation. Both processors have

three pipeline stages, in-order instruction execution, a 32-bit data path width, 16

registers, and a 32-bit hardware multiplier. Figure 1 shows the microarchitecture of

both processors, including the three pipeline stages: instruction fetch, instruction

decode and execution. The multiplier of the CM0 can be configured to be either a

pipelined, large single-cycle or an iterative, smaller 32-cycle multiplier. Additional

to its single-cycle multiplier unit, the CM3 also implements a divider and MAC unit

(dotted lines in Fig. 1), which are designed to use multi-cycle execution.

Both processor configurations have a prefetch unit, which prefetches at least two

consecutive instructions. The CM0 only has one 32-bit register prefetch, which can

hold two 16-bit Thumb instructions. In case of conditional branches, the pipeline of

the CM0 has to be stalled until the branch target is loaded by the prefetch unit. The

CM3 has a FIFO for up to three 32-bit instructions, meaning that a maximum of six

16-bit Thumb or a minimum of three 32-bit Thumb2 instructions can be prefetched.

This FIFO allows the CM3 to use branch forwarding and speculative branch target
prefetch. Branch forwarding decodes unconditional branches during the ID stage.

Therefore, the instruction located in the target address is scheduled immediately,

saving one cycle of pipeline stalling. Speculative branch target prefetch in this case

means that both targets of a branch (taken and not taken) are prefetched and stored

Fig. 1 Pipeline structure of the ARM Cortex-M processors

123

International Journal of Parallel Programming

in the FIFO buffer. After the branch decision is computed in the execution stage,

one of the prefetched target is dropped which could in the worst case lead to one

cycle of pipeline stalling [2].

The instruction set of both the CM0 and CM3 is designed to keep the instruction

memory (I-Mem) size at a minimum. They apply compression of instruction code

by combining multiple incremental load or store instructions to be executed in a

single command. For instance, the code listed in Listing 1 encodes first a load

instruction of consecutive values from the stack using the stack pointer (sp) into the

registers r4–r6, followed by a store instruction that stores the registers r0–r3 at the

address given in register r4, incrementing that address value after each store

execution [4].

The instruction set of the CM0 is the ARMv6-M [5], which is a reduced set of 56

microcontroller-optimized instructions from the ARMv7-M standard [4]. Only 16-

bit Thumb instructions are supported, which are fetched from the 32-bit wide I-

Mem. Due to the reduced instruction width, only short immediate values of up to 8-

bit can be encoded within the instructions. Conditional execution is only available

for branch instructions. Compared to the CM3, the execution time of the ARMv6-M

instruction is deterministic in the sense that no data value-dependent execution is

present, resulting in a fixed amount of cycles for computation [3]. The instruction

set architecture of the CM3 is the ARMv7-M, which is a microcontroller-oriented

set of the ARMv7 instructions [4]. The 32-bit wide instructions allow the encoding

of 8-bit short immediate values with the instruction, and additional immediate

modifier bits are provided to rearrange the value to a long 32-bit immediate

following 28 frequently used pattern templates to achieve a high instruction memory

compaction [4]. To avoid unnecessary control flow, most instructions allow

conditional execution using condition codes, however, a preceding condition block

initialization instruction is required. Moreover, the ARMv7-M instruction set has

various multi-cycle instructions, e.g., a signed multiply-and-accumulate long

instruction SMLAL \RdLo[, \RdHi[, \Rn[, \Rm[, which multiplies

two 16-bit values (Rn, Rm) and accumulates them in a 64-bit accumulation register,

consisting of two 32-bit registers (RdLo, RdHi). The execution time of this

instruction depends on the type (i.e., width) of the input operands and can be in the

range of 2 to 7 cycles. During the execution of these instructions, the instruction

fetch is stalled. Another multi-cycle instruction is the division which can take

between 2 and 12 cycles. Depending on the number of leading zeros (or ones if

signed operation) of the input operands, the 12-cycle division is stopped early to

speed up computation time. If a data-dependent instruction needs access to the

division result, a pipeline stall occurs until the result is available.

123

International Journal of Parallel Programming

3.2 MIPS32 Processor

The implemented MIPS32, based on [22], is a 32-bit pipelined architecture with in-

order instruction execution and has 5 pipeline stages that support hazard resolution

(see Fig. 2). Data and instruction memory use independent 32-bit address spaces

with byte-wise alignment. The 32-bit wide instructions of the ISA form a RISC

architecture and support register-to-register operations using a register file with 32

entries and the encoding of 16-bit short immediate values within the instruction.

Each instruction can have up to three operands, defining two sources and one

destination, making the MIPS32 a three-operand machine (e.g., R1þ R2 ! R3:
ADD R3, R1, R2).

In case of executing branch instructions (and also jumps), the instruction

following in the code is always executed independently of if the branch is taken or

not. This is known as branch delay slot. If the compiler can not allocate any

instruction after a branch/jump instruction, a NOP instruction will be used, which

will decrease the performance. However, branch instructions can be avoided by

using partial conditional execution, which is implemented using conditional move

operations.

The MIPS32 processor also includes a Multiply-and-ACcumulate (MAC) unit as

well as a divider unit in the execution stage. Those hardware units are implemented

using a configurable processing latency of 1 to 32 cycles at design time (see

Sect. 3.5). In case of accessing the 64-bit wide result register, the execution stage

may cause a stall for instruction fetch and decode until the multiplication (or

division) operation is finished.

3.3 VLIW-MIPS Processor

The VLIW-MIPS processor is derived from the aforementioned MIPS32 [12]. In

contrast to the MIPS32, the VLIW-MIPS uses two parallel issue slots. Thus, the

64-bit instruction word contains two separate instructions based on the ISA of the

MIPS32. Instructions allocated in the second issue slot are mainly used for

Fig. 2 Five stage pipeline structure of the MIPS processor

123

International Journal of Parallel Programming

performing memory accesses, while the other issue slot is dedicated to arith-

metic/logic and control flow operations. However, the second issue slot can still be

used to execute add or sub instructions (without any flag computation) by using

the second small adder of the execution stage, which is required for calculation of

base-offset memory addresses initially.

The use of a specialized issue slot for memory access allows to reduce the

number of pipeline stages to 4. Now, the execution (EX) and the memory access

(MEM) stage of the MIPS32 are combined (see Fig. 3). In order to avoid increasing

the critical path of the VLIW-MIPS hardware architecture implementation, the

complexity of the ALU in the MEM stage is reduced for address computation and

therefore supports simple arithmetic only. The parallel execution of memory

accesses along with arithmetic/logic instructions allows the use of instruction-level

parallelism in applications, due to the high amount of load/store instructions in

contrast to pure computational instructions. A typical amount of parallelizable

memory instructions is about 35% (based on SPEC CPU2006 benchmark [14]).

However, due to data dependencies within an application, the two issue slots cannot

always be fully utilized. The number of ports of the 32-entry register file of the

VLIW-MIPS is doubled in comparison to the MIPS32, due to the dual-issue data

accesses.

Another drawback is the implementation of two branch delay slots. In contrast to

the MIPS32 microarchitecture, the VLIW-MIPS microarchitecture evaluates the

branch condition during the EX stage, fetching always the two address-consecutive

very long instruction words before taking or not taking the branch. In case of taking

the branch, 4 instructions (i.e., 2 very long instruction words) will be flushed with

the corresponding loss of performance. This part of the microarchitecture could be

improved by evaluating the branch condition on the ID stage (like in MIPS32

Fig. 3 Four stage pipeline structure of the VLIW-MIPS processor

123

International Journal of Parallel Programming

microarchitecture), which introduces a trade-off between the required silicon area,

the performance and the code density [35].

3.4 Transport-Triggered Architecture Processor

The Transport-Triggered Architecture (TTA) can be described as an exposed data

path processor. Functional units are connected through a programmable bus

interconnect, which creates a programmable data path [9]. In contrast to describing

specific computational operations, the instruction words contain configurations for

the interconnections between the Functional Units (FUs). Operands are transferred

to a functional unit through programmable sockets, which are basically imple-

mented with switches, connecting a FU to a set of buses. A unit’s operation is

triggered as a side-effect of writing data to it. An exemplary setup of the TTA is

shown in Fig. 4. The configurable architectural concept allows to add new FUs with

custom functionality as well as more buses to enable parallel data transfer.

Furthermore, the selective configuration of bus sockets is possible, taking profit of

the processing characteristics of the target application and considering a trade-off

between programming flexibility and interconnect complexity. An open-source TTA
HW/SW Co-Design Environment (TCE) including an LLVM-based C compiler is

available for the TTA designer to aid in the configuration, customization and design

space exploration process [19].

TTA configurations with resources similar to conventional processor architec-

tures are good starting points for application profiling and hardware optimization.

Figure 5a shows a data path similar to the single-issue MIPS and ARM Cortex-M

architectures. Three transport buses are used, corresponding to addressing two

Fig. 4 Different configurations of the transport-triggered architecture (TTA)

123

International Journal of Parallel Programming

operands and one result per cycle like in 3-address RISC machines. The result of a

FU may be directly fed back onto the operand buses to resemble the forwarding

mechanism in pipelined architectures. Furthermore, contrary to the aforementioned

RISC architectures, the TTA-specific programmer-visible interconnection network

allows the software programmer (or the compiler) to explicitly direct data from one

unit to another without touching the register file (register bypassing). Each FU

contains two operand registers and/or one result register, which are updated

whenever an operation is executed in this particular FU. Moreover, depending on

the complexity of the implemented operations, FUs may contain further internal

state registers not directly accessible via the TTA programming model. Due to the

registered FUs and register bypassing, a register file (RF) is optional for TTA

operation, but is commonly attached to the system to store frequently accessed

temporal variables and results that have to outlive succeeding operations.

Techniques like register bypassing and operand sharing, i.e., multiple FU ports

receive common operands simultaneously from a single source, reduce RF port pressure

on TTA register files. To illustrate this, Listing 2 shows a disassembly example of a

TTA transport schedule for the architecture in Fig. 5a, where each of the three columns

represents a transport bus and each line represents a clock cycle. Data transports on a

specific bus are represented in the form FU.SourcePort -[FU.Destina-
tionPort, empty bus cycles (NOPs) without data transports are indicated by three

dots (...). A source port may be either a RF read port with register address, an

immediate value encoded in the instruction, or the result output of a FU (out1). A
destination port may be either a RF write port with register address, the trigger operand

input of a FU that also defines the transport-triggered operation by an opcode

(in1t.OP), or the second operand input of a FU (in2). In the example of Listing 2,

one operation is triggered every cycle on the first bus (LDQ, ADD, MUL, ADD), but only
one operand is read from the RF per cycle. The other operand is obtained via register

bypassing from the registered result output of other FUs, and no RF writes are

(a)

(b)

Fig. 5 TTA configurations comparable to a single-issue MIPS and ARM data path, b dual-issue VLIW-
MIPS data path

123

International Journal of Parallel Programming

necessary. A conventional RISC architecture like MIPS or ARM Cortex-M, however,

would require 2 operand reads and 1 result write from/to the RF per cycle. Due to that,

the TTA concept offers the flexibility to merge hardware resources like buses and RF

ports that are never or not often used in parallel, which reduces the circuit complexity

and improves resource usage efficiency [17]. An example for this is the configuration in

Fig. 5b that corresponds to the dual-issue VLIW-MIPS, with the ALU/MUL/DIV FU

resembling the first issue, i.e., arithmetic operations, and the LSU/ADD/SUB FU

resembling the second issue, i.e., load, store, addition and subtraction operations. Here,

only five buses are required because the two result buses back to the RF could be

merged due to register bypassing. Furthermore, for both configurations, register

bypassing allows to use a RF with a single read port only.

The basic FUs required for compilation and execution of C code are the Global

Control Unit (GCU) which controls the overall program flow and performs jumps

and function calls, a 32-bit wide RF with at least 8 entries or more, a 1-bit wide

Boolean RF, the ALU, as well as the memory Load-Store Unit (LSU). To avoid the

excessive increase of instruction word width with the number of buses, the encoding

of immediate operands on each bus is shortened. If longer immediate values should

be required, an Immediate Unit (IU) is used to combine multiple short immediate

values from several buses to form a 32-bit immediate value [18].

123

International Journal of Parallel Programming

Regarding the control flow, the TTA shows linear behavior and sequentially

executes one instruction line from memory each cycle. The GCU is very simple, and

the hardware complexity and critical path are mostly determined by the FUs and the

bus interconnect network. Each instruction encodes each data transfer for all buses

in that particular cycle, therefore the instruction width is directly dependent on the

particular interconnection network configuration. Latency and resource access

schedule of each FU are automatically considered by the retargetable TTA compiler

backend, which allows the use of standard single-cycle as well as multi-cycle and

pipelined FUs. It should be noted that no hazard detection and resolution are

implemented in hardware. Therefore, there are no hardware-generated stalls, and
the instruction schedule generated at compile time must not contain any data

hazards, which is accomplished either by filling in data-independent transfers or

empty bus cycles (NOP). Due to that, increased latency on functional units could

result in sparsely filled schedules and ineffective instruction memory utilization. An

example is shown in Listing 3. The same applies to pipelined synchronous memory

read accesses to the data memory by the LSU (Listing 4) and to the instruction

memory by the GCU (Listing 5), which have three cycles data fetch or branch delay
due to address registration, synchronous memory read, and read-back value

processing and registration. If the schedule cannot be filled otherwise, loading from

memory, jumping, branching, and function calling is expensive in terms of

performance and instruction memory utilization. In order to reduce the amount of

expensive control flow, every bus transport can be executed conditionally by using

status flags in the Boolean RF, which are generated by ALU comparison operations.

By conditional execution, control flow is converted into data flow, avoiding jumps

by the GCU. Additionally, conditional branches are realized by conditionally

executing a jump operation.

3.5 Fully Configurable Divider and Multiplier Co-processors

When processing divisions or multiplications purely in software, the actual

operation is performed by several compare, add/subtract and shift instructions.

Obviously, this increases the processing time. As a design parameter for

application-specific microcontrollers, a dedicated co-processor for integer multipli-

cation or division can massively speed up the calculation of these operations. Since

both operations are based on iterative shift-and-add algorithms, a systolic array is

suitable for an efficient hardware implementation [26]. This array can be directly

implemented as a pipeline structure (Fig. 6a) or can be folded in order to reduce the

silicon area requirements (see Table 3 and Fig. 6b, c), which is important in large

technology nodes like the 180 nm high-temperature SOI technology used later in

this paper. However, contrary to a pipelined architecture, the resulting folded array

cannot start a new operation every clock cycle due to resource conflicts.

As an example, Fig. 6 shows the projection of a 4 9 4-bit non-restoring divider

array to a folded structure [26]. In Fig. 6a, the division is performed by a fully

pipelined array in four stages. This implementation has the shortest critical path and

can process a new operation every cycle at a result latency of four cycles. However,

due to the pipelined structure, the silicon area for this implementation is the largest.

123

International Journal of Parallel Programming

The folded configurations use an iterative multi-cycle processing scheme, e.g., by

implementing only two levels or one level of this divider array (Fig. 6b, c) used for

two or four clock cycles per operation, respectively. For Fig. 6c, the number of

result latency cycles and the critical path length are therefore equal to the pipelined

implementation in Fig. 6a. The silicon area of folded array architectures is

significantly reduced compared to pipelined implementations (see Table 3).

However, the folded structure does not allow overlapped execution of multiple

operations because of computation resource conflicts due to the truncation of the full

divider array. The folding technique can also be applied to array multipliers in the

same way [26], which allows to trade off multiplication/division latency, silicon

area, and maximum clock frequency for a specific processor architecture and

application.

In real applications, the use of a pipelined or folded architecture depends on the

application code characteristic. The number of multiplication/division operations in

the code, as well as data dependencies, influence the maximum number and

utilization of multiplier/divider hardware units. Furthermore, architectural decisions

(a) (b) (c)

Fig. 6 Different configurations of an exemplary 4� 4-bit non-restoring divider array. a Fully pipelined
structure, b two-level folded structure and c one-level folded structure

Table 3 Trade-off between

32-bit multiplier/divider

configurations for a 180 nm

high-temperature SOI standard

cell technology

Latency/levels Frequency (MHz) Structure Area (mm2)

MUL DIV MUL DIV

32 cycles/1 level 107.5 123.5 Folded 0.051 0.047

Pipelined 0.372 0.537

16 cycles/2 levels 102.0 90.1 Folded 0.057 0.056

Pipelined 0.275 0.439

8 cycles/4 levels 92.6 58.5 Folded 0.069 0.076

Pipelined 0.226 0.391

4 cycles/8 levels 76.0 34.0 Folded 0.089 0.113

Pipelined 0.202 0.366

2 cycles/16 levels 54.6 18.3 Folded 0.130 0.189

Pipelined 0.190 0.354

1 cycle/32 levels 34.8 9.5 Folded 0.184 0.348

Pipelined 0.184 0.348

123

International Journal of Parallel Programming

and properties of a particular processor data path play an important role. On the one

hand, MIPS32 and ARM Cortex-M are single-issue architectures and include single

multiplication and division functional units in the ALU. In the dual-issue VLIW-

MIPS, single multiplier and divider array units are included in the arithmetic ALU

and can therefore only be used by the first issue slot. On the other hand, the TTA

generally allows more multiplier and divider units to work in parallel due to

exploited parallelism by several buses. However, the implemented number of units

has to match the application code characteristics to implement an area- and power-

efficient architecture.

To illustrate the performance impact on the target application (see Sect. 4.1)

when varying the multiplier level configuration, an evaluation of a VLIW-MIPS and

MIPS with different folded array configurations is presented in Fig. 7. As shown in

Fig. 7a, the maximum throughput for the VLIW-MIPS is achieved by the use of a

16-level multiply unit. This is the optimal trade-off between operating frequency

(limited by long timing paths which pass through the architecture including the co-

processor arrays) and processing latency (required clock cycles for the application).

For the MIPS, the optimum number of levels in the multiply unit is eight, as the

performance reaches its maximum there, as seen in Fig. 7b. In the MIPS, the

decrease of the critical path from the 16-level to the 8-level multiply unit, which

directly increases the maximum operating frequency, has a high positive impact on

the total processing performance. This also applies to an exemplary TTA

configuration with four identically leveled multipliers (Fig. 7c), which shows a

comparable behavior except that the absolute performance metric is higher due to

exploited functional unit parallelism. In contrast, the increase of the cycles on the

VLIW-MIPS processor is higher than the frequency gain (which is quite small due

to the critical path leading through the architecture now), so the processing

performance is reduced by an 8-level multiplier.

(a) (b) (c)

Fig. 7 Performance of the encode (ROBO: 1216 bit, see Sect. 4.1) and maximum operating frequency
using different folded multiply unit configurations in a the VLIW-MIPS, b the MIPS, and c an exemplary
TTA configuration

123

International Journal of Parallel Programming

From this evaluation, the following conclusions can be drawn: As long as the

critical path is located in the multiplier/divider unit, a reduction of the array levels

increases the performance, because the increased clock frequency overcompensates

the additional latency cycles of the units. When the clock frequency reaches its

maximum, the performance optimum is found, because latency cycles on smaller

array levels are not compensated anymore. These conclusions influence the

selection of TTA configurations shown in Sect. 4.2, which are based on 32-level,

16-level and 8-level multiplier units.

4 Evaluation

In this section, the different processor architectures described in Sect. 3 are compared

in terms of silicon area, power consumption, and processing performance. For the

HDL synthesis, Cadence Encounter RTL Compiler (RC14.28) was used to create a

gate-level netlist. An SOI CMOS technology, capable of high-temperature usage and

based on transistors with a gate length of 0.18 lm, was used at a corner case of 175 �C
at 1.62 V to determine the silicon area requirements and the critical path of the

synthesized circuit. The processing performance is measured in simulation for a

specific algorithm, i.e., HomePlug encoder, by multiplying the number of executing

cycles with the maximum achieved frequency of the synthesized netlist. The

switching activity, obtained from gate-level simulation using Questa Sim (10.6a)

running the target application, was used to estimate the power consumption using

Synopsys PrimeTime (2019.03) for the execution of the application.

4.1 Target Application

The target application is the PHY layer encoder of the HomePlug Alliance 1.0.1

powerline communication standard [15]. Figure 8 gives a brief overview of the

application, showing blocks for header and payload data encoding. The PHY layer

contains analog and digital parts, down to a mechanical interface specification for

the bus connector. The scope of this work focuses on the digital domain up to a

frame buffer FIFO which holds a completely encoded packet that is ready for analog

transmission. Header and payload data are randomly generated input bit and are

compared to the encoded result of a C reference executed on a x86 platform.

Fig. 8 Data processing block structure of the PHY encoder

123

International Journal of Parallel Programming

The Frame Control Encoder block encodes header and trailer information, which

have a fixed width of 25-bit and contain for example the packet type, flow control

information and transmission status. The Data Encoder block encodes the payload

data including destination and source address of a packet. The length of the payload

data encoded in one transfer is variable and depends on the modulation type, the

redundancy encoding for error correction and the useable frequency carriers. Here, a

Reed–Solomon and convolutional encoder are used to add redundant information to

help to correct bit and burst errors at the receiver. Additionally, two modulation

schemes are supported, i.e., Differential Binary Phase Shift Keying (DBPSK) and

Differential Quadrature Phase Shift Keying (DQPSK). The latter encodes two bit

per frequency carrier and DBPSK encodes only one bit per carrier.

The last block in Fig. 8 is the OFDM Encoder. The input multiplexer sequentially

passes encoded header, payload and trailer information to this block. Inside this

block, data are mapped onto frequency carriers and an Inverse Fast Fourier

Transform (IFFT) converts them into a time domain signal which is then stored

inside the Frame Buffer FIFO. This buffer is read by the Analog Frontend,

converting the digital samples into analog ones. It is ensured that the Frontend is

reading the buffer faster than the encoder can write it.

The standard defines a more redundant robust OFDM (ROBO) transmission

mode. It induces redundancy by time- and frequency-shifting the encoded bits four

times. Therefore, a block of ROBO-encoded payload data can only have a quarter of

the information bits compared to a block of regular encoded data, uses DBPSK and

encoders configured to add maximum redundancy. The advantage of this additional

redundancy is the possibility to recover highly distorted packets due to a very poor

transmission channel characteristics, e.g., burst noise or frequency fading

transmission channels. The ROBO mode is of particular interest for this work,

since burst noise and frequency fading often occur under harsh environmental

conditions [28]. Since the HomePlug 1.0.1 standard is designed for in-house

multimedia streaming, the ROBO mode was added to ensure communication even

during bad channel conditions. Since in harsh environment situations these

conditions could be constant over a long period of time, we focus on this mode.

The maximum theoretical throughput, assuming no delay between two packets, is

817 kbit/s (with 1216 bit input data per packet), which is still significantly larger

than typically required data rates that are at a few kbit/s. Therefore, the goal of this

work is less about reaching these maximum possible throughput and more about

having a reliable, stable and robust communication.

4.2 TTA Configurations

In order to cope with the large and fine-grained design space, two systematic

approaches, i.e., a bottom-up and a top-down design strategy, are used to generate

TTA configurations for the comparative evaluation in this paper. A selection is

shown in Table 4, which presents details on the performed configuration process.

According to the latency and critical path analysis of multiplier (MUL) and divider

(DIV) units in Sect. 3.5, MUL/DIV level parameterizations are balanced to achieve

the lowest cycle counts per target frequency in order to maximize the performance.

123

International Journal of Parallel Programming

Ta
bl
e
4

D
if
fe
re
n
t
co
n
fi
g
u
ra
ti
o
n
s
o
f
th
e
T
T
A

N
o
.

B
u
se
s

In
st
r.
w
id
th

N
u
m
.
o
f
in
st
.
(M

em
.

si
ze
)

M
U
L

C
o
n
f.

D
IV

C
o
n
f.

A
d
d
it
io
n
al

F
U

R
eg
is
te
r
fi
le

(3
2
-b
it
)

C
lo
ck

F
re
q
.
(M

H
z)

C
y
cl
es

R
O
B
O

R
u
n
ti
m
e
R
O
B
O

(m
s)

A
0
1

3
4
8
b

4
8
7
4
(4
8
k
B
)

1
9

3
2
L
ev

1
9

8
L
ev

–
3
2

3
3
.8

1
1
,2
9
8
,4
7
0

3
3
3
.8

A
0
2

3
4
8
b

4
5
6
2
(4
8
k
B
)

1
9

3
2
L
ev

1
9

8
L
ev

–
3
2
(2
r1
w
)

3
3
.9

1
0
,3
4
2
,0
4
7

3
0
5
.2

A
0
3

4
6
4
b

4
4
2
7
(6
4
k
B
)

1
9

3
2
L
ev

1
9

8
L
ev

1
A
d
d

3
2

3
3
.8

1
0
,2
6
1
,1
3
7

3
0
3
.3

A
0
4

4
6
4
b

3
9
5
3
(3
2
kB

)
1
9

3
2
L
ev

1
9

8
L
ev

1
A
d
d
?

1
S
h
if
t

3
2

3
3
.8

9
,5
0
9
,0
78

2
8
0
.9

A
0
5

5
8
0
b

3
8
8
2
(4
0
k
B
)

1
9

3
2
L
ev

1
9

8
L
ev

1
A
d
d

3
2

3
3
.8

9
,4
8
7
,6
5
4

2
8
0
.5

A
0
6

5
8
0
b

3
6
7
0
(4
0
k
B
)

1
9

3
2
L
ev

1
9

8
L
ev

1
A
d
d
?

1
S
h
if
t

3
2

3
3
.9

8
,9
7
2
,7
4
5

2
6
4
.9

A
0
7

5
8
0
b

3
8
9
1
(4
0
k
B
)

1
9

3
2
L
ev

1
9

8
L
ev

1
A
d
d

3
2
(2
r1
w
)

3
4
.0

8
,6
7
0
,7
7
9

2
5
5
.0

A
0
8

6
8
8
b

3
6
1
7
(4
4
k
B
)

1
9

3
2
L
ev

1
9

8
L
ev

1
A
d
d

3
2
(4
r2
w
)

3
4
.0

8
,1
0
6
,3
2
1

2
3
8
.4

A
0
9

6
8
8
b

3
5
7
5
(4
4
k
B
)

2
9

3
2
L
ev

2
9

8
L
ev

1
A
d
d

3
2
(4
r2
w
)

3
3
.6

7
,6
1
3
,7
8
4

2
2
6
.5

A
1
0

7
9
6
b

3
4
1
0
(4
8
kB

)
3
9

3
2
L
ev

2
9

8
L
ev

2
A
d
d

3
2
(4
r2
w
)

3
3
.6

6
,9
0
7
,7
75

2
0
5
.6

A
1
1

7
1
0
4
b

3
3
6
6
(5
2
k
B
)

3
9

3
2
L
ev

2
9

8
L
ev

2
A
d
d
?

1
S
h
if
t

3
2
(4
r2
w
)

3
3
.7

6
,8
0
8
,3
9
2

2
0
2
.3

A
1
2

8
1
1
2
b

3
3
5
1
(5
6
k
B
)

3
9

3
2
L
ev

2
9

8
L
ev

2
A
d
d
?

1
S
h
if
t

3
2
(4
r2
w
)

3
3
.8

6
,7
3
9
,1
4
9

1
9
9
.3

B
0
1

3
4
8
b

5
0
0
5
(4
8
k
B
)

1
9

1
6
L
ev

1
9

4
L
ev

–
3
2

5
4
.4

1
1
,2
6
4
,5
3
7

2
0
6
.9

B
0
2

3
4
8
b

4
7
3
7
(4
8
k
B
)

1
9

1
6
L
ev

1
9

4
L
ev

–
3
2
(2
r1
w
)

5
4
.6

1
0
,6
6
9
,4
4
8

1
9
5
.3

B
0
3

4
6
4
b

4
6
1
3
(6
4
k
B
)

1
9

1
6
L
ev

1
9

4
L
ev

1
A
d
d

3
2

5
4
.0

1
0
,5
5
4
,4
0
4

1
9
5
.5

B
0
4

4
6
4
b

4
1
6
2
(6
4
k
B
)

1
9

1
6
L
ev

1
9

4
L
ev

1
A
d
d
?

1
S
h
if
t

3
2

5
4
.0

9
,9
1
0
,3
2
7

1
8
3
.4

B
0
5

5
8
0
b

4
1
0
7
(8
0
k
B
)

1
9

1
6
L
ev

1
9

4
L
ev

1
A
d
d

3
2

5
3
.8

9
,9
4
4
,9
6
9

1
8
4
.9

B
0
6

5
8
0
b

3
9
1
4
(4
0
kB

)
1
9

1
6
L
ev

1
9

4
L
ev

1
A
d
d
?

1
S
h
if
t

3
2

5
4
.2

9
,4
3
3
,8
43

1
7
4
.0

B
0
7

5
8
0
b

4
0
4
5
(4
0
kB

)
2
9

1
6
L
ev

1
9

4
L
ev

1
A
d
d

3
2
(2
r1
w
)

5
3
.5

8
,4
6
1
,1
84

1
5
8
.1

B
0
8

6
8
8
b

3
8
6
4
(4
4
kB

)
1
9

1
6
L
ev

1
9

4
L
ev

1
A
d
d

3
2
(4
r2
w
)

5
4
.5

8
,2
9
6
,4
35

1
5
2
.1

B
0
9

6
8
8
b

3
7
7
9
(4
4
kB

)
2
9

1
6
L
ev

2
9

4
L
ev

1
A
d
d

3
2
(4
r2
w
)

5
3
.4

7
,6
9
3
,6
23

1
4
4
.0

B
1
0

7
9
6
b

3
5
8
8
(4
8
kB

)
3
9

1
6
L
ev

2
9

4
L
ev

2
A
d
d

3
2
(4
r2
w
)

5
3
.2

6
,9
8
6
,3
80

1
3
1
.4

B
1
1

7
1
0
4
b

3
5
8
4
(5
2
k
B
)

3
9

1
6
L
ev

2
9

4
L
ev

2
A
d
d
?

1
S
h
if
t

3
2
(4
r2
w
)

5
2
.9

6
,9
4
3
,8
6
8

1
3
1
.3

B
1
2

8
1
1
2
b

3
5
6
8
(5
6
k
B
)

3
9

1
6
L
ev

2
9

4
L
ev

2
A
d
d
?

1
S
h
if
t

3
2
(4
r2
w
)

5
2
.8

6
,8
2
0
,7
5
7

1
2
9
.2

123

International Journal of Parallel Programming

Ta
bl
e
4
co
n
ti
n
u
ed

N
o
.

B
u
se
s

In
st
r.
w
id
th

N
u
m
.
o
f
in
st
.
(M

em
.

si
ze
)

M
U
L

C
o
n
f.

D
IV

C
o
n
f.

A
d
d
it
io
n
al

F
U

R
eg
is
te
r
fi
le

(3
2
-b
it
)

C
lo
ck

F
re
q
.
(M

H
z)

C
y
cl
es

R
O
B
O

R
u
n
ti
m
e
R
O
B
O

(m
s)

C
01

3
4
8
b

5
4
7
4
(4
8
kB

)
1
9

8
L
ev

1
9

2
L
ev

–
3
2

7
6
.0

1
1
,8
0
4
,5
9
6

1
5
5
.3

C
02

3
4
8
b

5
1
8
2
(4
8
kB

)
1
9

8
L
ev

1
9

2
L
ev

–
3
2
(2
r1
w
)

7
6
.0

1
1
,5
0
8
,7
1
7

1
5
1
.4

C
0
3

4
6
4
b

5
0
8
9
(6
4
k
B
)

1
9

8
L
ev

1
9

2
L
ev

1
A
d
d

3
2

7
5
.4

1
1
,1
4
9
,2
1
0

1
4
7
.9

C
0
4

4
6
4
b

4
6
7
8
(6
4
k
B
)

1
9

8
L
ev

1
9

2
L
ev

1
A
d
d
?

1
S
h
if
t

3
2

7
6
.0

1
0
,5
6
4
,6
9
5

1
3
9
.0

C
0
5

5
8
0
b

4
6
5
9
(8
0
k
B
)

1
9

8
L
ev

1
9

2
L
ev

1
A
d
d

3
2

7
6
.0

1
0
,5
9
9
,3
9
5

1
3
9
.5

C
0
6

5
8
0
b

4
4
5
2
(8
0
k
B
)

1
9

8
L
ev

1
9

2
L
ev

1
A
d
d
?

1
S
h
if
t

3
2

7
5
.7

1
0
,0
8
8
,4
5
3

1
3
3
.2

C
0
7

5
8
0
b

4
4
7
7
(8
0
k
B
)

2
9

8
L
ev

1
9

2
L
ev

1
A
d
d

3
2
(2
r1
w
)

7
4
.0

9
,1
1
8
,9
5
6

1
2
3
.1

C
0
8

6
8
8
b

4
3
3
6
(8
8
k
B
)

1
9

8
L
ev

1
9

2
L
ev

1
A
d
d

3
2
(4
r2
w
)

7
6
.0

9
,2
7
3
,1
7
0

1
2
2
.0

C
09

6
8
8
b

4
0
4
9
(4
4
kB

)
4
9

8
L
ev

2
9

2
L
ev

1
A
d
d

3
2
(4
r2
w
)

7
3
.5

8
,3
9
4
,8
66

1
1
4
.2

C
10

7
9
6
b

3
9
7
6
(4
8
kB

)
3
9

8
L
ev

2
9

2
L
ev

2
A
d
d

3
2
(4
r2
w
)

7
4
.6

7
,5
8
1
,9
73

1
0
1
.6

C
11

7
1
0
4
b

3
9
7
5
(5
2
kB

)
3
9

8
L
ev

2
9

2
L
ev

2
A
d
d
?

1
S
h
if
t

3
2
(4
r2
w
)

7
4
.3

7
,4
8
3
,6
41

1
0
0
.7

C
12

8
1
1
2
b

3
9
8
4
(5
6
kB

)
3
9

8
L
ev

2
9

2
L
ev

2
A
d
d
?

1
S
h
if
t

3
2
(4
r2
w
)

7
4
.3

7
,3
6
0
,8
15

9
9
.0

It
al
ic
iz
ed

ro
w
s
sh
o
w

th
o
se

co
n
fi
g
u
ra
ti
o
n
s
se
le
ct
ed

fo
r
an
al
y
si
s
in

S
ec
t.
4
.3
.
A
ll
M
U
L
/D
IV

u
n
it
s
u
se

a
fo
ld
ed

st
ru
ct
u
re

123

International Journal of Parallel Programming

Therefore, 32-level MUL and 8-level DIV, 16-level MUL and 4-level DIV, and

8-level MUL and 2-level DIV units are used together for maximum clock

frequencies of 34.0 MHz, 54.6 MHz, and 76.0 MHz, respectively (see Table 3).

These target clock frequencies are represented by the three groups A, B, and C in

Table 4, and within each group, the entries are sorted by their amount of buses and

their instruction width in bit in ascending order and are denoted by #01 to #12 in

the following. Higher clock frequencies and higher performance are limited by

paths through the TTA ALU and interconnection network, so lower-level MUL/DIV

configurations do not achieve higher performance and are therefore not considered.

For the bottom-up approach, MIPS-like and VLIW-MIPS-like resource config-

urations (#01 and #05, see Sect. 3.4) are used as a starting point and are iteratively

extended with more functionality in order to increase the performance, i.e., decrease

the number of clock cycles. Based on the utilization of certain parts of the hardware,

bottlenecks were found and removed with the TTA toolchain from [19], e.g., by

adding further parallel buses and replicating frequently used adder and shifter

resources by additional functional units (configurations #03, #04, #06). Imme-

diate operands are shortened to 6-bit per bus, except for one bus that provides 13-bit

jump target addresses to the GCU.

The top-down approach is adapted from [17] and is characterized by starting

from a canonical VLIW-style connected TTA, i.e., for each operand and result port

of a functional unit, a dedicated transport bus and a RF read or write port are

reserved. This allows to exploit any possible parallel operation execution offered by

the available resources, but also has the largest instruction width and RF port and

interconnection overhead. For the initial VLIW configuration, the cycles required

for memory accesses and computations are balanced by adding an additional adder

or combined adder/shifter FU. Then, in order to trade off performance against

architectural area and power efficiency, bus resources and RF ports that are never or

rarely used in parallel are merged (configurations #02, #07, #08, #09, #10, #11
and #12). Therefore, for configurations #10 to #12, only four-read two-write port

(4r2w) RF instances are used, whereas a comparable three-issue VLIW machine

would require a six-read and three-write port RF. The relaxed port requirements

improve RF timing as well as area and power efficiency.

In general, multiple of the folded multi-cycle MUL and DIV units can be used to

increase performance. The specific number of units is limited by the amount of

parallelism offered by the application. In this paper, four independent multiplication

and two division operations can be executed in parallel overlapping execution in the

IFFT block and the Reed–Solomon block of the application, respectively. However,

the exploitable parallelism of the TTA architecture configuration and the resulting

application code schedule affect the number of units effectively used in parallel. For

the configurations in Table 4, the number of MUL and DIV units is selected to

obtain a high silicon area efficiency, i.e., the increase in total processor area due to

additional units is overcompensated by the performance gain in terms of cycle count

drop. When considering the parameterization of MUL and DIV levels, the

configurations with 8-level MUL and 2-level DIV units provide the highest

performance, as the higher clock frequency overcompensates the increased number

of execution cycles. For example, C01 requires 1.059 the ROBO mode clock

123

International Journal of Parallel Programming

cycles compared to B01, but has a 1.49 higher clock frequency, which in turn

results in 1.339 higher performance due to reduced ROBO mode runtime.

Therefore, for conducting the trade-off analysis between high performance, small

silicon area and high energy efficiency in Sect. 4.3, the TTA configurations with the

highest possible performance are selected from group C, i.e., C09 to C12. The
baseline configurations C01 and C02, which are comparable to other single-issue

processors, are included in order to span the TTA configuration corner cases. When

trading off for small silicon area, configurations can be selected from groups A and

B due to more MUL and DIV array levels, which correspond to less latency cycles

and denser instruction schedules. Therefore, smaller memory blocks with only 4096

instruction lines instead of 8192 are required. This reduces the instruction memory

size to 32 kB (A04), 40 kB (B06, B07) and 44 kB (B08, B09) compared to the

baseline configurations C01 and C02, which require 48 kB. Additionally, A10 and

B10 are included for trade-off analysis because these configurations feature the

highest energy efficiency of the evaluated architectures.

Finally, it should be mentioned that TCE offers great flexibility to add

specialized custom FUs to TTAs according to the ASIP concept. Especially for the

FFT/IFFT kernel also used in the application in this paper, custom accelerators for

TTA have been realized in [25, 37], which exploit streaming-like data flow in the

FFT calculation scheme for even higher performance. However, such specializa-

tions are out of the scope of this paper in order to allow an undistorted comparison

with the other processor architectures with non-custom operations only.

4.3 Trade-Off Analysis

In the following, the performance, area and power trade-offs are analyzed for the

ARM, MIPS, VLIW-MIPS and TTA processor architectures. Furthermore, a

comparison of those configurations that show Pareto-optimal power and silicon area

efficiency is performed. The performance and power relations between the

architectures were found using the aforementioned robust mode of the target

application in Sect. 4.1.

Figure 9 depicts the maximum performance and the maximum clock frequency

for each architecture configuration. Following conclusions can be drawn:

• The highest performance is provided by the TTA configurations in group C using

an 8-level multiplier and 2-level divider units. The clock frequency is

approximately 75 MHz, which is the highest, together with the MIPS with the

same multiplier/divider configuration, among the evaluated architectures.

• To achieve higher performance, however, higher frequency is not the only

design point. For example, TTA configuration C01 has comparable data path

resources to the MIPS and a similar clock frequency but 30% more performance.

The performance comprises not only operating frequency, but also the number of

executed cycles for encoding one data block, which is reduced on the TTA due

to register bypassing and temporal data registration in functional units.

• The single-issue RISC processor implementations ARM CM3 and MIPS show a

similar performance, which emphasizes the similarities in their ISA, pipeline

123

International Journal of Parallel Programming

concept, and control flow realization. Due to the lack of a dedicated hardware

division unit, the ARM CM0 has to emulate divisions in software, which causes

a significant performance loss (8.59 smaller than TTA configuration C12).
Regarding the control flow, 76.3 % of MIPS branch delay slots are filled in the

static code analysis, and the MIPS dynamic Instructions per Cycle (IPC) is at

0.81 with critical path-balanced multiplier and divider latency (see Sect. 3.5).

• Despite the second issue slot, the VLIW-MIPS does not achieve performance

improvements compared to MIPS, because both issue slots cannot be efficiently

used in parallel by the application code. With critical path-balanced multiplier

and divider latency, the dynamic IPC of the VLIW-MIPS reaches 0.95 and thus,

is only 17% higher than for the MIPS, which is mitigated again by the lower

clock frequency due to more complex inter-issue slot forwarding mechanism and

hazard detection. Also, the presence of a second, mostly unfilled branch delay
slot has a negative impact on the IPC. With a single branch delay slot, the IPC

could be increased to 1.00. Furthermore, an improved instruction ordering

algorithm in the currently used VLIW-MIPS instruction scheduler could increase

the number of parallel executed operations.

• Among the group C of the TTA configurations, there is a variance of up to 1.69

in performance at approximately the same clock frequency, which is caused by

the increased number of functional units and interconnection buses. More

resources achieve higher performance, but also increased circuit complexity.

• Despite the lower cycle count, TTA groups A and B show lower performance

than the C group because the multiplier/divider folded arrays with more levels

unnecessarily limit the clock frequency due to longer critical paths. This

supports the conclusion from Sect. 3.5 that for any architecture organization, the

parameterization of multi-cycle arithmetic co-processors should be carefully

balanced.

The required silicon area for implementing the different processor architectures

is shown in Fig. 10. Following conclusions can be drawn:

• The core logic area of the architectures is comparable and mostly varies with the

number and configuration of the large arithmetic units, i.e., multiplier and

Fig. 9 Performance and frequency of the evaluated architectures

123

International Journal of Parallel Programming

divider arrays, as indicated in Table 3. The smallest core is the ARM CM0 with

no hardware divider and a 32-level multiplier. The largest core is the TTA

configuration A10 with two 8-level dividers and three 32-level multipliers,

which has a 4.269 larger core area.

• The instruction memory (I-Mem) and the data memory (D-Mem) of the

processors are implemented using multiple single-port RAM macroblocks from

the technology library. The size of the I-Mem is defined by the architecture’s

instruction word width and the number of instructions in the application code

and, therefore, varies with the architectures. On the contrary, the D-Mem size is

related to the 32-bit data path width and the processor-independent data storage

required by the application, which is fixed to 64 kB for all evaluated

architectures.

• In all processor configurations, I-Mem and D-Mem require more than 80% of the

total silicon area. Therefore, the total silicon area differs only by a factor of 1.69

between ARM CM0 and TTA A10, although the core size difference is 4.269.

The ARM processors provide a high code density with 16-/32-bit wide

instructions, therefore the I-Mem size is small (16 kB) compared to the D-Mem

(64 kB). The TTAs, however, need large instruction memory sizes of up to

56 kB due to the wide instruction words (48- to 112-bit). Methods like variable

length encoding [33] could be applied to mitigate the effect of wide instructions

on the memory size.

• VLIW-MIPS instructions are 64-bit wide, so the I-Mem size needs to be doubled

compared to the MIPS. Due to the poor parallel usage of both issue slots, the

code density in the VLIW-MIPS application code is lowered and an I-Mem size

similar to the MIPS cannot be achieved.

• In general, the cycle- and bus slot-based TTA instruction encoding provides less

code density than RISC-style encoded instructions. For example, the central

IFFT loop of the application requires 70 mixed 16-/32-bit instructions on the

ARM CM3 architecture, which correspond to 200 bytes of code. On the ARM

CM3-comparable TTA configuration C01, 76 48-bit instructions are required,

resulting in 456 bytes of code and thus, 2.259 less code density, which is

directly related to three times larger I-Mem over the complete application. In

Fig. 10 Silicon area of instruction memory, data memory and core

123

International Journal of Parallel Programming

total, 13% more total silicon area is consumed due to increased instruction

memory requirements. Because the TTA does not use a stalling mechanism, 9

out of the 76 IFFT instructions are NOP because of multiplier latency. In the

presence of multi-cycle functional units like multipliers and dividers, the

implementation of such a stall mechanism would avoid empty NOP instructions

in the schedule and improve the code density. However, this also requires

modifications of the current TCE scheduling concept in the compiler, which

were not available for this paper.

In Fig. 11, the power requirements of the evaluated architectures are shown.

These are obtained from switching activity simulation of the application in ROBO

mode at the maximum operation clock frequency per architecture. Following

conclusions can be drawn:

• The power consumption shows a close correlation between the frequency and the

silicon area of the processor, but also with the achieved performance. The TTA

configuration C12 shows the highest performance and also the highest power

consumption, which is 3.69 higher than the ARM CM0 power consumption.

Absolute power values might be an important consideration for power-

constrained systems, e.g., due to limited heat dissipation. An evaluation of the

computational energy efficiency (power normalized to performance) is given

further below in this section.

• Although memories require more than 80% of the silicon area, the internal

processes in the I-Mem and D-Mem SRAM blocks during reading/writing

memory contribute only less than 60% to the total power consumption. The core

logic requires a significant amount of power for computations and data transport

within the data path, e.g., between RF and ALU.

• Both ARM CM0 and ARM CM3 have a substantially lower I-Mem power

consumption than the other architectures. This is due to the possibility of

Fig. 11 Power Consumption of instruction memory, data memory and core for ROBO

123

International Journal of Parallel Programming

fetching two 16-bit short Thumb instructions with one memory access, but also

due to instructions like ldmia and stmia (see Sect. 3.1), which combine

multiple operations running over multiple cycles and require to fetch only a

single instruction. Therefore, the I-Mem access activity and thus the power

consumption is minimized.

• At the maximum operation frequency, the power consumption is totally

dominated by cell-internal dynamic power and dynamic switching power on the

connection nets. Even though the values have been generated for a corner case of

175 �C, virtually no leakage appears, which is one of the strengths of SOI

technology in high-temperature harsh environments.

To better compare the different performances of the processor architectures, an

area efficiency metric is calculated by normalizing the silicon area requirements to

the reached throughput for the different processor architectures. For energy

efficiency, the power requirements are normalized to the reached throughput,

resulting in the energy requirements for encoding a single bit. There are other, more

general architecture-related metrics commonly applied to quantify efficiencies, e.g.,

energy efficiency in MOPS/mW. However, the identical application is the relevant

benchmark for all architecture organizations in this paper and thus, it was decided to

keep a direct relation to the application use case. Results are shown in Fig. 12 with

the optimum in the bottom left corner. The performance increases or power and area

requirements drop the closer an architecture gets to the optimum. It should be

mentioned that Fig. 12 contains all TTA configurations generated for this paper in

order to allow a valid Pareto analysis. The configurations not highlighted in Table 4

are depicted as gray dots (TTA others).

The TTA configuration C10 yields the highest area efficiency. With this

configuration, the hardware is utilized with a high processing efficiency and fewer

idling components than by configurations A04 and A10, which show a low area

efficiency. This is due to the different level configurations of the multiply and divide

units, achieving higher frequencies for the more area-efficient architectures. This

results in a high parallelization of the evaluated algorithm with high utilization of

functional units and low idle cost for other components during the calculation delay

of the co-processors. The advantage of the TTA against ARM and MIPS cores is the

exposed parallelism of the evaluated application. The functional units of the TTA

are controlled by short encodings for the corresponding sockets and the total

instruction length increase is small for multiple multiply and divide units. For the

MIPS, additional issue slots would allow more parallelism, but excessively increase

the instruction memory size and therefore the silicon area requirements. The

implemented multiply and divide units build up a range of different versions for

MIPS and VLIW-MIPS with different advantages, as performance, area and power

requirements can exchange for each other. The comparison between MIPS and

ARM CM3 also shows a trade-off of area and power efficiency. As the area

efficiency drops, the power efficiency increases for some configurations. In Fig. 12,

there are three Pareto-optimal TTA configurations regarding area and energy

efficiency. These are the TTA A10, TTA B10, and TTA C10 where no

improvement on one dimension can be achieved without trading for another

123

International Journal of Parallel Programming

drawback. These configurations differ in their multiplier and divider level

configuration. Less levels lead to a higher clock frequency, more performance

and area efficiency (C10), whereas more levels lead to a higher energy efficiency at

reduced clock frequency and performance (A10).

Fig. 12 Top: Silicon area and processing performance of the evaluated architectures. Bottom: Efficiency:
Silicon area and power normalized to performance. Top Right gives an overview including the ARM
CM0

123

International Journal of Parallel Programming

5 Conclusion

In harsh environments, the design space for microcontrollers is large and allows to

achieve different goals like minimum silicon area, minimal energy consumption or

high processing performance. A design space exploration for four RISC processor

architectures, i.e., ARM Cortex-M0, ARM Cortex-M3, MIPS, VLIW-MIPS, as well

as different configurations of a transport-triggered architecture (TTA) has been

performed in this paper. Using a 0.18 lm SOI CMOS technology for high

temperature and a powerline physical layer encoder application as a case study, the

different processor architecture organizations have been compared regarding the

efficient use of silicon area and power. While the RISC architectures mainly differ

in the number of parallel issue slots and pipeline stages, as well as in their control

flow properties (branch delay and stall cycles etc.), the TTA presents an exposed

data path concept, which allows to optimize the usage efficiency of register file and

interconnection resources for the target application.

The corner cases of the design space exploration are the ARM Cortex-M0 and the

TTA configuration C12. On the one hand, the ARM processor requires the smallest

silicon area and power consumption. Due to a high code density, the instruction

memory size is small compared to other architectures, but the performance is also

the lowest due to the lack of a dedicated hardware division unit. On the other hand,

the TTA has the highest performance due to the better exploitation of the

application code parallelism and parallel utilization of processing resources, e.g.,

using multiple multiplier and divider units in overlapping execution. As a drawback,

the TTA programming model requires large instruction widths of up to 112 bit,

increasing the silicon area of the instruction memory and the power consumption.

However, mechanisms like instruction register files, variable length encoding, and

loop buffers [23, 24, 33] could be applied in future work to mitigate the effects on

area and power consumption. Compared to the ARM Cortex-M0, the transport-

triggered architecture configuration C12 has an 8.59 higher performance and 2.49

higher computational energy efficiency at a 1.69 larger total silicon area, showing

the considerable range of design trade-offs for different architectures. It can be

concluded that the flexible configuration of the TTA data path is more suitable to

generate a large variety of trade-off possibilities and opens up a fine-grained design

space to meet the desired application constraints.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt DEAL.

123

International Journal of Parallel Programming

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. Amirshahi, P., Navidpour, S.M., Kavehrad, M.: Performance analysis of uncoded and coded OFDM

broadband transmission over low voltage power-line channels with impulsive noise. IEEE Trans.

Power Deliv. 21(4), 1927–1934 (2006)

2. ARM Limited: Cortex-M3 Technical Reference Manual, ARM DDI 0337E edn. (2006)

3. ARM Limited: Cortex-M0 Technical Reference Manual, ARM DDI 0432C edn. (2009)

4. ARM Limited: ARM v7-M Arch. Reference Manual, ARM DDI 0403E edn. (2014)

5. ARM Limited: ARM v6-M Arch. Reference Manual, ARM DDI 0419D edn. (2017)

6. Bannatyne, R., Gifford, D., Klein, K., McCarville, K., Merritt, C., Neddermeyer, S.: Creation of an

ARM� Cortex�-M0 microcontroller for high temperature embedded systems. In: HiTEN, vol. 2017,

pp. 31–35 (2017)

7. Braun, S., Kordas, N., Utz, A., Kappert, H., Kokozinski, R.: Fully integrated sensor electronics for

inductive proximity switches operating up to 250 C. In: Additional Conference (Device Packaging,

HiTEC, HiTEN, & CICMT) 2019(HiTen), pp. 112–116 (2019)

8. Chen, W., Sadana, D.K., Taur, Y.: SOI CMOS structure, patent (1998)

9. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Hoboken (1997)

10. Freescale: MC9S12G (2017). https://www.nxp.com

11. George, T., Son, K.A., Powers, R.A., Del Castillo, L.Y., Okojie, R.: Harsh environment

microtechnologies for NASA and terrestrial applications. In: IEEE Sensors (2005)

12. Gesper, S.: Implementierung eines VLIW-MIPS-Prozessors für Hochtemperaturanwendungen mit

Compilerunterstützung, Master Thesis, Leibniz Universität Hannover. Master’s thesis (2018)

13. Gesper, S., Weißbrich, M., Nolting, S., Stuckenberg, T., Jääskeläinen, P., Blume, H., Payá-Vayá, G.:

Evaluation of different processor architecture organizations for on-site electronics in Harsh envi-

ronments. In: Embedded Computer Systems: Architectures, Modeling, and Simulation. Springer

(2019)

14. Hennessy, J.L., Patterson, D.A.: Computer Organization and Design: The Hardware/Software

Interface. Elsevier, Hoboken (2014)

15. HomePlug Powerline Alliance: HomePlug 1.0 Specification. Standard, HomePlug Power Alliance,

United States, CA (2001)

16. Honeywell: HT 83C51 (2011). https://aerospace.honeywell.com

17. Jääskeläinen, P., Tervo, A., Payá-Vayá, G., Viitanen, T., Behmann, N., Takala, J., Blume, H.:

Transport-triggered Soft Cores. In: IEEE International Parallel and Distributed Processing Sympo-

sium Workshops (IPDPSW), pp. 83–90 (2018)

18. Jääskeläinen, P., Kultala, H., Viitanen, T., Takala, J.: Code density and energy efficiency of exposed

datapath architectures. J. Signal Process. Syst. 80, 49–64 (2015)

19. Jääskeläinen, P., Viitanen, T., Takala, J., Berg, H.: HW/SW Co-design toolset for customization of

exposed datapath processors. In: Computing Platforms for Software-Defined Radio. Springer (2017)

20. Lele, C., Siohan, P., Legouable, R., Javaudin, J.: Preamble-based channel estimation techniques for

OFDM/OQAM over the powerline. In: 2007 IEEE International Symposium on Power Line Com-

munications and Its Applications, pp. 59–64 (2007)

21. Microchip: PIC24HJ32GP202/204 & PIC24HJ16GP304 (2011). https://www.microchip.com

22. MIPS Technologies: Programmers Volume II-A: The MIPS32 Instruction Set

23. Multanen, J., Kultala, H., Jääskeläinen, P.: Energy-delay trade-offs in instruction register file design.

In: 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International

Symposium of System-on-Chip (SoC), pp. 1–7. IEEE (2018)

24. Multanen, J., Viitanen, T., Linjamäki, H., Kultala, H., Jääskeläinen, P., Takala, J., Koskinen, L.,

Simonsson, J., Berg, H., Raiskila, K., et al.: Power optimizations for transport triggered SIMD

processors. In: 2015 International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS), pp. 303–309. IEEE (2015)

25. Patyk, T., Guevorkian, D., Pitkänen, T., Jääskeläinen, P., Takala, J.: Low-power application-specific

FFT processor for LTE applications. In: International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS), pp. 28–32. IEEE (2013)

26. Pirsch, P.: Architekturen der digitalen Signalverarbeitung. Springer, Berlin (2013)

27. Stuckenberg, T., Gottschlich, M., Nolting, S., Blume, H.: Design and optimization of an ARM

cortex-M based SoC for TCP/IP communication in high temperature applications. In: Embedded

Computer Systems: Architectures, Modeling, and Simulation, pp. 169–183. Springer, Cham (2019)

123

International Journal of Parallel Programming

https://www.nxp.com
https://aerospace.honeywell.com
https://www.microchip.com

28. Tan, Z., Cheng, Y., Liu, H., Ma, Z.: Noise modelling for power line communication in Harsh

environment. In: 2017 4th International Conference on Information Science and Control Engineering

(ICISCE), pp. 1559–1563 (2017)

29. Tekmos Inc.: TK89h51 Microcontroller (2018). https://www.tekmos.com

30. Texas Instruments: TI SM320F2812-HT (2011). https://www.ti.com

31. Texas Instruments: TI SM320f28335-HT (2014). https://www.ti.com

32. Texas Instruments: TI SM470r1b1m-HT (2015). https://www.ti.com

33. Viitanen, T., Helkala, J., Kultala, H., Jääskeläinen, P., Takala, J., Zetterman, T., Berg, H.: Variable

length instruction compression on transport triggered architectures. Int. J. Parallel Program. 46,
1283–1303 (2018)

34. Vorago: VA10800 (2018). https://www.voragotech.com

35. Waterman, A.S.: Design of the RISC-V instruction set architecture. Ph.D. thesis, UC Berkeley (2016)

36. XFab Silicon Foundries: 0.18 Micron Modular BCD-on-SOI Technology (2020)

37. Žádnı́k, J., Takala, J.: Low-power programmable processor for fast Fourier transform based on

transport triggered architecture. In: ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 1423–1427. IEEE (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

International Journal of Parallel Programming

https://www.tekmos.com
https://www.ti.com
https://www.ti.com
https://www.ti.com
https://www.voragotech.com

	Evaluation of Different Processor Architecture Organizations for On-Site Electronics in Harsh Environments
	Abstract
	Introduction
	Related Work
	Processor Architecture Organizations
	ARM Cortex-M Processors
	MIPS32 Processor
	VLIW-MIPS Processor
	Transport-Triggered Architecture Processor
	Fully Configurable Divider and Multiplier Co-processors

	Evaluation
	Target Application
	TTA Configurations
	Trade-Off Analysis

	Conclusion
	 Funding
	References

