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Abstract. Low-level sensory data processing in many Internet-of-Things (IoT) 

devices pursue energy efficiency by utilizing sleep modes or slowing the clocking 

to the minimum. To curb the share of stand-by power dissipation in those designs, 

near-threshold/sub-threshold operational points or ultra-low-leakage processes in 

fabrication are employed. Those limit the clocking rates significantly, reducing 

the computing throughputs of individual processing cores. In this contribution we 

explore compensating for the performance loss of operating in near-threshold 

region (Vdd =0.6V) through massive parallelization. Benefits of near-threshold 

operation and massive parallelism are optimum energy consumption per 

instruction operation and minimized memory roundtrips, respectively. The 

Processing Elements (PE) of the design are based on Transport Triggered 

Architecture. The fine grained programmable parallel solution allows for fast and 

efficient computation of learnable low-level features (e.g. local binary descriptors 

and convolutions). Other operations, including Max-pooling have also been 

implemented. The programmable design achieves excellent energy efficiency for 

Local Binary Patterns computations. 

Keywords: Low Power · Near-threshold design · Massive Processing 

Arrays · Internet-of-Things · Embedded Systems 

1 Introduction 

With the decreasing costs of cameras and wireless communications, an unprecedented 

growth in the number of imaging sensors deployed in our environment is taking place. 

This is coupled to the growth of Internet of Things (IoT) and cloud computing that 

transforms the little-data from distributed sensors to centralized big-data. Examples of 

rapidly growing applications include Advanced Driver Assistance Systems (ADAS), 

data gathering using drones, surveillance systems and service robotics. These 

applications try to interact with the environment or to extract information from the 

scene, necessitating high performance computing, while demanding extreme energy 

efficiency if they depend on energy harvesting or battery power. 

 
1The support of Academy of Finland for project ICONICAL (grant 313467) and 6Genesis 
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In conventional embedded processors, up to 70% of the power dissipation is due to 

the instruction and data supply [2] making those the prime targets for architectural 

optimization. On the other hand, in low level computer vision most of the operations 

deal with neighborhoods of pixels, providing opportunities to avoid memory round trips 

in local processing. This calls for application specific architectures [13], and has lead to 

array processor proposals, mostly in a 2-D mesh configuration [7]. Unfortunately, they 

seldom provide for flexible programmability, and as such mostly serve as energy 

efficiency and raw throughput benchmarks. 

Previous studies have demonstrated the usefulness of GPUs and 1-D SIMD 

processors for low-level vision operations [12]. Although these architectures tend to 

suffer from memory and I/O bottlenecks due to frequent data transfer to and out of the 

PEs [24], several studies [7,3,24,21] have demonstrated their attractiveness. 

The sizes of the reported massive processing arrays have varied, e.g., from 170×120 

[7] to 256×256 PEs [5], while both digital and mixed mode technologies have been 

employed. All of these works are very similar in implementation. It has been shown that 

analog/mixed signal based massive arrays possess superior area-energy efficiency, but 

the analog computation is susceptible to noise in deep sub-micron technology. This 

issue is almost non-existent for the digital counterpart [4,21]. 

TTA cores were adopted as processing element of the presented array, due to 

simplicity in design and availability of a design tool-chain. In previous works single 

core and coarse-grained high performance TTA based solutions were already developed 

and demonstrated. Ijzerman et al. [12] proposed programmable SIMD TTA-based 

accelerator for convolutional neural networks. Also, in [11] a coarse-grained multi-core 

TTA was designed for video coding applications. 

In the current contribution, we address the design of a massive array processor using 

the TTA architecture template. To the best knowledge of the authors, this is the first 

such study. For the design, we used the available advanced TTA co-design environment 

[8]. The motivation for the study stems from the observation of potential energy 

efficiency benefits attainable from ultra-low-leakage silicon technologies and operating 

in near-threshold region. However, this approach is penalized by exponential increase 

in circuit delay. The massive parallelism offsets the speed penalty from the low clock 

frequency, consequently, we decided to realize the design using a near-threshold 

technology [6]. 

The clocking frequency is not a constraint in massive arrays used for most vision 

applications (frame intervals are long enough to finish a large sequence of image 

operations), so one extreme design approach is to operate in sub-threshold regime with 

optimum sub-threshold voltage that minimizes the energy per instruction. We notice the 

energy efficiency of sub-threshold voltage designs (e.g. sub-threshold voltage FFT 

processor [22] with 155nJ per 16-b 1024-point FFT, clocked at only 10 kHz in 180nm 

technology). Unfortunately, our tool chain didn’t allow comparable experiments. 

However, near-threshold design space is explored in this work. 

In addition, to show the advantages of the programmability of our architecture, we 

evaluate it with relevant low-level image processing operations, including learnable 

local descriptors, variable convolutions and Max-pooling operation. The operations are 
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components in the inference stage of the current state-of-the art computer vision 

algorithms. In all the operations our architecture shows its advantages in memory bound 

algorithms since it does not need to flush data back and forth between memories [18]. 

2 System architecture 

2.1 The array processor architecture 

In our proposed architecture, all PEs are directly connected to neighboring PEs. The 

instruction memories are shared between groups of processors. Vertical and horizontal 

indices are assigned to each PE to make it feasible to selectively run instructions or to 

form PE groups, where each group executes its own instruction stream. As an example, 

an 8 × 8 example architecture is shown in Fig. 1. As depicted in the figure, each PE is 

connected to the neighborhood register bank that contains its immediate neighbors in 

eight directions. 

 

Fig.1. General view of the massive array architecture 

Some image processing operations require activating only a small set of PEs, while 

the rest could function as memory. For example, in some forms of maxpooling non-

overlapping windows must be selected. For the purpose of grouping a bundle of PEs to 

certain operations, each PE is aware of its horizontal and vertical index. This enables 

instructing a PE to remain idle depending on its indices. 
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The PEs where chosen to be based on the TTA architecture due to their relative 

architectural simplicity, ease of design and the exposed bypass network of the 

processors. In this architecture, similar to a general approach in massive array 

processors, all processing elements receive a single instruction stream and 

simultaneously execute the same instruction on their local data [4]. However, in our 

scheme multiple instruction memories can feed different groups of PEs and each PE can 

multiplex between different instruction memories. 

Vision applications usually require a large number of computations, especially for 

pixel level operations. Generally, the frame rate for the cameras integrated to current 

embedded systems do not exceed 120 frames per second, while the rates typically range 

from 30 to 60 Hz. Even applications, such as visual odometry that usually require high 

frame rate, rarely exceed rates higher than a few hundred frames per second. 

In this context, we aimed at an architecture that could flexibly employ varying 

numbers of processors (e.g., PE arrays from 3 × 3 to 128 × 128), while we could operate 

them at a very low frequency and voltage, using ultra-low power strategies. Moreover, 

the array can be put in sleep mode during frame intervals, essentially functioning in a 

race-to-sleep mode, which significantly reduces the average power consumption [1]. 

2.2 Sensor Processor Arrangement 

Generally, two forms of arrangement can be considered for 2-Dimensional sensor and 

digital processing arrays [24]. In the first one, each pixel is coupled to a pixel level 

Analog-to-Digital Converter (ADC) [15] and a PE and the ADC directly writes into the 

corresponding PE. This approach mostly is used in applications where the number of 

sensors is limited. In the second approach, sensor plane and processing array are 

separated. 

Two examples of this approach are shown in Fig. 2 and Fig. 3. In Fig. 2, row parallel 

ADCs quantize image pixels column by column and fed the output into first column of 

the processing array (alternatively a single ADC can be coupled to a 1-D column buffer 

and the buffer is flushed into the array) [15]. Subsequently, data is propagated in the 

array in a wave manner. This way the maximum number of cycles to load a totally new 

image onto the array is equal to the number of columns. In case that the processing array 

is not large enough to accommodate the whole image, a moving window called Fovea 

arrangement (Fig. 3) [24], swept throughout the image plane, is read and fed into the 

array. Benefiting from the exposed bypass networks of TTA, our design provides means 

to pass data from PE to PE efficiently without any extra hardware. 
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Fig.2. Sensor readout in column by column fashion 

 

Fig.3. Fovea arrangement where number of processor is less than number of sensors 

3 System implementation 

The proposed architecture was implemented and simulated using SystemC, since the 

TCE toolchain provides means to integrate its cycle accurate simulator with custom 

designs that are implemented this way. At first, after experimenting with basic image 

processing operations, the TTA core was pruned to consume minimum energy and logic 

gates. The detail of the TTA core employed as the architecture PE is presented in Table 

1, while a scheme depicting the core itself is shown in Fig. 4. 

Table 1. Detail of general TTA core 

Component Details Quantity 

ALU ADD, EQ, GTU 1 

Logic AND, OR, XOR, SHR, SHL 1 

Special custom FU Neighborhood Shared register, Inputs ports 1 

Register file 16-Bit Registers for temporary data storage 4 

Boolean Register file For storage outcome of logic operations 2 

Instruction memory width 23 b  

Short Immediate 16 b  
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3.1 Neighbor Communication Functional Unit 

A special functional unit (FU) to communicate with the eight adjacent neighbors of each 

PE was designed using behavioral models written in SystemC and VHDL. This unit 

contains both the vertical and horizontal indices of the PE. It consists of two internal 

ports (one input and one output) that are connected to the main bus of the TTA core and 

nine external ports (eight inputs and one output) that communicate with the 

neighbouring PEs. 

Each PE can store its output on a register named Shared register which can be read 

only by the neighbouring PEs. One of the external ports of the custom functional units 

is devoted to this register. The other eight external input ports named North, North East, 

East, South East, South, South West, West, North West, are connected to corresponded 

Shared register of neighbouring PEs. The custom functional units provide three 

instructions read neighbour, read index and write Shared. Example transports to read 

and write from the custom FU are shown in Table 2. The SystemC model of the FU was 

integrated to the TTA based PE core. A small-scale version of the architecture was 

implemented on FPGA and as ASIC in 28 nm deep sub-micron CMOS technology. 

 

Fig.4. Transport Triggered Architecture serves as PE core 

Table 2. Code examples of the custom FU transports 

Reading Neighbours 1. 0 → CustomFU.Inp1.read neighbour 0 for 

 2. CustomFU.output → RF.0; North,... 

Reading index 1. 0 → CustomFU.Inp1.read index 0,1 for 

 2. CustomFU.output → RF.0 X,Y 

Writing output 1. RF.0 → Custom FU.Inp1.write Shared – 

Data passing 1. CustomFU.output → CustomFU.Inp1.write Shared – 



 Transport Triggered Array Processor for Vision Applications 7 

4 Results and Discussion 

4.1 Application Example: Descriptive features 

To evaluate the usefulness of our architecture, we have implemented several lowlevel 

image processing operations, including local descriptors such as the Local Binary 

Patterns, 3x3 convolutions using integer coefficients and max-pooling. All the 

operations were tested on the processor. We provide cycle accurate simulations. 

Local descriptors represent features in small local image patches. Handcrafted local 

descriptors include binary operators such as Local Binary Patterns (LBP), symmetric 

operators, e.g., Local Phase Quantization (LPQ), and Binarized Statistical Image 

Features (BSIF) that are learned from image statistics. They are used in applications 

that range from face analysis to texture classification [10]. 

As opposed to handcrafted descriptors, there is a recent surge of learnable local 

descriptors. This generation of compact and efficient operators is emerging due to 

schemes that allow individual filters to be learned for different applications and image 

regions. Examples include regressing Local Binary Features (rLBF) that are utilized in 

state of the art shape and facial landmark detection [19], or local binary kernels used in 

neural networks [25] demonstrated in several image classification applications. 

The local descriptors share a common computational structure, as they can be 

expressed in a way that allows for pipelined implementations. The exposed bypass 

networks of TTA processors enables building these pipelines by software controlled 

transports. 

We decided to evaluate the performance of our processor with the simple, yet useful 

local descriptors, including LBP [17]. LBP is considered to be computationally cheap, 

but it needs to be computed for every pixel and is therefore a memory-bound algorithm. 

In its simplest form, for each pixel value, a binary vector is constructed by comparing 

the pixel value with values of its immediate surrounding neighbours. Several hardware 

implementations for efficient LBP extraction have been proposed and thoroughly 

evaluated [16]. 

The LBP descriptor can be computed with the proposed processor in a few cycles 

and using few resources. The number of cycles consumed is 74, while two 16-bit 

registers and one 1-bit Boolean register suffice. Table 3 contains an excerpt from an 

LBP TTA transport program. Table 4 summarizes the results of SystemC cycle accurate 

model simulations for each operation. 

Convolution is a fundamental image processing operation in which the input is spatially 

convolved with arbitrary kernels. 

We implemented and evaluated a 3x3 convolution on our proposed TTA system 

utilizing integer and fixed-point calculations. In our implementation, the precise number 

of consumed cycles depends on the actual kernel weights. Sobel edge detector and Box 

blur [9] have minimum arithmetic needs and their implementations were evaluated in 

our experiments. In addition, we implemented 
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Table 3. Code excerpt from LBP program (3 × 3 window) 

mainloop : 

0 → RF.0; 

0 → RF.3; 

0 → FU.P1.read neighnour; 

FU.P2 → RF.5; 

RF.5 → FU.P1.write Shared; 

RF.6 → alu comp.in2 ; 

5 → FU.P1.read neighnour ; 

FU.P2 → alu comp.in1t.gtu ; alu 

comp.out1 → bool.0 ; 1 → 

RF.1; 

?bool.0 RF.0 → RF.1; RF.1 → 

alu comp.in2; RF.3 → alu 

comp.in1t.add; alu comp.out1 

→ RF.3; 6 → FU.P1.read 

neighnour ; FU.P2 → alu 

comp.in1t.gtu ; alu comp.out1 

→ bool.0 ; 2 → RF.1; 

?bool.0 RF.0 → RF.1; RF.1 

→ alu comp.in2; RF.3 → alu 

comp.in1t.add; alu comp.out1 

→ RF.3; 

... 

 

Table 4. Summary of results of SystemC cycle accurate model simulations 

Operations Window Size Number of clock cycles 

LBP 3 × 3 74 

Conv. (binary weights) 3 × 3 56 

Conv. (integer weights) 3 × 3 1553 

Max-pooling 3 × 3 271 

 

kernels with random weights. The number of cycles required is reported in the 

simulation results is presented in Table 4. 

Pooling layers are important in Convolutional Neural Networks [14]. Pooling is a 

down-sampling operation implemented using a custom stride ( down-sampling factor). 

Typical CNN architectures commonly use Max-pooling in which the maximum value 

in a window region is selected. 

Pooling operations can be applied on non-overlapping windows. Hence, a method 

to divide PEs into independent slices is required. Our implementation can achieve this 

through selecting the PEs with indices that are multiple of our desired stride (e.g in case 
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the stride is equal to two, PEs with indices of multiples of two are activated). To find if 

an index is multiple of a number, we do not need to compute the remainders since, for 

example, multiples of 2,3 and 5 can be computed through simple iterative methods [20]. 

The pooling operation with stride of 2 is depicted in Fig 5. The results for Max-pooling 

also are presented in Table 4. 

 

Fig.5. Max pooling example with a stride of 2 

4.2 FPGA and ASIC implementation 

To show the implementation feasibility of our processor, and for verification purposes, 

we have carried out a small-scale design into both FPGA and ASIC. In both 

implementations we measure and extrapolate estimations of power consumption, 

occupied area and number of gates. 

FPGA Results: We carried out our FPGA implementation starting from our SystemC 

and HDL modelling, and employed an Altera Cyclone IV EP4CE115F29C7 FPGA. Our 

small scale implementation is comprised of 110 cores (10 × 11). The number of used 

logic elements and the measured power consumption results are presented in Table 5. 

The static power is constant for this FPGA regardless of the design and clock frequency. 

The dynamic power for this 10×11 array is similar to the static power, and is relatively 

low for a FPGA implementation. 
Table 5. Implementation of a 10 × 11 TTA array on Cyclone IV FPGA 

 10 × 11 Array Single TTA core 

Static Power 104.30 mW - 

Dynamic Power 113.79 mW 1 mW 

Total Power 234.30 mW - 

Logic Cells 69,983/81,264 (86%) 630 

Clock 50 MHz 

ASIC Results In addition to the FPGA implementation, we have synthesized our design 

to an ASIC using 28 nm low power libraries. In addition, we have performed post-layout 

simulations. We obtained the results of the power estimations per PE (TTA core) based 

on a small scale implementation. Based on the measurements and simulations, we 
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expect the total power consumption to be roughly proportional to the number of PEs 

with almost negligible overheads. The following table summarizes the ASIC 

implementation results for three different settings. 

Table 6. TTA core ASIC implementation results 

 0.8 V 25 ◦C 0.6 V 125 ◦C 0.8 V 125 ◦C 

Clock(MHz) 1 10 100 1 10 100 1 10 100 

Static Power (µW) 0.7 0.68 0.55 8.2 8.0 8.1 15.1 15.5 15.2 

Dynamic Power(µW) 1.76 17.51 184 0.96 10.4 101 1.8 19.1 186 

Total Power(µW) 2.4 18.1 185 9.2 18.4 109 16 34 202 

Static / Total Power 0.29 0.04 0.003 0.89 0.44 0.07 0.89 0.45 0.07 

Area 55 µm × 55 µm  

Each PE occupies an area of 55 µm × 55 µm while the array size growth is almost 

linear with the number of PEs. Extrapolating, we can expect that a array of 128 × 128 

processors, would occupy around 6.5 mm × 6.5 mm. We expect the leakage current to 

be substantially lower in typical settings, for the near-threshold results. 

The available technology libraries allowed us to only carry out simulation in 

extremes corners for 0.6 V (i.e. 125 ◦C and -40 ◦C). Therefore, simulation results for 

both 0.8 V typical (25 ◦C) and 0.8 V worst case (125 ◦C) are added to help understanding 

the impact of leakage to total power consumption. Based on these results static power 

is expected to have a trivial portion in typical temperature (25 ◦C) for operating point of 

0.6 V. 

Based on the simulation results, the array consumes 18 uW per core at 10 MHz 

operation. Considering the results in Table 4, the processor is fast enough to complete 

multiple image operations and to be turned off (clock gated) before the next frame 

comes available. 

 

5 Discussion and future work 

In our design, we explored implementing massive array processors with TTA 

processing elements operating in near-threshold region. Our results appear promising, 

in particular, when considering the programmable flexibility of the solution, a feature 

that is not present in similarly power efficient solutions for the same purpose. The 

energy consumed per pixel is just 1.4 nJ per pixel in the FPGA case for each LBP 

operation. In case of the ASIC implementation at 10 MHz clock frequency (0.6 V worst 

case 125 ◦C), the energy dissipation is around 0.17 nJ per pixel. Our results are very 

close to the best ones achieved for hardwired LBP implementations [16]. 

Future work includes investigation of race-to-sleep schemes [23], which could 

reduce the average power consumption. Depending on the required image operations 

and the input frame rate, the array could be turned off for relatively long periods, 

permitting to tolerate wake-up overheads. 
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