

Transport Triggered Array Processor for Vision

Applications

Mehdi Safarpour, Ilkka Hautala, Miguel Bordallo Lopez, and Olli Silven

Center for Machine Vision and Signal Analysis, University of Oulu, Finland 1

mehdi.safarpour [at] oulu.fi

Abstract. Low-level sensory data processing in many Internet-of-Things (IoT)

devices pursue energy efficiency by utilizing sleep modes or slowing the clocking

to the minimum. To curb the share of stand-by power dissipation in those designs,

near-threshold/sub-threshold operational points or ultra-low-leakage processes in

fabrication are employed. Those limit the clocking rates significantly, reducing

the computing throughputs of individual processing cores. In this contribution we

explore compensating for the performance loss of operating in near-threshold

region (Vdd =0.6V) through massive parallelization. Benefits of near-threshold

operation and massive parallelism are optimum energy consumption per

instruction operation and minimized memory roundtrips, respectively. The

Processing Elements (PE) of the design are based on Transport Triggered

Architecture. The fine grained programmable parallel solution allows for fast and

efficient computation of learnable low-level features (e.g. local binary descriptors

and convolutions). Other operations, including Max-pooling have also been

implemented. The programmable design achieves excellent energy efficiency for

Local Binary Patterns computations.

Keywords: Low Power · Near-threshold design · Massive Processing

Arrays · Internet-of-Things · Embedded Systems

1 Introduction

With the decreasing costs of cameras and wireless communications, an unprecedented

growth in the number of imaging sensors deployed in our environment is taking place.

This is coupled to the growth of Internet of Things (IoT) and cloud computing that

transforms the little-data from distributed sensors to centralized big-data. Examples of

rapidly growing applications include Advanced Driver Assistance Systems (ADAS),

data gathering using drones, surveillance systems and service robotics. These

applications try to interact with the environment or to extract information from the

scene, necessitating high performance computing, while demanding extreme energy

efficiency if they depend on energy harvesting or battery power.

1The support of Academy of Finland for project ICONICAL (grant 313467) and 6Genesis

Flagship (grant 318927) is gratefully acknowledged.

2 M. Safarpour et al.

In conventional embedded processors, up to 70% of the power dissipation is due to

the instruction and data supply [2] making those the prime targets for architectural

optimization. On the other hand, in low level computer vision most of the operations

deal with neighborhoods of pixels, providing opportunities to avoid memory round trips

in local processing. This calls for application specific architectures [13], and has lead to

array processor proposals, mostly in a 2-D mesh configuration [7]. Unfortunately, they

seldom provide for flexible programmability, and as such mostly serve as energy

efficiency and raw throughput benchmarks.

Previous studies have demonstrated the usefulness of GPUs and 1-D SIMD

processors for low-level vision operations [12]. Although these architectures tend to

suffer from memory and I/O bottlenecks due to frequent data transfer to and out of the

PEs [24], several studies [7,3,24,21] have demonstrated their attractiveness.

The sizes of the reported massive processing arrays have varied, e.g., from 170×120

[7] to 256×256 PEs [5], while both digital and mixed mode technologies have been

employed. All of these works are very similar in implementation. It has been shown that

analog/mixed signal based massive arrays possess superior area-energy efficiency, but

the analog computation is susceptible to noise in deep sub-micron technology. This

issue is almost non-existent for the digital counterpart [4,21].

TTA cores were adopted as processing element of the presented array, due to

simplicity in design and availability of a design tool-chain. In previous works single

core and coarse-grained high performance TTA based solutions were already developed

and demonstrated. Ijzerman et al. [12] proposed programmable SIMD TTA-based

accelerator for convolutional neural networks. Also, in [11] a coarse-grained multi-core

TTA was designed for video coding applications.

In the current contribution, we address the design of a massive array processor using

the TTA architecture template. To the best knowledge of the authors, this is the first

such study. For the design, we used the available advanced TTA co-design environment

[8]. The motivation for the study stems from the observation of potential energy

efficiency benefits attainable from ultra-low-leakage silicon technologies and operating

in near-threshold region. However, this approach is penalized by exponential increase

in circuit delay. The massive parallelism offsets the speed penalty from the low clock

frequency, consequently, we decided to realize the design using a near-threshold

technology [6].

The clocking frequency is not a constraint in massive arrays used for most vision

applications (frame intervals are long enough to finish a large sequence of image

operations), so one extreme design approach is to operate in sub-threshold regime with

optimum sub-threshold voltage that minimizes the energy per instruction. We notice the

energy efficiency of sub-threshold voltage designs (e.g. sub-threshold voltage FFT

processor [22] with 155nJ per 16-b 1024-point FFT, clocked at only 10 kHz in 180nm

technology). Unfortunately, our tool chain didn’t allow comparable experiments.

However, near-threshold design space is explored in this work.

In addition, to show the advantages of the programmability of our architecture, we

evaluate it with relevant low-level image processing operations, including learnable

local descriptors, variable convolutions and Max-pooling operation. The operations are

 Transport Triggered Array Processor for Vision Applications 3

components in the inference stage of the current state-of-the art computer vision

algorithms. In all the operations our architecture shows its advantages in memory bound

algorithms since it does not need to flush data back and forth between memories [18].

2 System architecture

2.1 The array processor architecture

In our proposed architecture, all PEs are directly connected to neighboring PEs. The

instruction memories are shared between groups of processors. Vertical and horizontal

indices are assigned to each PE to make it feasible to selectively run instructions or to

form PE groups, where each group executes its own instruction stream. As an example,

an 8 × 8 example architecture is shown in Fig. 1. As depicted in the figure, each PE is

connected to the neighborhood register bank that contains its immediate neighbors in

eight directions.

Fig.1. General view of the massive array architecture

Some image processing operations require activating only a small set of PEs, while

the rest could function as memory. For example, in some forms of maxpooling non-

overlapping windows must be selected. For the purpose of grouping a bundle of PEs to

certain operations, each PE is aware of its horizontal and vertical index. This enables

instructing a PE to remain idle depending on its indices.

4 M. Safarpour et al.

The PEs where chosen to be based on the TTA architecture due to their relative

architectural simplicity, ease of design and the exposed bypass network of the

processors. In this architecture, similar to a general approach in massive array

processors, all processing elements receive a single instruction stream and

simultaneously execute the same instruction on their local data [4]. However, in our

scheme multiple instruction memories can feed different groups of PEs and each PE can

multiplex between different instruction memories.

Vision applications usually require a large number of computations, especially for

pixel level operations. Generally, the frame rate for the cameras integrated to current

embedded systems do not exceed 120 frames per second, while the rates typically range

from 30 to 60 Hz. Even applications, such as visual odometry that usually require high

frame rate, rarely exceed rates higher than a few hundred frames per second.

In this context, we aimed at an architecture that could flexibly employ varying

numbers of processors (e.g., PE arrays from 3 × 3 to 128 × 128), while we could operate

them at a very low frequency and voltage, using ultra-low power strategies. Moreover,

the array can be put in sleep mode during frame intervals, essentially functioning in a

race-to-sleep mode, which significantly reduces the average power consumption [1].

2.2 Sensor Processor Arrangement

Generally, two forms of arrangement can be considered for 2-Dimensional sensor and

digital processing arrays [24]. In the first one, each pixel is coupled to a pixel level

Analog-to-Digital Converter (ADC) [15] and a PE and the ADC directly writes into the

corresponding PE. This approach mostly is used in applications where the number of

sensors is limited. In the second approach, sensor plane and processing array are

separated.

Two examples of this approach are shown in Fig. 2 and Fig. 3. In Fig. 2, row parallel

ADCs quantize image pixels column by column and fed the output into first column of

the processing array (alternatively a single ADC can be coupled to a 1-D column buffer

and the buffer is flushed into the array) [15]. Subsequently, data is propagated in the

array in a wave manner. This way the maximum number of cycles to load a totally new

image onto the array is equal to the number of columns. In case that the processing array

is not large enough to accommodate the whole image, a moving window called Fovea

arrangement (Fig. 3) [24], swept throughout the image plane, is read and fed into the

array. Benefiting from the exposed bypass networks of TTA, our design provides means

to pass data from PE to PE efficiently without any extra hardware.

 Transport Triggered Array Processor for Vision Applications 5

Fig.2. Sensor readout in column by column fashion

Fig.3. Fovea arrangement where number of processor is less than number of sensors

3 System implementation

The proposed architecture was implemented and simulated using SystemC, since the

TCE toolchain provides means to integrate its cycle accurate simulator with custom

designs that are implemented this way. At first, after experimenting with basic image

processing operations, the TTA core was pruned to consume minimum energy and logic

gates. The detail of the TTA core employed as the architecture PE is presented in Table

1, while a scheme depicting the core itself is shown in Fig. 4.

Table 1. Detail of general TTA core

Component Details Quantity

ALU ADD, EQ, GTU 1

Logic AND, OR, XOR, SHR, SHL 1

Special custom FU Neighborhood Shared register, Inputs ports 1

Register file 16-Bit Registers for temporary data storage 4

Boolean Register file For storage outcome of logic operations 2

Instruction memory width 23 b

Short Immediate 16 b

6 M. Safarpour et al.

3.1 Neighbor Communication Functional Unit

A special functional unit (FU) to communicate with the eight adjacent neighbors of each

PE was designed using behavioral models written in SystemC and VHDL. This unit

contains both the vertical and horizontal indices of the PE. It consists of two internal

ports (one input and one output) that are connected to the main bus of the TTA core and

nine external ports (eight inputs and one output) that communicate with the

neighbouring PEs.

Each PE can store its output on a register named Shared register which can be read

only by the neighbouring PEs. One of the external ports of the custom functional units

is devoted to this register. The other eight external input ports named North, North East,

East, South East, South, South West, West, North West, are connected to corresponded

Shared register of neighbouring PEs. The custom functional units provide three

instructions read neighbour, read index and write Shared. Example transports to read

and write from the custom FU are shown in Table 2. The SystemC model of the FU was

integrated to the TTA based PE core. A small-scale version of the architecture was

implemented on FPGA and as ASIC in 28 nm deep sub-micron CMOS technology.

Fig.4. Transport Triggered Architecture serves as PE core

Table 2. Code examples of the custom FU transports

Reading Neighbours 1. 0 → CustomFU.Inp1.read neighbour 0 for

 2. CustomFU.output → RF.0; North,...

Reading index 1. 0 → CustomFU.Inp1.read index 0,1 for

 2. CustomFU.output → RF.0 X,Y

Writing output 1. RF.0 → Custom FU.Inp1.write Shared –

Data passing 1. CustomFU.output → CustomFU.Inp1.write Shared –

 Transport Triggered Array Processor for Vision Applications 7

4 Results and Discussion

4.1 Application Example: Descriptive features

To evaluate the usefulness of our architecture, we have implemented several lowlevel

image processing operations, including local descriptors such as the Local Binary

Patterns, 3x3 convolutions using integer coefficients and max-pooling. All the

operations were tested on the processor. We provide cycle accurate simulations.

Local descriptors represent features in small local image patches. Handcrafted local

descriptors include binary operators such as Local Binary Patterns (LBP), symmetric

operators, e.g., Local Phase Quantization (LPQ), and Binarized Statistical Image

Features (BSIF) that are learned from image statistics. They are used in applications

that range from face analysis to texture classification [10].

As opposed to handcrafted descriptors, there is a recent surge of learnable local

descriptors. This generation of compact and efficient operators is emerging due to

schemes that allow individual filters to be learned for different applications and image

regions. Examples include regressing Local Binary Features (rLBF) that are utilized in

state of the art shape and facial landmark detection [19], or local binary kernels used in

neural networks [25] demonstrated in several image classification applications.

The local descriptors share a common computational structure, as they can be

expressed in a way that allows for pipelined implementations. The exposed bypass

networks of TTA processors enables building these pipelines by software controlled

transports.

We decided to evaluate the performance of our processor with the simple, yet useful

local descriptors, including LBP [17]. LBP is considered to be computationally cheap,

but it needs to be computed for every pixel and is therefore a memory-bound algorithm.

In its simplest form, for each pixel value, a binary vector is constructed by comparing

the pixel value with values of its immediate surrounding neighbours. Several hardware

implementations for efficient LBP extraction have been proposed and thoroughly

evaluated [16].

The LBP descriptor can be computed with the proposed processor in a few cycles

and using few resources. The number of cycles consumed is 74, while two 16-bit

registers and one 1-bit Boolean register suffice. Table 3 contains an excerpt from an

LBP TTA transport program. Table 4 summarizes the results of SystemC cycle accurate

model simulations for each operation.

Convolution is a fundamental image processing operation in which the input is spatially

convolved with arbitrary kernels.

We implemented and evaluated a 3x3 convolution on our proposed TTA system

utilizing integer and fixed-point calculations. In our implementation, the precise number

of consumed cycles depends on the actual kernel weights. Sobel edge detector and Box

blur [9] have minimum arithmetic needs and their implementations were evaluated in

our experiments. In addition, we implemented

8 M. Safarpour et al.

Table 3. Code excerpt from LBP program (3 × 3 window)

mainloop :

0 → RF.0;

0 → RF.3;

0 → FU.P1.read neighnour;

FU.P2 → RF.5;

RF.5 → FU.P1.write Shared;

RF.6 → alu comp.in2 ;

5 → FU.P1.read neighnour ;

FU.P2 → alu comp.in1t.gtu ; alu

comp.out1 → bool.0 ; 1 →

RF.1;

?bool.0 RF.0 → RF.1; RF.1 →

alu comp.in2; RF.3 → alu

comp.in1t.add; alu comp.out1

→ RF.3; 6 → FU.P1.read

neighnour ; FU.P2 → alu

comp.in1t.gtu ; alu comp.out1

→ bool.0 ; 2 → RF.1;

?bool.0 RF.0 → RF.1; RF.1

→ alu comp.in2; RF.3 → alu

comp.in1t.add; alu comp.out1

→ RF.3;

...

Table 4. Summary of results of SystemC cycle accurate model simulations

Operations Window Size Number of clock cycles

LBP 3 × 3 74

Conv. (binary weights) 3 × 3 56

Conv. (integer weights) 3 × 3 1553

Max-pooling 3 × 3 271

kernels with random weights. The number of cycles required is reported in the

simulation results is presented in Table 4.

Pooling layers are important in Convolutional Neural Networks [14]. Pooling is a

down-sampling operation implemented using a custom stride (down-sampling factor).

Typical CNN architectures commonly use Max-pooling in which the maximum value

in a window region is selected.

Pooling operations can be applied on non-overlapping windows. Hence, a method

to divide PEs into independent slices is required. Our implementation can achieve this

through selecting the PEs with indices that are multiple of our desired stride (e.g in case

 Transport Triggered Array Processor for Vision Applications 9

the stride is equal to two, PEs with indices of multiples of two are activated). To find if

an index is multiple of a number, we do not need to compute the remainders since, for

example, multiples of 2,3 and 5 can be computed through simple iterative methods [20].

The pooling operation with stride of 2 is depicted in Fig 5. The results for Max-pooling

also are presented in Table 4.

Fig.5. Max pooling example with a stride of 2

4.2 FPGA and ASIC implementation

To show the implementation feasibility of our processor, and for verification purposes,

we have carried out a small-scale design into both FPGA and ASIC. In both

implementations we measure and extrapolate estimations of power consumption,

occupied area and number of gates.

FPGA Results: We carried out our FPGA implementation starting from our SystemC

and HDL modelling, and employed an Altera Cyclone IV EP4CE115F29C7 FPGA. Our

small scale implementation is comprised of 110 cores (10 × 11). The number of used

logic elements and the measured power consumption results are presented in Table 5.

The static power is constant for this FPGA regardless of the design and clock frequency.

The dynamic power for this 10×11 array is similar to the static power, and is relatively

low for a FPGA implementation.
Table 5. Implementation of a 10 × 11 TTA array on Cyclone IV FPGA

 10 × 11 Array Single TTA core

Static Power 104.30 mW -

Dynamic Power 113.79 mW 1 mW

Total Power 234.30 mW -

Logic Cells 69,983/81,264 (86%) 630

Clock 50 MHz

ASIC Results In addition to the FPGA implementation, we have synthesized our design

to an ASIC using 28 nm low power libraries. In addition, we have performed post-layout

simulations. We obtained the results of the power estimations per PE (TTA core) based

on a small scale implementation. Based on the measurements and simulations, we

10 M. Safarpour et al.

expect the total power consumption to be roughly proportional to the number of PEs

with almost negligible overheads. The following table summarizes the ASIC

implementation results for three different settings.

Table 6. TTA core ASIC implementation results

 0.8 V 25 ◦C 0.6 V 125 ◦C 0.8 V 125 ◦C

Clock(MHz) 1 10 100 1 10 100 1 10 100

Static Power (µW) 0.7 0.68 0.55 8.2 8.0 8.1 15.1 15.5 15.2

Dynamic Power(µW) 1.76 17.51 184 0.96 10.4 101 1.8 19.1 186

Total Power(µW) 2.4 18.1 185 9.2 18.4 109 16 34 202

Static / Total Power 0.29 0.04 0.003 0.89 0.44 0.07 0.89 0.45 0.07

Area 55 µm × 55 µm

Each PE occupies an area of 55 µm × 55 µm while the array size growth is almost

linear with the number of PEs. Extrapolating, we can expect that a array of 128 × 128

processors, would occupy around 6.5 mm × 6.5 mm. We expect the leakage current to

be substantially lower in typical settings, for the near-threshold results.

The available technology libraries allowed us to only carry out simulation in

extremes corners for 0.6 V (i.e. 125 ◦C and -40 ◦C). Therefore, simulation results for

both 0.8 V typical (25 ◦C) and 0.8 V worst case (125 ◦C) are added to help understanding

the impact of leakage to total power consumption. Based on these results static power

is expected to have a trivial portion in typical temperature (25 ◦C) for operating point of

0.6 V.

Based on the simulation results, the array consumes 18 uW per core at 10 MHz

operation. Considering the results in Table 4, the processor is fast enough to complete

multiple image operations and to be turned off (clock gated) before the next frame

comes available.

5 Discussion and future work

In our design, we explored implementing massive array processors with TTA

processing elements operating in near-threshold region. Our results appear promising,

in particular, when considering the programmable flexibility of the solution, a feature

that is not present in similarly power efficient solutions for the same purpose. The

energy consumed per pixel is just 1.4 nJ per pixel in the FPGA case for each LBP

operation. In case of the ASIC implementation at 10 MHz clock frequency (0.6 V worst

case 125 ◦C), the energy dissipation is around 0.17 nJ per pixel. Our results are very

close to the best ones achieved for hardwired LBP implementations [16].

Future work includes investigation of race-to-sleep schemes [23], which could

reduce the average power consumption. Depending on the required image operations

and the input frame rate, the array could be turned off for relatively long periods,

permitting to tolerate wake-up overheads.

 Transport Triggered Array Processor for Vision Applications 11

References

1. Carey, S.J., Barr, D.R., Dudek, P.: Demonstration of a low power image processingsystem

using a SCAMP3 vision chip. In: 2011 Fifth ACM/IEEE International Conference on

Distributed Smart Cameras. pp. 1–2. IEEE (2011)

2. Dally, W.J., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R.C., Parikh, V.,Park, J.,

Sheffield, D.: Efficient embedded computing. Computer 41(7), 27–32 (2008)

3. Debrunner, T., Saeedi, S., Bose, L., Davison, A.J., Kelly, P.H.: Camera trackingon focal-

plane sensor-processor arrays

4. Debrunner, T., Saeedi, S., Kelly, P.H.: AUKE: Automatic kernel code generationfor an

analogue SIMD focal-plane sensor-processor array. ACM Transactions on Architecture and

Code Optimization (TACO) 15(4), 59 (2019)

5. Di Federico, M., Julia´n, P., Mandolesi, P.S.: SCDVP: A simplicial cnn digital

visualprocessor. IEEE Transactions on Circuits and Systems I: Regular Papers 61(7), 1962–

1969 (2014)

6. Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Nearthreshold

computing: Reclaiming moore’s law through energy efficient integrated circuits.

Proceedings of the IEEE 98(2), 253–266 (2010)

7. Dudek, P., Hicks, P.J.: A general-purpose processor-per-pixel analog SIMD visionchip.

IEEE Transactions on Circuits and Systems I: Regular Papers 52(1), 13–20 (2005)

8. Esko, O., Jaaskelainen, P., Huerta, P., Carlos, S., Takala, J., Martinez, J.I.: Customized

exposed datapath soft-core design flow with compiler support. In: 2010 International

Conference on Field Programmable Logic and Applications. pp. 217– 222. IEEE (2010)

9. Gonzalez, R.C., Woods, R.E.: Digital image processing. Interscience, NY (2001)

10. Hadid, A., Ylioinas, J., Lo´pez, M.B.: Face and texture analysis using local descriptors: a

comparative analysis. In: 2014 4th International Conference on Image Processing Theory,

Tools and Applications (IPTA). pp. 1–4. IEEE (2014)

11. Hautala, I., Boutellier, J., Silven, O.: Programmable 28nm coprocessor forHEVC/H.265 in-

loop filters. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). pp.

1570–1573. IEEE (2016)

12. IJzerman, J., Viitanen, T., Ja¨a¨skela¨inen, P., Kultala, H., Lehtonen, L., Peemen,M.,

Corporaal, H., Takala, J.: Aivotta: an energy efficient programmable accelerator for CNN-

based object recognition. In: Proceedings of the 18th International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation. pp. 28–37. ACM (2018)

13. Jacobs, M.: Visual processing sparks a new class of processors. In: 2015 International

Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS). pp. ii–ii. IEEE (2015)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in neural information processing systems. pp. 1097–1105

(2012)

15. Len˜ero-Bardallo, J.A., Ferna´ndez-Berni, J., Rodr´ıguez-Va´zquez, A.: Review of´ ADCs

for imaging. In: Image Sensors and Imaging Systems 2014. vol. 9022, p. 90220I.

International Society for Optics and Photonics (2014)

16. L´opez, M.B., Nieto, A., Boutellier, J., Hannuksela, J., Silv´en, O.: Evaluation ofreal-time

LBP computing in multiple architectures. Journal of Real-Time Image Processing 13(2),

375–396 (2017)

12 M. Safarpour et al.

17. Ojala, T., Pietika¨inen, M., Ma¨enpa¨¨a, T.: Gray scale and rotation invariant

textureclassification with local binary patterns. In: European Conference on Computer

Vision. pp. 404–420. Springer (2000)

18. Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: A deep multi-task learningframework for

face detection, landmark localization, pose estimation, and gender recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence 41(1), 121–135 (2019)

19. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing localbinary

features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. pp. 1685–1692 (2014)

20. (https://math.stackexchange.com/users/424075/evan severson), E.S.: General rule to

determine if a binary number is divisible by a generic number. Mathematics Stack Exchange,

https://math.stackexchange.com/q/2228305,

uRL:https://math.stackexchange.com/q/2228305 (version: 2018-04-05)

21. Walsh, D.: Design and Implementation of Massively Parallel Fine-Grained Processor

Arrays. Ph.D. thesis, University of Manchester, Manchester, UK (2015)

22. Wang, A., Chandrakasan, A.: A 180-mv subthreshold FFT processor using a minimum

energy design methodology. IEEE Journal of solid-state circuits 40(1), 310– 319 (2005)

23. Wolf, M.: Chapter 3 - cpus. In: Computers as Components (Fourth Edition), pp.99 – 159.

The Morgan Kaufmann Series in Computer Architecture and Design, Morgan Kaufmann,

fourth edition edn. (2017)

24. Zar´andy, A.: Focal-plane sensor-processor chips. Springer Science & Business Media´

(2011)

25. Zhang, X., Liu, L., Xie, Y., Chen, J., Wu, L., Pietikainen, M.: Rotation invariantlocal binary

convolution neural networks. In: Proceedings of the IEEE International

Conference on Computer Vision. pp. 1210–1219 (2017)

