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Abstract. The Modular Microserver DataCenter (M2DC) project provides low-
energy, configurable, heterogeneous servers for applications that focus on the
elaboration of large data sets, but can take advantage of performance enhance-
ment provided by transparent acceleration techniques. In this paper, we exemplify
the M2DC approach through one of the project’s use cases, namely automotive
Internet of Things analytics. We present the main goals of the use case and we
show how an appropriate M2DC microserver can be used to accelerate the appli-
cation without significant modifications to its code.
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1 Introduction

Analytics applications extracting valuable knowledge from the large amount of data
collected by Internet of Things connected devices are already becoming a killer appli-
cation for data centres. In particular, the automotive application domain is expected to
expand vastly in the next few years. The 20% of the circulating cars will be connected
vehicles by 2020 and this number will double by 2024. This makes the market of auto-
motive telematics viable, paving the way for a large number of different applications.
Consequently, the market space for fleet management and added value services will
skyrocket, with a compound annual growth rate of 65% 4.

To cope with the requirements of value-added applications leveraging automotive
telematics data, data-centres need to update their technologies. The Modular Microserver
for Data Centers (M2DC) project aims at prototyping a highly efficient and customiz-
able cost-optimized server architecture [8,21]. These servers are composed of microserver
computing resources, which can be tailored to a specific application domain. In the
M2DC approach, an application developer can select from a range of turnkey appli-
ances that are easily configured, deployed, and maintained. The appliance is composed

4 http://analysismason.com
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of a collection of hardware resources and of a software stack needed to exploit them in
a transparent way.

In this work, we present an example of the M2DC customised microserver, tailored
for an automotive data analytics scenario provided by Vodafone Automotive Telem-
atics, and leveraging specific accelerators – called System Efficiency Enhancements
(SEE) in the M2DC parlance – developed by Politecnico di Milano and AS+ Groupe
EOLEN. The SEEs focus on accelerating key portions of the data analytics application,
namely the decryption of source data and the computational kernels of the analysis. The
complete appliance provides a key demonstrator for the M2DC microservers.

Organization of the paper The rest of the paper is organized as follows. Section 2
introduces the M2DC approach to provide turnkey appliances for data centres. Section 3
describes the automotive use case and its requirements, while in Section 4 we describe
the main System Efficiency Enhancements which will be embedded in the IoT Analytics
appliance, obtaining an high-performance, low-energy solution for the automotive use
case. Finally, Section 5 and 6 present the roadmap towards higher technology readiness
levels for the use cases and the conclusions that can be drawn from this work.

2 The M2DC Approach

The M2DC project [13] aims at developing turnkey appliances for specific applica-
tion domains, leveraging a novel modular server architecture featuring heterogeneous
processing elements, including GPGPU and custom-developed reconfigurable acceler-
ators. Such appliances are going to achieve a lower Total Cost of Ownership (TCO),
thanks to improved energy-efficiency, dependability, customisation, scalability, and in-
tegration. The M2DC servers are composed of a baseboard which connects up to 16
microservers with a dedicated high-speed, low-latency communication network, which
instead supports also connection to storage and I/O extensions. Microservers can fea-
ture Intel x86 64 or ARM Aarch64 server processors, as well as low-power solutions
(e.g., based on NVIDIA Jetson), GPGPUs, or FPGAs, allowing individual appliances
to tailor the architectures to their specific energy/performance trade-offs. The M2DC
appliances can hinge upon a set of so called System Efficiency Enhancements (SEE),
which are low-power accelerators for common tasks in the data-centres scenario, such
as bulk data encryption or pattern matching. Given the requirements of M2DC mi-
croservers, in particular achieving a low TCO for appliances and allowing the flexible
allocation of a task among different nodes, ASIC implementations are not considered in
the M2DC project. Full details of the server architecture and its possible configurations
can be found in [21].

3 The Automotive IoT Scenario: Driver Identification

Willing to assess the effectiveness of M2DC infrastructure in providing high throughput
and energy efficiency to applications addressing real world data analytics scenarios, we
focused on a common task in the automotive area: the processing and the analysis of
data gathered by on-vehicle monitoring devices.
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3.1 The Driver Identification Scenario

The adoption of embedded devices in vehicles, equipped with a variety of sensors, has
recently been observed as an emerging trend, especially among insurance companies.
The data collected are often used to: (a) develop more complex and adaptive Driver
Assistance System (DAS) or (b) profile drivers, in particular for anti-fraud purposes. In
this context, there are mainly two similar problems in literature: Driving Style Clas-
sification and Driver Identification. In the first case, the goal is to classify a driver
according to predefined driving styles (e.g. calm/aggressive, lawful/unlawful) [20] in
order to provide feedback to the driver with the extent of optimizing the energy usage
of the car or improving the ride comfort. In the second case, the goal is to uniquely
identify the driver for a given trip, which is useful for insurance purposes and anti-theft
methods [1,14]. In particular, the IoT application, presented in this work, addresses the
problem of identifying the number of people usually driving a vehicle, a problem closer
to the latter case. To deal with this type of problem, three main approaches have been
identified in a comprehensive survey of the literature [20]: rule-based, model-based and
learning-based.

In particular, data-driven machine learning algorithms became one of the promis-
ing solutions due to the increasing volume of data gathered by sensors. Nevertheless,
there are two relevant limitations in most of the previous works: they rely on input data
mainly retrieved with invasive methodologies [9,11,18] and they leverage supervised
techniques [9,18,24] (e.g., SVM, Random Forest Classifier, Neural Network). The for-
mer requires the reading from the vehicle Electronic Computed Board or the CAN bus,
leading to compatibility issues between different car manufactures and safety-related
concerns. The latter approaches require a labelled training data, which is generally
harder to be obtained in real world application scenarios.

Our proposed approach overcomes the aforementioned issues through a data ana-
lytic workflow specifically designed to tackle the identification of number of drivers
problem by using unsupervised technique on data collected with non-invasive method-
ologies. In this section, we present this workflow, which will be accelerated on the
M2DC infrastructure. Further details of this workflow can be found in [19].

Driver Identification Workflow. In the context of the M2DC project, Vodafone
automotive provided some data collected on real vehicles. This dataset contains motion
data (speed of the vehicle and accelerations on the three axis), geolocalization data
(position and altitude) and some additional information, such as the type of road run
across by the vehicle (highway, urban etc.) and its speed limit. These data are sampled
at 1 Hz rate. A set of such measurements from engine switch-on to engine switch-off is
denoted as trip. To devise our workflow, we hinge upon a reasonable assumption: there
is only one driver for each trip, hence we can perform driver identification trip-wise
instead of sample-wise.

The idea of our workflow is to represent a trip with a set of features characterizing
the driving style; we expect that trips of the same driver are quite similar, hence by
clustering all the trips of the same vehicle, the trips of the same driver form a cluster.
Therefore, the workflow estimates the number of usual drivers as the number of clus-
ters found in the set of trips of the same vehicle. The first challenge of this approach



4 G. Agosta et al.

resides in the design of a set of features able to characterize the driving style. To this
extent, we discard the geolocalization data from the trips, since these information are
not related to the driving style. Then, we devise a set of features computed from the
remaining data of a trip. These features are either statistical measures (mean, variance,
skewness, kurtosis) of motion data or specific values representing a particular aspect
of the driving style (number of speed infringements, number of acceleration peaks to
denote a nervous driving style).
A second challenge of our workflow is the need to reduce the number of features char-
acterizing each trip. This avoids the well-known curse of dimensionality issue: points
in high dimensional spaces are generally too far from each other to get any cluster. In
our case, a trip characterized by m features is considered as a point in m dimensional
space by the clustering algorithm, hence we want to keep this number m low. This re-
quirement is not satisfied by the set of features of our application scenario, whose size
is m=40. Therefore, the well-known Principal Component Analysis (PCA) is used to
shrink the dimensionality of the data and fulfill this requirement for the clustering al-
gorithm. Indeed, PCA is able to represent the dataset in new components, such that the
first few ones are sufficient to retain an high percentage of statistical significance of the
original data. In our case, by retaining 75% of statistical significance, we are able to
shrink the dimensionality of the data from 40 to 5−7 components, depending on the
specific dataset of a vehicle.
After dimensionality reduction given by PCA, the trips are ready to be clustered. Among
the variety of clustering approaches, given that specifying the number of clusters to be
formed in advance would make the results of our workflow meaningless, we choose to
employ density-based clustering. In particular, we employ the dbscan [10] algorithm,
whose input parameters are estimated according to heuristics proposed in [10, Sec-
tion 4].

Data Confidentiality Issues. Data processed by the IoT application concern the
driver’s personal behavior, such as speed infringements and GPS locations. Therefore,
if these data are stored on a remote server, their confidentiality against possible security
breaches needs to be guaranteed. To address this relevant issue, we are going to add
a decryption layer to the application, allowing the storage of encrypted data. The ad-
dition of this layer should be straightforward, since there already exists an R wrapper
for the well-known OpenSSL cryptographic library. Furthermore, among the System
Efficiency Enhancements (SEE) developed in the context of M2DC project, there is an
FPGA accelerator for bulk data encryption. Thus, we are planning to employ this Cryp-
tographic SEE available in the project (see Section 4.1) to speed-up data decryption
needed by the IoT application.

3.2 Implementation Details and Preliminary Experimental Results

A baseline implementation of the proposed workflow is a single core application, em-
ploying the R programming language. This choice is motivated by two factors: (a) R is
widely employed for data analytics tasks, since it provides several packages and func-
tionalities commonly required in these applications; (b) R is supported by the heteroge-
neous compilation toolchain developed by AS+, which enables the possible heteroge-
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Fig. 1. Execution time of PCA and clustering w.r.t. the number of trips. The red line represents
the linear regression model: T ime ≈ 3.490 · 10−4 · n.

neous platform exploitation running the algorithm both on CPU and on GPU, improving
both the performances and the energy consumption of the application (see Section 4.2).
Hinging upon this baseline implementation, we evaluate the application workflow fo-
cusing on two aspects: (a) the estimation of the algorithm accuracy; (b) the analysis
of the computational complexity and scalability of the data analytics portion of the ap-
plication, i.e. PCA and clustering. Conversely, since feature extraction is mainly I/O
bound, we will not mention its performance evaluation.

Accuracy analysis. At this step we aim to evaluate if the proposed approach pro-
duces realistic results. Unfortunately, the dataset provided by Vodafone Automotive is
unlabelled: we do not know the actual number of drivers for each vehicle. This hardens
the validation of our workflow, since we do not know if the number of drivers identi-
fied is correct. To overcome the aforementioned limitations and maintain consistency
with the geosocial conditions of the dataset, we derive the average number of drivers
per vehicle for UK, the country where Vodafone Automotive actually gathered these
data. From the publicly available government data [12] we get the average number of
adult people per vehicle and the number of drivers per adult people, thus obtaining an
average value of drivers per vehicle of 1.095. Our workflow identifies more than one
driver in around 10% of the vehicles, which is in line with the aforementioned deduced
geosocial data.

Scalability analysis. The goal of this step is providing a scalability evaluation in
terms of execution time with respect to the number of trips n of the same vehicle. First
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of all, we expect that the DBSCAN algorithm, which has a complexity of O(n log n),
dominates the average-case complexity of the overall workflow, given the linear exe-
cution time of PCA. Then, in order to measure the actual execution times, we setup a
server machine, equipped with AMD Opteron-8435 cores and 128 GB of RAM, running
the single-core R implementation of the application. The experimental results, shown
in Figure 1, highlight that the value of execution time can be approximated by a linear
trend, due to the minimal impact of the log n term. Regarding the absolute execution
times, we observe that the current application is able to perform PCA and clustering for
a vehicle with 500k trips in approximately 3 minutes. We remark that this analysis is
expected to be performed for thousands of customers, in turn requiring several days of
computation. Therefore, in order to improve the scalability of the application with the
number of vehicles, we will hinge upon the R compilation toolchain developed by AS+
(described in Section 4.2), which provides the following benefits and capabilities: (a)
the application could be run on a single GPU instead of several high-end CPUs, in turn
allowing the decrease of both TCO and energy consumption; (b) the R application is
compiled instead of being interpreted, thus it is executed directly from machine code;
(c) the compilation toolchain is able to perform several optimizations which are gen-
erally hard to be directly applied on R code (e.g., exploiting data parallelism and the
vectorized operations available in recent CPUs).

4 The IoT Analytics Appliance

The M2DC appliance employed for the IoT application will be tailored to the perfor-
mance and energy requirements of the application. As the IoT application focuses on
the processing of large quantities of data, with a computational effort mostly devoted to
small set of kernels, the plan is to use x86 64 servers attached to accelerators suitable
for two types of kernels: encryption primitives employed to access the securely stored
data and acceleration of R primitives. Specifically, for the encryption acceleration, the
appliance will include an FPGA module based on the Altera Stratix 10 SX5 series. The
FPGA will be exploited via a dedicated OpenSSL engine. For the acceleration of R
primitives, the appliance will enclose a parallel R optimized implementation, obtained
with the R compilation toolchain, which performs data analytics computation of our
workflow.

In the rest of this section, we provide an overview of these two acceleration tech-
niques, including initial experiments carried out in isolation. During the final phase of
the project, we will integrate the application on the final testbed.

The resulting appliance will be highly reusable, thanks to the seamless integration
of the accelerators in standard components: the cryptographic SEE employs OpenSSL
as its interface, whereas the data analytics accelerating toolchain is installed as part of
the R compiler. Thus, the application can be run with or without the accelerators with
minimal modifications – essentially, it is sufficient to specify if the application employs
default OpenSSL implementations or the ones provided by our SEE to perform the
cryptographic operations.

5 The accelerator was developed on an Arria 10 GX board, but Stratix 10 is the expected target
for the deployment of the accelerator in the M2DC context
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Table 1. Comparison of the energy efficiency of the OpenCL implementations for FPGA acceler-
ator of the nine ISO standard block ciphers, on a Intel Xeon E5-1505M v6 CPU based host with
DDR4-2133 DRAM. The CPU AES implementation employs the dedicated AES-NI instructions

Block Platform Throughput Power Energy Efficiency
Cipher (MB/s) (W) (GB/J)

AES FPGA 1020.8 15.02 67.96
AES-NI 1678.4 25.79 65.09

HIGHT FPGA 824.0 21.87 37.68
CPU 20.0 26.01 0.77

DES FPGA 764.8 12.62 60.61
CPU 85.0 22.24 3.82

CAST5 FPGA 814.2 13.63 59.75
CPU 132.0 23.14 5.70

SEED FPGA 930.8 14.49 64.23
CPU 102.3 22.46 4.54

Camellia FPGA 957.6 15.06 63.59
CPU 198.0 22.68 8.73

MISTY1
FPGA 1006.0 25.59 39.31
CPU 22.0 26.07 0.84

CLEFIA FPGA 1202.0 22.60 53.19
CPU 3.0 26.38 0.11

Present FPGA 979.0 25.57 38.29
CPU 11.2 23.87 0.46

4.1 Accelerating Cryptography

One of the fundamental application domains for datacenters is represented by bulk data
encryption and decryption, as it has to be performed on the data being stored as well as
on data being transmitted or received. For this purpose, fast disk encryption software
support has been explored using GPGPUs [2].

Cryptography SEE proposed in M2DC [7] exploits the OpenCL programming model
to realize high-performance FPGA accelerators. This way provides a viable and more
versatile alternative to the use of ad-hoc cryptographic accelerators, currently available
in high-end server CPUs only. OpenCL provides functional portability across a wide
range of platforms, which have recently been extended to support FPGAs. However,
it is well known that performance portability is much harder to achieve. A domain-
specific analysis for symmetric encryption highlighted that even within the architec-
tural class of GPGPUs there are major differences, requiring an almost entire rewriting
of the encryption code to achieve optimal performance [3]. We therefore analyzed the
programming practices to exploit the High Level Synthesis (HLS) toolchains available
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to deploy OpenCL programs onto FPGA based accelerators, identifying a set of best-
practices to design OpenCL kernels for FPGA. In particular, we found out that single
work-item, single work-group implementations are more suitable for FPGAs. We also
identified other best-practices related to loop optimization, caching techniques, mem-
ory coalescing, I/O latency hiding and host-side synchronization, whose details can be
found in [7].

By exploiting the best-practices identified, we were able to obtain high throughput
and energy efficient implementations for all the nine ISO standard ciphers implemented
by the Cryptographic SEE. The comparison between our FPGA implementations and
CPU ones in terms of throughput and energy efficiency is reported in Table 1. We ob-
serve that the throughput achieved on the FPGA by all ciphers is between 750 MB/s and
1200 MB/s, with a speed-up over software implementations ranging from 5× to 400×.
It is worth noting that the throughput of the FPGA implementations is currently limited
by the PCI-Express channel employed in our host. At the moment this limits the com-
munication to be half-duplex, introducing significant idle time in FPGA kernels due to
the time spent on waiting data transfer completion. In particular, we believe through-
put could even been doubled in case a full-duplex communication channel is available.
From the point of view of energy efficiency, our FPGA implementations achieve an av-
erage improvement of 22.78× (geometric mean) and 79× (arithmetic mean) in terms
of GB encrypted per Joule spent. Finally, we remark that our AES implementation is
more energy efficient than Intel AES-NI, which is an hardware AES implementation
included in Intel CPUs usable via a specific assembly instruction added to the ISA.
Indeed, our implementation exhibits a comparable throughput and lower power con-
sumption.

Currently, the cryptographic SEE is embodied in an ad-hoc OpenSSL engine, mak-
ing its usage quite transparent to the application. Indeed, OpenSSL library exhibits a
standard interface for each cryptographic operation; OpenSSL engines provide different
implementations of these interfaces. Therefore, an application simply needs to specify
which engine must be employed to implement interfaces for several cryptographic op-
erations, requiring a minimal modification to the application code. Therefore, shipping
the SEE in an OpenSSL engine enables an easy integration at application level, which
is a desirable feature to boost the usage of the cryptographic SEE.

As discussed in Section 3, we will introduce an encryption layer on the IoT appli-
cation to ensure data confidentiality and we will hinge upon this SEE to accelerate the
cryptographic operations required by the IoT application. In this scenario, where an R
wrapper exists for OpenSSL, the availability of the SEE as an OpenSSL engine greatly
aids its integration. Nevertheless, the interface exposed by this wrapper appears insuffi-
cient for the integration of the SEE. Indeed, the wrapper provides only AES algorithm
as a symmetric cipher and there are no functions to manage OpenSSL engines. Never-
theless, we analyzed the wrapper and we identified the modifications required in order
to handle OpenSSL engines and other symmetric encryption algorithms directly from
the R application; thus, we will obtain such an enriched wrapper without a significant
effort through these simple modifications.
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Fig. 2. Back-end architecture for the compiler

4.2 Accelerating Data Analytics R Application

R is a publicly available implementation of the high-level S language for statistical
computing. The R language is now widely used for statistical calculations in various
application fields such as biology, medicine, financial applications. R language is not
widely regarded as a platform for developing scalable, high-performance codes: indeed,
it is an interpreted language and the execution of programs typically involves dynamic
allocation of large data structures, particularly arrays. However, several approaches
have emerged to address both performance and scalability of R programs, which have
however showed some relevant limitations. In particular, distributed approaches rely on
process-based distribution framework such as MPI and Map Reduce. These approaches
imply that each process is a separate instance of the R interpreter without any shared
memory. These approaches include RMPI6, an implementation of MPI bindings in R
which enables master-slave like scheduling, and Snow Extension (Simple Network Of
Workstations)7, which provides a further level of abstraction above existing communi-
cation frameworks, masking communications details and enabling the creation of dif-
ferent kinds of clusters. Although they partially address the scalability issues of R,
these approaches do not solve the overhead introduced by the interpretation layer and
hardly target heterogeneous systems. Just In Time (JIT) compilers minimize perfor-
mance degradation of interpreted languages by caching the code once it is translated.
There are two R packages providing JIT compilation8,9, which have been deprecated
since 2011. Lastly, full blown compilers, such as RCC [22], are advanced optimizing
compiler for R or S programs. RCC is based on three successive stages: static analysis
of R program to extract call graphs and dataflows, translation of R programs to C and

6 https://cran.r-project.org/web/packages/Rmpi/index.html
7 https://cran.r-project.org/web/packages/snow/index.html
8 http://stat.ethz.ch/R-manual/R-devel/library/compiler/html/compile.html
9 http://www.milbo.users.sonic.net/ra/jit.html

https://cran.r-project.org/web/packages/Rmpi/index.html
https://cran.r-project.org/web/packages/snow/index.html
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eventually optimization of translated C code. This approach suffers from the complex-
ity brought by using the C language as intermediate representation and by the resulting
static analysis stage which aims to retrieve high-level constructs already existing in the
original language.
Conversely, our R compilation toolchain addresses the aforementioned limitations: it is
a full compiler from R to machine code, which also targets heterogeneous architectures
and which is able to take into account parallel constructs in its intermediate representa-
tion. In the next paragraphs, we present some of the main features of our toolchain.

Data Flow Execution Model. The approach of a data flow runtime for transparent
heterogeneous execution is already known and available nowadays in some runtime
implementations, such as starPU [6], StarSS [15] or Quark [25]. However, programming
on top of those runtimes is complex and when heterogeneity is involved, one code
must be written for each target. This problem is common also to parallel programming
models such as OpenCL [3,5,4]. Our approach aims to provide transparent compilation
for heterogeneous targets, with direct support of data flow runtime, for an high-level
DSL like R. To ease the achievement of these goals, we define our own programming
model, which relies on the following concepts:

– all data are either managed by the runtime or used for control flow and simple
parameter of a function;

– a program is a bunch of actions on numerous data, where the control of ordering
the actions is done by evaluating data dependency;

– a task is a function with two kind of parameters: managed data references and
control parameter which are copied argument and cannot be reaccessed outside of
the task .

Therefore, we need a runtime compatible with these concepts and that handles multiple
implementation of a task. It also requires an efficient heuristic to choose the place of
execution and the best implementation of a task on this place. StarPU fits in those con-
straints, so we chose it as our effective execution runtime.

A modular design. The full toolchain and runtime support is designed as a mod-
ular framework by leveraging the modular property of LLVM [16] based compilers.
Following the design principles of LLVM framework, the compilation workflow is split
into two main stages: the input program is first translated by the front-end into an In-
termediate Representation (IR), which is further translated and optimized for the target
architecture by the back-end. Therefore, the front-end is programming language spe-
cific, while the back-end is related to a specific architecture. Our toolchain strongly
decouples these stages, allowing to independently choose the front-end and back-end
to be employed. In order to support multiple architectures from one representation, we
did extend the LLVM IR at some points. These IR extensions are then handled by spe-
cialized LLVM passes in order to generate a complete program on top of starPU. For
instance, vectorization is easier to be performed in the front-end, thus we need a way to
express vectors operation without the knowledge of vector unit size. To this extent, we
introduce an unknown sized vector type to handle manipulation of data in an abstract
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way.

Code Parallelization. Despite R programming model is sequential, our toolchain
aims at building parallel program from a standard R program. In particular, we can
induce parallelism if the functions are using non overlapping data at some point; the
analysis of these data dependencies is easy since each task announces both the data it
uses and the intent on them.

Task based runtime support. Our toolchain, when compiling the task code itself,
generates multiple implementations for each possible target as well as an initialization
function which creates the runtime multi-implementation structure binding each imple-
mentation to the runtime. For instance, we generate multiple versions of one task to
handle different vector unit sizes on an x86 processor (128, 256 and 512 bits wide).
We also generate the test functions to execute the best possible implementation de-
pending on runtime parameters. The calls for an extracted task are then transformed
into a runtime call for further submission to the runtime. The runtime itself is built on
top of starPU, with some wrapping function to ease code generation and support func-
tion for managed data manipulation. Another interesting feature of our toolchain is the
availability of a runtime interface to prepare plugin development for supporting other
runtimes without any modification of the compiler itself, provided that this new runtime
is able to implement the interface to our toolchain. In conclusion, by hinging upon our
toolchain, it is possible to obtain a parallel heterogeneous (CPU/GPU) application from
a sequential single-core R one without significant modifications to the application code.

5 Towards Advanced Applications

In this section, we highlight some open issues in the IoT automotive data collection
and analysis scenario; these problems will not be investigated in the context of M2DC
project, but their solution provide some interesting research and innovation directions
that are planned for the next future.

Data Privacy. The collection and usage of data from private car and fleets man-
agers can open new business avenues, including insurance price customisation based on
driver profiling. Inertial and geo-located data can be collected from a vehicle through
aftermarket telematic boxes, endowed with GPRS communication capabilities as well
as sensing capabilities. However, such data, which are sufficient for basic applications
such as crash detection, are insufficient for more complex ones such as the driver pro-
filing performed in the M2DC scenario. In this case, an integration with third party
information, such as meteorological or speed limit data, acquired commercially or from
(reliable) open data sources, is needed. Furthermore, in a real-world scenario, different
telematic boxes may collect different data, or use different format, becoming a further
source of heterogeneity for the assembled data.

Given the nature of the data, privacy is particularly important: simple anonymization
by removing the contract holder name and replacing it with a unique identifier can be
easily proved insufficient. As an enlightening example, let us consider the scenario of a
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malicious employer willing to acquire personal information on his commuting employ-
ees. By selecting contracts that consistently show trips ending at or near the company
premises during the work start times, the employer can identify a set of employees.
Then, by identifying the most common destination of the last trips for each day of the
identified employees, the employer can identify an approximate location of their res-
idence, which can be easily compared with data legitimately held by the employer to
associate the contract ID with the employee identity, thus foiling the anonymization.
Needless to say, the employer can now easily check if one of the employees has, e.g.,
regular visits to a local hospital, and thereby infer information about the employee’s
health status he has no right to be privy to.

It is important to understand, however, that the personal information items cannot
be easily separated from the non-personal, but useful, elements of the information. For
instance, the data could be more strongly anonymized by removing georeferences, but
then they would become much less useful to insurance companies willing to customize
prices based on the locations usually traveled and the frequency of accidents on those
routes.

Scalability. Another key challenge is scalability. Whereas for small fleets trip infor-
mation can be stored at a fine grain in data centers, scaling up would easily produce a
veritable data deluge. In this case, it is necessary to rethink the data collection phase, the
processing, and the storage. A viable solution would be to move part of the computation,
namely the feature extraction, from the cloud server nearer to the sensor [17]. Since the
sensor itself has limited computation capabilities, this implies adding an edge node to
the system. The edge node may be endowed with reasonably powerful processing ele-
ments at a limited cost, thus enabling complex feature extraction to take place before the
data transmission. However, although such an edge node would not require a significant
amount of energy to affect the overall vehicle system, key-off operation would be much
less viable, unless the edge node is turned off. As a result, the best scenario would be
to enable a flexible runtime configuration of the IoT system (sensor–edge node–cloud)
such that the edge node can be excluded when operating off the vehicle battery and
turned back into operation when the vehicle is running, as potentially discussed in [26].

6 Conclusions

In this article, we presented the automotive IoT scenario employed in the M2DC project
to demonstrate the effectiveness of the microserver approach, combined with some of
the SEEs developed. We showed how we plan to achieve significant speedups against
our preliminary implementation, without significant impact on the cost of development
of the application, thanks to the transparent embedding of the SEEs in the existing
software stack.

During the next months, we will finalize the integration of CryptSEEs to fully ex-
pose their cryptographic capabilities to the R OpenSSL wrapper and we will address the
scalability issues by hinging upon the R compilation toolchain. In the longer term, the
application will be enriched with additional components aiming at providing increased
data privacy so that third party applications can leverage the data set, as well as improv-
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ing scalability to larger vehicle fleets through a flexible allocation of feature extraction
(currently performed on the data centre servers) to edge and Fog nodes and integration
of the driver identification in a more complex, multi-application scenario [23].
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