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Abstract. High-Performance Computing (HPC) is rapidly moving to-
wards the adoption of nodes characterized by an heterogeneous set of
processing resources. This has already shown benefits in terms of both
performance and energy efficiency. On the other side, heterogeneous sys-
tems are challenging from the application development and the resource
management perspective. In this work, we discuss some outcomes of the
MANGO project, showing the results of the execution of real applica-
tions on a emulated deeply heterogeneous systems for HPC. Moreover,
we assessed the achievements of a proposed resource allocation policy,
aiming at identifying a priori the best resource allocation options for a
starting application.
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1 Introduction

Thanks to the major efforts brought on by the industrialised countries, in the
upgrade of their High-Performance Computing (HPC) infrastructures, Exascale
computing is becoming a closer reality. For example, the Summit supercomputer,
for which a theoretical peak performance of 200 Petaflops has been declared, on
November 2018 scored 143 Petaflops on the High Performance Linpack bench-
mark 1. Although Exascale computing promises a major increase of available
computational capabilities, to solve scientific and industrial challenges, the man-
agement of HPC infrastructures is growing in complexity. This is due to both the
sheer size, the massive energy requirements (Summit nears the 10 MW power
envelope) and the architectural complexity introduced by the presence of het-
erogeneous computing elements (such as CPUs, GPUs, or HW accelerators).

New access methods, such as Cloud HPC [29], are pushing for achieving a
high utilisation level of such infrastructures, while hosting the execution of di-
verse applications, under the constraint of a limited power envelope. To meet
such requirements, while managing to the growing complexity previously dis-
cussed, is a challenging task for which new resource management approaches

1 www.top500.org
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are required. Several efforts are ongoing in Europe to address these issue, devel-
oping appropriate tools to combine programming models and resource manage-
ment [24,8]

Main contribution. In this paper, we explored the definition of multi-level
policies to manage the computing resources (cores and memory). Since the pol-
icy identification can be quite time consuming, we propose a faster but simpler
management policy at fine (temporal) grain, as well as a slower management
policy [23] at a coarser grain. We show how the proposed approach allows a
resource manager to identify a priori the best resource mapping solutions, given
the application description and the topology of the target hardware node. We
demonstrate the effectiveness of the proposed approach, by using a Low-Density
Parity Check (LDPC) coding application, and an Image Processing Filter, exe-
cuted on a deeply heterogeneous emulated HPC node.

Organization of the paper. The rest of this paper is organised as fol-
lows. In Section 2 we briefly introduce the target heterogeneous architecture
and the resource management support developed and exploited for the applica-
tion execution. In Section 3 we describe the proposed multi-level policy, while
in Section 4 we assess its effectiveness through an experimental campaign on an
emulated HPC prototype. Finally, in Section 5 we review related approaches in
the state of the art, and in Section 6 we draw some conclusions and highlight
future research directions.

2 Background: HPC and the MANGO Project

2.1 Deeply Heterogeneous Architectures

To achieve the necessary performance/watt figures in future Exascale HPC sys-
tems, architectural heterogeneity has been widely proposed. Its effectiveness is
already demonstrated by the large number of heterogeneous systems listed in the
Top500 2 and Green500 3 lists. In particular, the Green500, which focuses on
performance/watt rather than pure performance, is dominated by heterogeneous
systems, typically coupling general purpose multi-core CPUs with accelerators
such as GPGPUs. Reconfigurable accelerators then, have been proposed as a
further step for improving the capabilities and introduce flexibility in HPC in-
frastructures [15,14].

The MANGO project [10] aimed at exploring future architectures exhibiting
even more heterogeneity. In MANGO, the general-purpose cores associated to a
node (GN) are supported by an heterogeneous set of processing units (includ-
ing multi/many-core and accelerators), forming an Heterogeneous Node (HN).
Considering that 1) the HN can include multiple memory nodes, and 2) the pro-
cessing units are interconnected through a Network-on-Chip (NoC) [9,31,32], it
follows that performing resource allocation is a critical task. On architectures like
this in fact, we may experience significant differences among resource allocation
solutions, in terms of performance and, of course, power consumption.

2 www.top500.org
3 www.green500.org
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Fig. 1: MANGO Programming Model and the BarbequeRTRM integration.

2.2 Resource Management

The resource management infrastructure developed for supporting heterogeneous
platforms explored in MANGO, is characterized by a tight integration between
the programming model and the resource manager daemon. Through the pro-
gramming model, the developer can build a task-graph based description of the
application, along with per-task performance requirements. This description is
then made available to the resource manager, which can lift the developer from
the burden of implementing a logic for mapping the application’s tasks (or ker-
nels) and offloading them to the specific processing unit. As well as, mapping the
memory buffers, needed to exchange data between tasks, onto the suitable HN-
side memory nodes [2]. The resource manager is therefore aware of the system
requirements and constraints, as well as of all the applications requirements. Ac-
cordingly, it can allocate resources taking into account both the system status,
from the hardware perspective, and the application requirements and priorities.

In Figure 1, we sketched the integration between programming model and
resource manager (the BarbequeRTRM ) [3,25,26]. The application uses the API
provided by the programming library (libmango) to build the task-graph based
description. This is sent to the resource manager by using a specific function call.
An intermediate Run-Time Application Library is then responsible of managing
the communication flow between application and resource manager. Once the
task-graph is available on the resource manager side, the mapping policy is in-
voked. After the policy execution, the task-graph encloses the resource mapping
information, that will be exploited by the programming library to transparently
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perform task offloading and buffer allocation, by using the API provided by the
underlying HN library (libhn) [7].

3 Hierarchical Policy Definition and Update

3.1 Design-time driven resource mapping

Problem Statement. We are given a HN topology, H = {Uf , Ub,Mf ,Mb}, where
Uf and Ub indicates the set of free and busy units, respectively, Mf and Mb

indicates the set of free and busy memory units and task-graph Tg =< B,K >
where B is a set of requested memory buffers and K is a set of kernels. For each
buffer b ∈ B of size S(b), there is a kernel or set of kernels K(b) which uses b

(e.g. kernel read buffer k
r→ b and/or write to buffer k

w→ b). For each kernel
k ∈ K there is a set of preferred target processing architectures Archprefs(k) =<
Arch0, ..., Archl > that is noted by developer. Each application has a specific
priority level appl = {applh, appln}, where the high priority application applh
needed to be allocated with the requested QoS on the current HN, and the
normal priority application appln could be rescheduled on the another HN.

We aim to find all possible partitions P = {< M,U >0, ..., < M,U >m}
appropriate to allocate b on HN, where M is a memory unit of size S(M),
M ∈ Mf , U ∈ Uf and ∀ki ∈ K ∃uj ∈ U that able to execute ki(Arch(uj) ∈
Archprefs(ki)), and range them by the criteria C = {Cm, Cprefs}. The criterion
Cm defines the memory-kernel characteristics in order to select the best memory
modules and includes the following specifications:

– bandwidth between the allocated processing units and the memory module;
– distance between the allocated processing units and the memory module(in

hops);
– direction of data transfer (in/out);
– available space on the memory module.

More criteria could be added depending on the application requirements. The
criterion Cprefs defines the level of the processing unit larch in Archprefs.

In this paper, we focused on the design-time exploration of the best units and
memory nodes mapping solutions. Given the size of the solution space in fact,
the time needed to find good solutions, can be often too long for considering the
execution of the policy at run-time. The BarbequeRTRM allows us to perform
this exploration and insert the set of mapping solutions found into a specific file,
called recipe [20]. This file is used to specify both the per-task requirements and,
optionally, a set of resource mapping solutions that the resource manager should
consider at run-time.

All combinations of the preferred processing architectures can be found by
following a brute-force exploration. As well as all the possible mappings of the
kernel to the specific unit. However, since this approach can be time consuming,
other than leading to find a redundant set of mapping solutions, we propose a
heuristic policy, based on the exploitation of historical data about the previous
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ALGORITHM 1: Simulation based heuristic units mapping

Data: Task-graph Tg =< B,K >, a set of preferred accelerators architectures
Archprefs(K) =< Arch0, ..., Archl >, a topology H = {Uf , Ub,Mf ,Mb}

Result: an ordered set of partitions P = {< M,U >0, ..., < M,U >m}
1 Buffers⇐ BruteForce(H,Bf );
2 Archs⇐ BruteForce(Tg,Archprefs) ;
3 foreach ai ∈ Archs do
4 Units⇐ FindAvailableUnits(Uf , ai) ;
5 foreach ui ∈ Units do
6 if ui 6∈ P then
7 bi ⇐ Select(Buffers);
8 P ⇐ newPartition(ui, bj) ;

9 P ⇐ RangePartitions(P, Scores(P )) ;

application executions. The heuristic goal is to limit the number of the resource
partitions to consider for the allocation, on the basis of the minimal mean dis-
tance to the memory unit. The pseudo-code is reported in Algorithm 1. The first
line looks over all possible buffers allocations on memory units. Line 2 creates
a set of all task mappings to preferred architectures. At lines 3 and 4, for each
possible combination of architectures, the sets of free units Uf of a particular
HN topology are searched. Next, at lines 5-8 for each unit set that is not al-
ready included, a new partition is created with the memory mapping selected as
a best of possible mappings. At the end, all partitions are sorted. Buffer map-
ping and partition ranging are based on the fuzzy multi-criteria analysis, with
pairwise comparison of the memory-unit specifications along with the memory
usage prediction in the simulation based approach. In general, simulation based
approaches update a partition score on the basis of continuously updated infor-
mation about the state of the system resources. By predicting the future state
of resources we can improve the quality of the resource allocation decisions [1].
The overview of partition evaluation algorithm is presented in Algorithm 2. The
Algorithm 2 first evaluates each buffer across all mappings (lines 2 and 3) by
accumulating kernel-memory characteristics for each kernel what reads and/or
writes to this buffer (lines 4-8). Some of these characteristics change during sim-
ulation (e.g., available bandwidth) or are constant (e.g., distance in hops). At
line 9 all kernel-memory characteristics are sent to a fuzzy multi-criteria analy-
sis [23] supplemented by the calculation of the resources utilization prediction.
Lines 10-11 multiplies the scores of the current buffer with the scores of the pre-
viously evaluated buffers. In the next step, Algorithm 2 for each partition (line
12) calculates the score of the allocation according to the unit architecture in
the list of preferred architectures (lines 13-15). After that, at line 16–17 the al-
gorithm attempts to allocate and deallocate buffers (without changing statistics
and calculating prediction). On allocation failure, at line 19 the score changes to
indicate the memory segmentation. On the allocation success, score is normalized
(line 21). Finally, at line 22 the overall score is calculated.
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ALGORITHM 2: Partitions evaluation
Data: Task-graph Tg =< B,K >, a set of partitions

P = {< M,U >0, ..., < M,U >m}, a set of preferred processing architectures
Archprefs(K) =< Arch0, ..., Archl >

Result: Scores s = {s0, ..., sm}
1 s[]⇐ 1.0 ;
2 foreach bi ∈ B do
3 foreach pj ∈ P do
4 mi ⇐ pj(bi);

5 foreach k such that ∃k r→ bi do
6 propr(pj)⇐ GetProperties(mi, pj(k)) ;

7 foreach k such that ∃k w→ bi do
8 propw(pj)⇐ GetProperties(mi, pj(k));

9 eval(bi)[]⇐ BufferAnalysis(mi, propr, propw);
10 foreach e ∈ eval(bi) do
11 s[i]⇐ s[i]× e ;

/* with keeping negative scores to indicate the predicted usage of

mi by applh */

12 foreach pi ∈ P do
13 scoreprefs ⇐ 1 ;
14 foreach u ∈ pi do

15 scoreprefs ⇐ scoreprefs × n
level(Archprefs)

k ;

16 err ⇐ Allocate(pi);
17 Deallocate(pi);
18 if err! = Success then
19 s[i]⇐ OutOfMemory ;
20 else
21 s[i]⇐ Normalise(s[i]);

22 s[i]⇐ s[i]× 100÷ scoreprefs;

4 Experimental Evaluation

4.1 Hardware Setup

The experimental hardware platform consists of a FPGA-based prototype, on
which we deployed an heterogeneous set of custom processors, distributed in
tiles interconnected through a 2D-mesh Network-on-Chip (NoC). The system
also includes multiple memory nodes, each attached to a different tile. In the
MANGO project, we explored several possible hardware configurations. For our
experimental evaluations, we considered the one shown in Figure 2. This in-
cludes 8 processing units: 3 dual-core PEAK processors (MIPS), 2 GPU-like
units for SIMD executions (NU+) and 3 HW accelerators for vectors and image
processing. This configuration includes two memory nodes, attached to tiles 0
and 1.
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Fig. 2: Topology of the MANGO platform (single Heterogeneous Node) used for
the experimental evaluations.
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Fig. 3: Task-graph based description of the test applications.

4.2 Test Applications

In this work, we used a Low-Density Parity Check (LDPC) application and an
Image Processing Filter. In particular, LDPC is a type of linear error correction
algorithm, devised in the 1960s [12], that have become practical to implement
only since the 1990s [19], due to its high computational requirements.

In Figure 3 we observe the task-graph based description of the two appli-
cations. For LDPC, the resource allocation policy must find good mapping so-
lutions for the 8 buffers and the offload of 2 kernels. The kernel binaries are
available only for architecture PEAK. The Image Processing Filter instead, uses
2 input buffer to store frames coming from two streams, plus 1 output buffer to
store the result. The processing is performed by a single kernel, for which two
mapping options are available: PEAK and HW accelerators (HWA 2).
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Filter has been executed for processing streams of 4 frames.



Predictive Resource Management for Next-generation HPC Heterogeneous. . . 9

4.3 Experimental Results

The goal of our experiments has been two-fold: 1) observe how the platform
topology actually affects the performance of the applications and 2) verify the
effectiveness of the proposed heuristic in predicting good resource mapping so-
lutions, a priori. We explored the set of resource mapping solutions, shown in
Table 1, for the two applications, by executing them target platform and en-
forcing the mapping through the resource manager. For example, the resource
mapping solution “0” for LDPC consists of mapping the two kernels on PEAK
processors located respectively at tiles 1 and 4, and all the buffers on memory 3.

In Figure 4a, we reported all the average execution times of the LDPC ap-
plication, needed to process a single input frame, for three different of the SNR
parameter (SNR = {4, 8, 12}). Although the kernels have been executed on
the same type of processors, we experienced different (average) execution times,
which lead us to conclude that, as expected, the platform topology actually
impacts on while the input parameter assumes different values. Regarding the
predictions made by the proposed policy, on top of the bars we reported the
score computed by the heuristic, for each of the tested mapping options. The
higher the score the better the mapping solution. We can observe that the pre-
dictive model actually found the solutions 2, 14 and 24 as the best options. To
the contrary, solutions 0, 1, 4 and 25 were expected to be the worst performing.
In the real executions, we verify whether the prediction was valid.

In Figure 4b, we can observe the same kind of tests performed with the
Image Processing Filter. The resource mapping options from 0 to 3 refer to the
execution of the kernel on the HW accelerator, while from 4 to 9, we have the
mapping options for which the kernel is offloaded on a PEAK processor. Trivially,
the best resource mapping option is found among the ones including the HW
accelerator (option 2). The rationale behind this result is that the policy does
not have enough information about the speed-up introduced by HW accelerators,
with respect to the programmable accelerator. As a result, the scores of solutions
0, 1 and 3 are lower than they should be. More interesting is to observe how for
the options mapping the kernel onto a PEAK, the set 6, 7 and 8 were expected
to be the best ones. Looking at Table 1, these are the options according to which
we map the buffers into the memory node closest to the processor. The policy is
therefore quite effective in capturing the characterization of the system topology.

Overall, the proposed heuristic succeeded in predicting the boundaries of
the solutions space, i.e, best and worst resource mappings. For intermediate
solutions, the score does not always match the real performance, but in most of
the cases, the prices paid for the misprediction is negligible.

5 Related Works

Traditionally, resource management in HPC is limited by assigning to each ap-
plication a set of physical nodes at the job scheduler level taking into account
different aspects of the cluster architecture, such as the topology of the machine
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Table 1: Explored resource mapping solutions for LDPC application running on
the target MANGO platform.

LDPC IFS

Solution ID Processors Memories Solution ID Processors Memories

0 1 4 3 3 3 3 3 3 3 3 0 3 0 0 0
1 4 1 3 3 3 3 3 3 3 3 1 6 3 3 3
2 1 4 0 0 0 0 0 0 0 0 2 3 3 3 3
3 4 1 0 0 0 0 0 0 0 0 3 6 0 0 0
4 1 4 0 0 0 3 3 3 3 3 4 4 3 3 3
5 4 1 0 0 0 3 3 3 3 3 5 1 3 3 3
6 1 4 3 3 3 3 0 0 0 0 6 2 3 3 3
7 4 1 0 0 3 0 0 0 0 0 7 4 0 0 0
8 4 1 0 0 0 0 3 0 0 0 8 1 0 0 0
9 1 4 0 0 3 0 0 0 0 0 9 2 0 0 0
10 1 2 3 3 3 3 3 3 3 3
11 2 1 3 3 3 3 3 3 3 3
12 1 2 0 0 0 0 0 0 0 0
13 2 1 0 0 0 0 0 0 0 0
14 1 2 0 0 0 3 3 3 3 3
15 2 1 0 0 0 3 3 3 3 3
16 1 2 3 3 3 3 0 0 0 0
17 2 1 0 0 3 0 0 0 0 0
18 2 1 0 0 0 0 3 0 0 0
19 1 2 0 0 3 0 0 0 0 0
20 4 2 3 3 3 3 3 3 3 3
21 2 4 3 3 3 3 3 3 3 3
22 4 2 0 0 0 0 0 0 0 0
23 2 4 0 0 0 0 0 0 0 0
24 4 2 0 0 0 3 3 3 3 3
25 2 4 0 0 0 3 3 3 3 3
26 4 2 3 3 3 3 0 0 0 0
27 2 4 0 0 3 0 0 0 0 0
28 2 4 0 0 0 0 3 0 0 0
29 4 2 0 0 3 0 0 0 0 0

to determine the best choice among the available nodes based upon their position
within the network [13], or emphasizing various targets, such as power-awareness
[22] or resilience-awareness [5]. More recently, resource management has focused
on the specific type of applications, such as MapReduce-based applications. A
widely used cluster resource managers in the Hadoop system, e.g. YARN [27]
or Mesos [16], allow allocating resources, such as CPU and memory, to multiple
big data applications. However, none of them can directly support the man-
agement of the deeply heterogeneous resources, out-of-box. Based on the YARN
framework, the resource management strategy and scheduling mechanism to suit
for the heterogeneous CPU-FPGA cluster was proposed in [17]. This approach
modifies the resource representation scheme that manages logical FPGA accel-
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erator functionality for better scheduling and provides development interfaces
for easily usage of FPGAs. An heterogeneous ARM/FPGA SoC was considered
as the target architecture for the power capping technique proposed in [28]. This
approach combines power capping with coordinated dynamic voltage and fre-
quency scaling (DVFS), data partitioning and core allocations for efficient use
of both ARM processor and streaming accelerators on FPGA concurrently. A
similar approach, leveraging a hardware implementation for the power capping,
was proposed in [30,33], based on the modeling of DVFS and power gating ac-
tuators provided in [34]. A run-time task allocator for heterogeneous many-core
platforms, SPARTA, was presented in [6]. It uses the variability in workload
memory and computational requirements in order to provide energy efficient
task-to-core allocations. SPARTA is proposed for a generic Linux environment
and single-ISA shared memory heterogeneous multi-processing. Three resource
allocation algorithms suitable for heterogeneous HPC systems focused on the ef-
ficient management of critical, accelerator-like resources were presented in [21].
In the context of heterogeneous high-end embedded systems, co-scheduling of
multiple application has also been studied. A recent survey of such approaches,
and a technique that leverages Linux Control Groups can be found in [18].

6 Conclusions

In this work, we briefly introduced the MANGO Project, in which we explored
the architectural possibilities of next-generation HPC systems, based on a deeply
heterogeneous set of processing units and multiple memory nodes. We developed
a programming model integrated with a resource management framework. We
proposed a heuristic-based policy to predict the best resource mapping solutions
for each application, such that the resource manager can quickly pick them at
run-time, without introducing additional overhead. We validated the policy by
executing two real applications on a emulated heterogeneous platform proto-
type, enforcing different resource mapping options. We observed how the policy
succeeded in the identification of the best and the worst options.

Future works will go in the direction of collecting more information about the
behaviour of the applications and response of the hardware resources, especially
in scenarios of resource contention. With this knowledge, we will be able to
improve the policy and therefore the capabilities of the resource manager in
taking decisions at run-time. Furthermore, we plan to extend the capabilities of
the programming model to include dynamic recompilation of the kernels, through
a partial dynamic compilation library supporting arbitrary C++ code [4].
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