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Abstract. The wide spread usage of automated data-driven decision
support systems has raised a lot of concerns regarding accountability and
fairness of the employed models in the absence of human supervision.
Existing fairness-aware approaches tackle fairness as a batch learning
problem and aim at learning a fair model which can then be applied
to future instances of the problem. In many applications, however, the
data comes sequentially and its characteristics might evolve with time.
In such a setting, it is counter-intuitive to “fix” a (fair) model over the
data stream as changes in the data might incur changes in the underlying
model therefore, affecting its fairness. In this work, we propose fairness-
enhancing interventions that modify the input data so that the outcome
of any stream classifier applied to that data will be fair. Experiments on
real and synthetic data show that our approach achieves good predictive
performance and low discrimination scores over the course of the stream.

Keywords: data mining · fairness-aware learning · stream classification.

1 Introduction

Despite the wide spread belief that data-driven decision making is objective in
contrast to human-based decision making that is subject to biases and prejudices,
several cases have been documented, e.g., [9,13], in which data-driven decision
making incurs discrimination. As a recent example, a Bloomberg report has sug-
gested signs of racial discrimination in Amazon’s same-day delivery service [13].
The sensitive attribute race was not employed as a predictive attribute in Ama-
zon’s model(s), however the location of the users might have acted as a proxy
for race. As a result, predominantly black ZIP codes were excluded from services
and amenities. Therefore, the wide spread usage of automated data-driven deci-
sion support systems has raised a lot of concerns regarding accountability and
fairness of the employed models in the absence of human supervision [1,24,28].
Such issues result in societal and legal implications, therefore, recently the do-
main of discrimination-aware data mining [23] has attracted a lot of attention
and several methods have been proposed ranging from discrimination discovery
to discrimination elimination and explanation of model decisions.

Most of these methods, however, tackle fairness as a batch learning prob-
lem aiming at learning a “fair” model which can be then used for predicting
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future instances of the population. In many modern applications, however, data
is generated sequentially and its characteristics might change with time, i.e., the
data is non-stationary. Such dynamic environments( or, data streams) call for
model adaptation [12]. As an example, in the EU, the non-native population
has significantly changed in the last years due to European refugee crisis and
internal EU migration with a potential effect on the racial discrimination in the
labor market. In such non-stationary environments, the main challenge for su-
pervised learning is the so-called concept drifts, i.e., changes in the underlying
data distribution which affect the learning model as the relationships between
input and class variables might evolve with time [26]. Existing solutions from the
data stream mining domain tackle this issue by adapting the learning models
online. However, as the decision boundary of the classifier changes as a result of
model adaptation, the fairness of the model might get hurt.

An example of an evolving stream with discrimination is shown in Figure 1;
one can see the deprived and favored communities (w.r.t. some sensitive at-
tribute) over time as well as their class assignments. The favored community
dominates the stream. The decision boundary of the classifier (solid line) changes
in response to changes in the underlying data. As a result, the associated fair-
ness of the model also changes, calling for “fairness-enhancing intereventions”
(dashed line). It is important, therefore, model adaptation to also consider fair-
ness‘ to ensure that a valid fairness-aware classifier is maintained over the stream.
In this work, we propose fairness-enhancing interventions that modify the in-
put data before updating the classifier. Our method belongs to the category of
pre-processing approaches to fairness, investigated that far only in the context
of static learning [5,6,14,15,16,17]. Our contributions are: a) we introduce the
fairness-aware classification problem for streams b) we propose pre-processing
fairness-enhancing interventions for streams c) we propose a synthetic genera-
tor for simulating different drift and fairness behaviors in a stream and d) we
present an extensive experimental evaluation with different stream learners and
on different datasets.

The rest of the paper is as follows: In Section 2, we overview the related work.
Our approach is presented in Section 3. Experimental results are discussed in
Section 4. Finally, conclusions and outlook are presented in Section 5.

2 Related Work

Although more than twenty different notions of fairness have been proposed in
the last few years [25,29], still there is no agreement on which measure to apply
in each situation. The most popular is that of statistical parity [29] that checks
whether the favored and deprived communities have equal probability of being
assigned to the positive class. This is the measure we also adopt in this work.

Pre-processing fairness-enhancing interventions: Methods in this cat-
egory work under the assumption that in order to learn a fair classifier, the
training data should be discrimination-free. To this end, they try to balance the
representation of the different groups in the population. Massaging [15] modifies
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Fig. 1: An evolving stream with discrimination: At each timepoint, the current
decision boundary (solid line) and the “fairness-corrected” boundary (dashed
line) are displayed.

the data distribution by re-labeling some of the instances which reside close to the
decision boundary in order to neutralize discriminatory effects. Re-weighting [5]
assigns different weights to the different group, e.g., the deprived group will re-
ceive a higher score comparing to the favored group. These methods are typically
model-agnostic and therefore, any classifier is applicable after the pre-processing
phase.

In-processing fairness-enhancing interventions: Methods in this cate-
gory directly modify the learning algorithm to ensure that it will produce fair
results. As such, they are algorithm-specific; e.g., [18] proposes a decision tree
that encodes fairness by employing a modified entropy-based attribute splitting
criterion and [8] includes sensitive attributes in the learning process by utilizing
a joint loss function that makes explicit trade-off between fairness and accuracy.

Post-processing fairness-enhancing interventions: Post-processing meth-
ods modify the results of a trained classifier to ensure the chosen fairness criterion
is met; e.g., [18] modifies the leaf labels of a decision tree, [22] changes the con-
fidence values of classification rules and [10] shifts the decision boundary of an
AdaBoost learner until the fairness criterion is fulfilled.

Stream Classification: Data stream algorithms must be able to adapt to
concept drifts in order to maintain a good performance over the stream [12].
Model adaptation is typically enabled by: i) incorporating new instances from the
stream into the model and ii) forgetting or downgrading outdated information
from the model. The former calls for online/incremental algorithms, whereas the
latter calls for methods that are able to forget e.g., [11,19]. We discuss several
stream classifiers in the experiments (Section 4).

Sequential fairness: When a sequence of decisions has to be taken, the
notion of sequential fairness is relevant. For example, [27], studies fair online
item ranking for groups and [20] how fairness criteria interact with temporal
indicators of well-being and affect discriminated populations on the long-term.

Our work lies in the intersection of pre-processing methods for fairness and
stream classification methods. The former, however, focus solely on the static
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case, i.e., they assume that the data is stationary, whereas the latter focus solely
on predictive accuracy and ignore fairness. To the best of our knowledge, this is
the first work trying to bridge the two domains.

3 Fairness-aware stream classification

A data stream S is a potentially infinite sequence of instances arriving over
time, each instance described in a feature space A = (A1, A2 · · ·Ad). One of the
attributes is the sensitive attribute, denoted by SA, with values SA = {s, s};
we refer to s and s as “deprived” and “favored”, respectively. We also assume
a binary class attribute C = {rejected, granted}. We refer to “granted” class
value as target class. We process the stream in chunks of fixed size, S1, · · · , St

with St being the most recent chunk. We assume the fully supervised learning
setting, where the labels of the instances are available shortly after their arrival.
Therefore, the goal is to make a prediction for the instances based on the cur-
rent classifier and use the labels later on for update (the so-called prequential
evaluation [12]). The underlying stream population is subject to changes, which
might incur concept drifts, i.e., the decision boundary might change overtime
(c.f., solid line in Figure 1) and therefore, fairness implications may take place
(c.f., dashed line in Figure 1). A stream classifier typically takes care of concept
drifts, but does not consider fairness.

The discrimination aware stream classification problem therefore is to main-
tain a classifier that performs well (i.e., the predictive accuracy is high) and does
not discriminate (i.e., the discrimination score is low, c.f. Equation 1) over the
course of the stream. In this work, we follow the pre-processing approaches to
fairness-aware learning that intervene at the input data to ensure a fair represen-
tation of the different communities. In particular, we monitor the discrimination
in each incoming chunk from the stream (Section 3.1) and if the discrimination
score exceeds a user defined threshold ε, we “correct” the chunk for fairness
(Section 3.2) before feeding it into the learner (Section 3.3). We assume an ini-
tialization phase at the beginning of the stream for which an initial fairness-aware
classifier F0 is trained upon an initial dataset S0 from the stream. An overview of
our approach is depicted in Figure 2, where M1-M4 are the adaptation strategies
introduced in Section 3.3.

3.1 Detecting classifier discrimination in data streams

Let F be the current (non-discriminating) stream classifier and St be the current
chunk received from the stream. We evaluate the discriminative behavior of F
over St, i.e., discS(F, St) by evaluating the predictions of F over instances of St.
First, we define four communities in each chunk St by combining the sensitive
attribute SA with the (predicted) class attribute C (both binary attributes):

As discrimination measure, we employ statistical parity that evaluates whether
the favored and deprived groups have equal probabilities of being granted [25]:
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Fig. 2: Fairness-aware stream classification overview

Table 1: (Chunk St) Communities
(predicted) class

Sensitive Attribute SA Rejected Granted

s (Female) DRt (deprived rejected) DGt (deprived granted)
s (Male) FRt (favored rejected) FGt (favored granted)

discS(F, St) =
FGt

FGt + FRt
− DGt

DGt +DRt
(1)

If the discrimination value exceeds the threshold ε, i.e., discS(F, St) > ε, the
discrimination performance of the model degrades, due to, e.g., changes in the
distribution that reside in the newly arrived chunk St. A typical stream classifier
would update F based on St to adapt to the incoming stream. However, to also
account for fairness, we first “correct” St for fairness (c.f., Section 3.2), before
employing its instances for updating the model (c.f., Section 3.3).

3.2 Fairness-enhancing data interventions in data streams

If discrimination is detected, St is “corrected” for fairness before being used for
model update (Section 3.3). To this end, we employ two different data interven-
tion techniques: massaging and re-weighting.

Chunk-based massaging. Massaging [15] modifies the data distribution
by swapping the class labels of certain instances (from “granted” into “rejected”
or vise versa) from each of the deprived rejected (DR) and favoured granted
(FG) communities. The amount of affected instances, Mt, from each community
is derived by Equation 1 and is as follows:

Mt =
FGSt ∗ (DGSt +DRSt)−DGSt ∗ (FGSt + FRSt)

|St|
(2)

The best candidate instances for label swapping are those close to the decision
boundary, as intuitively their alternation will have the least impact on the model
while it will fulfill the discrimination requirement (Equation 1). To this end, we
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employ a ranker Rt trained on St that estimates the class probabilities of the
instances in St. Then, Mt instances assigned with high probability to DR and Mt

instances assigned with low probability to FG are selected for label swapping.
Chunk-based re-weighting. Re-weighting [5] modifies the data distribu-

tion by assigning different weights to each community (c.f., Table 1) to “enforce”
a fair allocation of deprived and favored instances w.r.t the target class. Similarly
to massaging, the exact weights depend on the St distribution in the different
communities. Below we provide the weight for the favoured granted community,
same rationale holds for the other communities:

WFG
t =

|sSt | ∗ |{x ∈ St|(x.C = “granted”)}|
|St| ∗ |FGSt

|
(3)

Each instance x ∈ St is weighted by “inheriting” the weight of its community.
Massaging vs re-weighting. Both methods modify the data distribution

to equalize the number of deprived and favored communities in the target class.
However, there are fundamental differences between the two approaches: mas-
saging interferes at the instance level by altering single instances, whereas re-
weighting affects a whole community by lowering/increasing its weight. More-
over, massaging is more intrusive than re-weighting as it alters the class labels.
Both interventions result in a “corrected” chunk S′

t (|St| = |S′
t|) used for updat-

ing the classifier (c.f., Section 3.3).

3.3 Fairness-aware classifier adaptation in data streams

The update of a classifier should take into account both concept drifts and
fairness. For the former, we work with stream classifiers, like, Hoefdding Trees,
Accuracy Updated Ensembles and Naive Bayes that already adapt to concept
drifts. In that sense, the concept drift problem is directly tackled by the learner.
For the latter, we “correct” the input stream per chunk, using either massaging or
re-weighting, to ensure that learners are trained on “fair” data (c.Section 3.2). In
particular, we propose update strategies for fairness-aware stream classification:

– Accum&FullTrain (shortlyM1): F is continuously updated over the stream
using the original current chunk St, if no discrimination is detected, or its
“corrected” counterpart S′

t, if discrimination is detected.
– Reset&FullTrain (shortly M2): Similar to M1, but if discrimination is

detected, F is reset and a new model is created from the “corrected” S′
t.

The underlying assumption for Accum&FullTrain is that if trained with
“fair” chunks, the classifier F should be fair. In practice, though and due to the
complex interaction between input data and learning algorithms, this might not
be true (c.f., [17]); therefore, we also propose the Reset&FullTrain model
that resets the learner once its predictions incur discrimination.

In addition, we propose two variations that focus more on fairness. The ra-
tionale is similar to the previous approaches but the model is updated only if
discrimination is detected and only via “corrected” data. Therefore, these two
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models adapt slower to concept drifts comparing to the first two models, as their
adaptation occurs only if discrimination is detected. In particular:

– Accum&CorrectedTrain (shortly M3): F is updated over the stream
only if discrimination is detected. Update is based on “corrected” chunks S′

t.
– Reset&CorrectedTrain (shortly M4): Similar to M3, but once discrim-

ination is detected F is reset and a new model is created from the corrected
chunk S′

t. Thus, M4 adapts only via reset, when discrimination is detected.

4 Experiments

We evaluate the performance of our methods for discrimination elimination in
data streams using both real and synthetic datasets (Section 4.1). As evalu-
ation measures, we use the performance of the model, in terms of accuracy
and discrimination, over the new coming chunk from the stream. We report
on the performance of the different methods over the stream but also on the
overall accuracy-vs-fairness behavior of the different methods. We experiment
with a variety of stream classifiers such as Naive Bayes (NB), Hoeffding Tree
(HT), Accuracy Updated Ensemble (AUE) and k-Nearest Neighbors (KNN).
The aforementioned models are updated based on the new incoming chunk from
the stream, however they differ w.r.t how they handle historical information. NB
and HT classifiers do not forget, whereas AUE forgets by replacing old learn-
ers with new ones. kNNs on the other hand, rely solely on the last chunk for
the predictions, due to its internal buffer. An overview of each classifier is given
below:

– Naive Bayes (NB): A probabilistic classifier that makes a simplistic assump-
tion on the class-conditional independence of the attributes. The stream ver-
sion of NBs [2] is an online algorithm, i.e., the model is updated based on new
instances from the stream, but does not forget historical information.

– Hoeffding Tree (HT): A decision tree classifier for streams that uses the Ho-
effding bound to make a reliable decision on the best splitting attribute from
a small data sample [7]. HT is an online algorithm (so, it is updated based on
new instances from the stream) but does not forget.

– Accuracy Updated Ensemble (AUE): An ensemble model that adapts to con-
cept drifts by updating its base-learners based on the current data distribution,
tuning their weights according to their predictive power on the most recent
chunk [4]. The model replaces old learners with newer ones trained upon more
recent chunks. We used HTs as base learners for the ensemble and we set the
maximum number of base learners to 10.

– KNN: A lazy learner which predicts based on the class labels of the neigh-
boring instances [3]. In particular, the previous chunk instances and their
labels are used to make predictions for the instances of the current chunk.
The neighborhood is set to k = 10.

We evaluate our strategies M1-M4 (c.f., Section 3.3) for the different clas-
sifiers, as well as againsts the following baselines that do not explicitly handle
discrimination:



8 Iosifidis et al.

B1 B.NoSA (Baseline NoSensitiveAttribute): The classifier F does not employ
SA neither in training nor in testing. The model is continuously updated
over the stream from the original chunks St. Intuitively, the model tackles
discrimination by omitting SA.

B2 B.RESET (Baseline Reset): If discrimination is detected, the old model F
is deleted and a new model is learned on St. The model is updated over
the stream, but without any correction. Discrimination is being monitored
and if it is detected again, the whole procedure starts over. Intuitively, this
approach tackles discrimination by resetting the model when discrimination
is detected.

For the massaging techniques, we use NB as a ranker which according to [5]
is the best ranker. We implemented our methods3 in MOA [3]. For all of our
reported experiments, we consider a discrimination threshold of ε = 0.0, that is,
we do not tolerate any discrimination, and a chunk size of |S| = 1, 000 instances.
The effect of these parameters is discussed in Section 4.2.

4.1 Datasets

As real dataset we employ the census-income (or adult-census) dataset, which
comprises one of the most popular datasets in this area; we simulate the stream
using the file order. Due to lack of stream data for fairness, we extend an existing
stream generator to simulate different discrimination scenarios in data streams.

Census-Income [21]: The learning task is to predict whether a person
earns more than 50K/year using demographic features. We consider gender as
the sensitive attribute with females being the deprived community and males
being the favored community. In addition, we consider an annual income of more
than 50K as the target class. The dataset consists of 48,842 records and has an
overall discrimination of 19.45%. In Figure 3a, the discrimination score and the
different community volumes (DRt, DGt, FRt, FGt) are shown over time using
a chunk size of |S| = 1, 000 instances. The discrimination score ranges between
15%− 25% overtime.

Synthetic Generator: Our generator comprises an extension of the static
fairness generator of [30] that represents each community using a Gaussian dis-
tribution. It forces the DG community to be closer to the negative class whereas
the FG community is placed further away from the negative class. An example
can be already seen in Figure 1. We extend this idea in a stream setting by
varying the amount of discrimination over the stream while introducing concept
drifts.

In particular, we initialize four Gaussians, as follows, similarly to the static
generator: p(DG) = N([2; 2], [3, 1; 1, 3]), p(FG) = N([2.5; 2.5], [3, 1; 1, 3]),
p(DR) = N([0.5; 0.5], [3, 3; 1, 3]) and p(FR) = N([-2; -2], [3, 1; 1, 3]). In
the initialization phase, all Gaussians contribute equally to each community
with n instances each, giving a total of N = 4n instances for the initial chunk.

3 Code will be made available online
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With respect to discrimination, we introduce a parameter SPP that controls
the statistical parity by controlling the number of generated instances x in the
DG community over the stream. The exact amount of instances x can be derived
from Equation 1 as follows:

SPP =
n

2 ∗ n
− x

x+ n
⇒ x = n ∗ 1− 2 ∗ SPP

1 + 2 ∗ SPP
(4)

where n is the amount of instances generated by each Gaussian in a chunk and
x is the amount of instances for the DG community based on the desired SPP
value; the rest n−x instances generated originally by its corresponding Gaussian
are evenly distributed to the FG and FR communities. This way, the ratio of
positive instances in the favored community remains the same. To simulate con-
cept drifts in the population, we change the means of the Gaussians at random
points over the stream. To maintain the initial problem (unfair treatment of one
community), we shift the means all together at a random direction up, down,
left or right by a random value k ∈ [0, 2].

For evaluation purposes, we generate a synthetic dataset of 200,000 instances
(200 chunks, N = 1, 000 instances per chunk), 4 numerical attributes, 1 binary
sensitive attribute and 1 binary class. We inserted 20 concept drift at random
points and vary SPP randomly over time from 0% to 30%. The dataset charac-
teristics are shown in Figure 3b.

4.2 Evaluation results

For each dataset, we report on the discrimination-vs-accuracy behavior of the
different classifiers under the different adaptation strategies. The discrimination-
vs-accuracy plot (an example is shown in Figure 4a) allows for a quick evalua-
tion of the different behaviors. Values close to 0 in the x-axis mean fair models,
whereas as the values increase the corresponding classifier become more discrim-
inating. w.r.t accuracy (y-axis), good predictive power models reside close to
100%, whereas low y values indicate poor performing models. The ideal models
are located on the up left region which indicates high accuracy and low dis-
crimination performance models. The worst models are located in the bottom
right region where low accuracy and high discriminating behavior take place. Up
right and bottom left regions indicate unfair but accurate models and fair but
inaccurate models, respectively.

Census-Income. For the massaging, c.f., Figure 4a, our strategies achieve
lower discrimination comparing to the baselines (our values are closer to 0 in the
x-axis). As expected, the improvement w.r.t discrimination incurs a drop in ac-
curacy, i.e., baselines have better accuracy comparing to our strategies (baseline
values are closer to 100% in the y-axis). We also observe that some strategies de-
pict very similar performance, e.g., M2 and M4 when combined with HT . The
reason is that since ε = 0, our discrimination detector is activated on almost
every chunk from the stream and therefore strategies like M2 and M4 will both
reset the model on each chunk. Accumulative strategies, M1 and M3, perform
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(a) Census-Income

(b) Synthetic data

Fig. 3: Discrimination and community size over the stream (|S| = 1, 000 in-
stances/chunk)

better than reset strategies, M2 and M4; the reason is probably that the latter
ones forget too fast. Regarding the different classifiers employed by our strate-
gies, we can see that the best performing ones in terms of both accuracy and
discrimination are KNN and AUE. AUE and HT models yield better accuracy
and less discrimination when they do not discard previous knowledge. Although
KNN is not the best performing model in terms of accuracy, it yields the lowest
discrimination score with the smallest drop in accuracy when compared to its
baselines, namely B.RESET and B.NoSA. In particular, discrimination drops
from 19% to 4% while accuracy drops by almost 1%, when KNN is employed
by M3 and M4 strategies.

In Figure 4b, we compare the discrimination-vs-accuracy behavior of the dif-
ferent classifiers under re-weighting. Same as in massaging, our strategies reduce
discrimination in predictions. Classifiers such as HT behave similarly under dif-
ferent strategies since the detector detects discrimination in almost every chunk.
KNN on the other hand, doesn’t take into consideration weights, hence all the
strategies perform identically.

We also compare models overtime in Figure 5. We have selected one model
for each method (massaging/re-weighting) based on the discrimination-accuracy
trade off (points which are closer to (0,1) based on Euclidean distance) and the
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(a) Massaging

(b) Re-weighting

Fig. 4: Census-Income (Small): Discrimination-vs-Accuracy of the different
strategies

best baseline of those two models. Although HT’s baseline has the best accuracy
overtime, its discrimination score is close to stream’s discrimination. On the
other hand, re-weighting and massaging methods result in a significant drop in
discrimination. The number of massaged instances M varies over the stream,
based on how discriminative the KNN’s predictions are.

Synthetic data. The dataset contains 20 concept drifts while its discrimi-
nation score varies overtime, as seen in Figure 3b. The majority of baselines, in
Figures 6a and 6b, are able to adapt to concept drifts (i.e., they achieve high
accuracy), however they cannot handle discrimination, which in some cases is
even amplified comparing to the original stream overall discrimination. The vast
majority of baselines occupy the up right region which means that models are
able to adapt to concept drifts even though they are highly discriminating. By
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Fig. 5: Census-Income: Accuracy (top), discrimination (middle) and # massaged
instances (bottom) over the stream

inspecting Figure 6a, we can observe once again that accumulative models are
less discriminating in contrast to reset models. KNN achieves high reduction in
discrimination (up to 6%), while maintaining high accuracy. Classifiers such as
AUE and HT perform well when combined with accumulative strategies while
reset strategies incur higher discrimination. A possible reason for this behavior
is that when trained on more data, a model can generalize better, especially in
re-occurring concepts, comparing to reset strategies that rely solely on recent
chunks. KNN is an exception as it performs well despite relying on an internal
sliding window for its predictions. A possible reason is that a kNN learner is an
instance-based learned and does not perform explicit generalization like HT and
AUE. Similarly to census-income dataset, NB is not able to tackle discrimination.

In Figure 6b, we observe that almost all baselines, same as in massaging,
cover the up right region area. AUE’s performance is increasing while it becomes
more discriminating in contrast to AUE in massaging. Same as before, HT and
KNN have the least discriminating behavior while NB performs poorly. Again,
reset strategies produce good accuracy models but fail to reduce discrimination.

In Figure 7, we compare the best “correction” methods and the best baseline.
M1 combined with KNN has the lowest discrimination score overtime. Its ac-
curacy is slightly worse than its baseline. However, discrimination is lower than
stream’s and baseline’s discrimination overtime. HT’s overall performance w.r.t
accuracy is relatively good except the interval between 77th and 90th chunk
where four concept drifts occurred incurring accuracy loss. Despite the accuracy
degradation, HT achieved lower discrimination compared to other classifiers.

Parameter effect: Due to lack of space we omit the time execution charts.
A derived conclusion is that our strategies are executed slightly slower compared
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(a) Massaging

(b) Re-weighting

Fig. 6: Synthetic stream: Discrimination-vs-Accuracy of the different strategies

to the baselines and moreover, that the reset strategies are faster than the ac-
cumulative strategies. We have also experimented with different chunk sizes |S|
and discrimination thresholds ε. Based on our experiments, increasing ε results
in better accuracy models but their discrimination also increases. With respect
to the chunk size effect, there was no clear effect on the performance except for
the execution time that decreases with chunk size as less operations take place.

5 Conclusions and Future Work

In this work, we proposed an approach for fairness-aware stream classification,
which is able to maintain good predictive performance models with low discrimi-
nation scores overtime. Our approach tackles discrimination by “correcting” the
input stream w.r.t fairness and therefore, can be coupled with any stream clas-
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Fig. 7: Synthetic stream: Accuracy (top), discrimination (middle) and # mas-
saged instances (bottom) over the stream

sifier. Our experiments show that such a correction over the stream can reduce
discrimination in model predictions, while the maintenance of the model over the
stream allows for adaptation to underlying concept drifts. Comparing the dif-
ferent fairness-intervention methods, our experiments show that massaging per-
forms better than re-weighting. A possible explanation is that massaging works
at an individual instance level by swapping its class label, whereas re-weighting
works at a group level by applying different weights to different communities.
Moreover, massaging affects selected instances, which are closer to the boundary.

Our approach is model-agnostic, however our experiments show that the ef-
fect of “data correction for discrimination” on a variety of classifiers is different
and therefore, how to “best correct” for specific classifiers is an interesting re-
search direction. Moreover, we want to investigate in-processing fairness-aware
stream classifiers that incorporate fairness notion directly in the classification
algorithm.
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4. Brzeziński, D., Stefanowski, J.: Accuracy updated ensemble for data streams with
concept drift. In: HAIS. pp. 155–163. Springer (2011)

5. Calders, T., Kamiran, F., Pechenizkiy, M.: Building classifiers with independency
constraints. In: ICDMW’09. IEEE. pp. 13–18 (2009)

6. Calmon, F., Wei, D., Vinzamuri, B., Ramamurthy, K.N., Varshney, K.R.: Opti-
mized pre-processing for discrimination prevention. In: NIPS. pp. 3992–4001 (2017)

7. Domingos, P., Hulten, G.: Mining high-speed data streams. In: SIGKDD. pp. 71–
80. ACM (2000)

8. Dwork, C., Immorlica, N., Kalai, A.T., Leiserson, M.D.: Decoupled classifiers for
group-fair and efficient machine learning. In: FAT. pp. 119–133 (2018)

9. Edelman, B.G., Luca, M.: Digital discrimination: The case of airbnb. com (2014)
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