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Abstract. Cache timing attacks use shared caches in multi-core proces-
sors as side channels to extract information from victim processes. These
attacks are particularly dangerous in cloud infrastructures, in which
the deployed countermeasures cause collateral effects in terms of perfor-
mance loss and increase in energy consumption. We propose to monitor
the victim process using an independent monitoring (detector) process,
that continuously measures selected Performance Monitoring Counters
(PMC) to detect the presence of an attack. Ad-hoc countermeasures can
be applied only when such a risky situation arises. In our case, the vic-
tim process is the AES encryption algorithm and the attack is performed
by means of random encryption requests. We demonstrate that PMCs
are a feasible tool to detect the attack and that sampling PMCs at high
frequencies is worse than sampling at lower frequencies in terms of de-
tection capabilities, particularly when the attack is fragmented in time
to try to be hidden from detection.

Keywords: cache attacks, flush+reload, AES, performance monitoring
counters

1 Introduction

In January 2018, Jann Horn from Google Project Zero and a group of researchers
led by Paul Kocher independently disclosed three vulnerabilities, named Spectre
(variants 1 and 2) and Meltdown [9]. They discovered that data cache timing
could be used to extract information about memory contents using speculative
execution. Since that moment, new variants of these transient execution attacks
have been disclosed, such as Foreshadow or NetSpectre, to name just two of
them [5].

These attacks exploit speculative and out-of-order execution in high per-
formance microarchitectures together with the fact that in modern multi-core
architectures some resources are shared across cores. Hence, a malicious pro-
cess which is being executed in one core of the system can extract information
from a victim executed in a different core. The most commonly used resource as
side-channel to extract information is the shared cache [2].

This problem is particularly important in cloud environments, where not only
multiple users share a multi-core server but also multiple virtual machines can
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co-reside in the same core due to consolidation in order to save energy. Moreover,
the use of simultaneous multithreading techniques, such as Intel’s Hyperthread-
ing technology, allow to leverage two or more logical cores per physical core,
increasing the degree of resources shared between users.

There has been a proliferation of ad-hoc defenses, mainly microcode and
software patches for the operating system and virtual machine monitor. Besides,
Intel announced hardware mitigations in its Cascade Lake processors, trying to
reduce performance loss due to the countermeasures for some of the attacks [10].

However, the impact of countermeasures on performance is still non negligi-
ble, and according to [5] varies from 0% to almost 75%. Thus, in most situations,
security comes at the expense of lower performance and higher energy consump-
tion (due to non-consolidating and disabling hyperthreading).

In this paper, we propose a new attack detection tool that is based on the
deployment of a process running in the same core that the victim process it
protects, and that detects situations in which an attack is being performed.
Following this idea, countermeasures are only taken when the risk level justifies
the cost.

The contribution of the paper is two-fold:

– We implement and describe the attack, and design and implement a detector
for it based on Performance Monitoring Counters (PMC) monitoring, eval-
uating its detection capabilities at different sampling frequencies, showing
that high sampling frequencies (100 µs) are noisier than lower ones.

– We show that splitting the attack into small pieces and distributing those
pieces in time decreases detection capability in a different way for the differ-
ent detection sampling frequencies. Only low frequencies such as 10 ms are
still able to detect the time-fragmented attack.

The rest of the paper is structured as follows: Section 2 reviews the most
relevant works in the field; Section 3 outlines the main concepts needed for the
correct understanding of the attack and detection strategy. Then, the attack
implemented, detection using PMC and the time-fragmented attack are pre-
sented in Sections 4, 5 and 6, respectively. Finally, conclusions are presented in
Section 7.

2 Related Work

Detailed surveys on microarchitectural timing attacks in general [8], [2] and cache
timing attacks in particular [11] can be found in the literature. [5] includes a
systematic evaluation of transient execution attacks.

Time-driven attacks against the shared and inclusive Last Level Cache (LLC)
are mainly based on Flush&Reload [14] and their variants. So, both [1] and
[4] extract the key from the AES T-table based encryption algorithm using
improvements over the original attack.

Recently, Performance Monitoring Counters have been used to detect the
attack. Chiappeta et al [6] monitor both the victim and the attacker, while
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CloudRadar [15] monitors all the virtual machines running in the system. CacheShield
[3] only monitors the victim process to detect attacks on both AES and RSA
algorithms. None of them considered trying to hide the attack by dividing it into
small pieces distributed in time. Our approach is similar to CacheShield [3] in
terms of functionality, but we perform a more detailed study of how the specific
timing of the attack affects the detection capability.

3 Background concepts

For a correct understanding of the attacks and techniques described hereafter,
further details on two architectural concepts with direct impact on the attacks
are required: cache inclusion policies and memory de-duplication as a specific case
of shared memory. Then, the basics of the Flush&Reload attack are outlined.

3.1 Shared caches and inclusion policies in modern multi-cores

Modern multi-core processor feature multi-level caches in which levels can be
classified as shared/private across cores and hierarchies as inclusive, non-inclusive
or exclusive, depending on whether the content of a cache level is present in lower
cache levels. Of special interest for us is the combination of shared/inclusive
cache levels, such as LLC caches in modern Intel multi-cores; in this scenario,
a process executed on a specific core can produce side effects on independent
processes executed on a different core. This phenomena can be exploited to
perform cache-timing attacks. Supplementary techniques, such as Intel’s Cache
Allocation Technology (CAT [12]), can be leveraged to isolate specific LLC ways
in order to boost performance (reducing contention), but also to mitigate the
effects of potential attacks in this type of processors and situations.

3.2 Shared memory and memory de-duplication

Modern operating systems, such as Linux, make an intensive use of shared mem-
ory across processes to improve memory usage efficiency. Some situations (e.g.
parent-child process hierarchies generated through fork()) are easily trackable,
but sharing memory pages across independent processes requires ad-hoc sophis-
ticated techniques. This is a very common scenario in multi-VM deployments
sharing the same physical resources, for example.

Memory de-duplication is a specific technique of shared memory, designed to
reduce the memory footprint in scenarios in which a hypervisor shares memory
pages with the same contents across different virtual machines, but with impact
also on non-virtualized environments comprising random non-related processes.
In the Linux implementation (KSM, Kernel Samepage Merging), a kernel thread
periodically checks every page in registered memory sections, and calculates a
hash of its contents. This hash is then used to search other pages with identical
contents. Upon success, pages are considered identical and merged, saving mem-
ory space. Processes that reference to the original pages are updated to point to
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the merged one. Only after a write operation from one of the VMs (or processes),
sharing finishes and the corresponding page is copied by COW (Copy-on-Write).

3.3 Flush&Reload

The Flush&Reload attack was first introduced in [14] and optimized by later
works such as [1], among others. It takes advantage of the combination of in-
clusive shared caches and memory de-duplication. The basics of the attack are
as follows: the attacker runs in a core which shares the last level cache with the
victim, and manages to share some page with it through memory de-duplication.
It can either contain shared data (i.e. the tables used by the AES encryption
algorithm) or shared instructions (for the attack against RSA). In the first phase
of the attack (Flush), the attacker evicts the shared blocks from its own private
cache, causing the eviction of those data from the shared cache and all the other
caches. In the second phase, the victim performs some random work, bringing
some of the shared data to the cache again. In the last phase (Reload), the at-
tacker accesses every shared data, measuring the time it takes and it guesses
which data have been used by the victim (cache hits) and which ones were not
used (cache misses). From this information, the attacker extracts relevant data,
such as the AES key.

4 Implementation of the AES attack

4.1 Experimental Setup

The experimental setup was deployed on a dual-socket server featuring two Intel
Xeon Gold 6138 chips with 20-cores each (hyperthreading was disabled), running
at 2 Ghz. The memory hierarchy comprises 96 Gbytes DDR4 RAM, 28 Mbytes
of unified L3 cache per chip (11-way associative), 1 Mbyte of unified L2 cache per
chip (16-way associative) and 32 Kbytes of L1 cache per core (8-way associative).
Cache line is 64 bytes. L1 TLB comprises 64 entries (4-way associative) with a
page size of 4 Kbytes.

From the software perspective, we employed a Debian GNU/Linux distribu-
tion with kernel 4.9.51-1 and GCC 6.3.0. PAPI version 5.5.1.0 [13] built on top of
the Linux perf event subsystem was employed to extract performance counters
information. OpenSSL version 1.1.1.b was used to implement the cryptographic
algorithm, compiled with the no-asm flag when using T-tables.

4.2 AES algorithm

In [7], authors develop the underlying theory of polynomials with coefficients in
GF (28). This is the base for the extraction of transformation values of a single
round. The round transformation lies in four steps for the first rounds (SubByte,
ShiftRows, MixColumns and AddRoundKey) and three for the last round
(all but one, MixColumns). The number of rounds will depend on the length
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of the key; in our case, for 128-bits key, we need 10 rounds. As stated by Vicent
Rijmen et al. in [7], the round transformation of AES can be optimized with 4
look-up tables that contain the pre-calculated values for each of the potencial
inputs Ti, i ∈ 0 · · · 3. This way, the encryption round will be simplified to a few
XOR operations and takes the form:

Si,j = Ti[s
k
i,j ]⊕RoundKeyki,j (1)

for the main rounds, and the last round:

Si,j = T(i+2)%4[s10i,j ]⊕RoundKey10i,j (2)

with Sk
i,j the encrypted char, si,j the previous state char, k ∈ 1 · · · 9 the k-th

round and s1 is the original message (s0) XOR with RoundKey0.

4.3 Implementation of the attack

The basis of the attack is simple: using T-Tables optimization to extract the last
round key of AES. In Section 2, we exposed previous algorithms for extraction
of the AES key. We use the approach of [4] to break the OpenSSL 1.1.1.b AES
128 bits implementation (this library has had to be compiled with no-asm flag,
so that it uses the T-Tables implementation). The attack begins by forcing the
de-duplication of library pages (see Section 3.2). This step is mandatory so that
victim and attacker can share pages of the dynamic library, hence allowing the
observation of memory addresses assigned to AES tables. In order to obtain the
origin of the dynamic library, we proceed by opening the library and performing
a memory projection (through mmap). Proceeding this way, the KSM daemon will
detect a matching in the contents of the mapped file and the loaded dynamic
library, and will force the de-duplication. We have experimentally observed a
delay of around 300 encryptions to unleash the de-duplication of pages. At that
point, the attack can commence. The start addresses of each table are obtained
by decompiling the library and determining the offset of each table w.r.t. its
start address.

As seen in Section 2, there are different ways to extract the key based on the
information left by the last round of encryption. In this work, we check whether
a cache line1 resides in L3 upon completion of the encryption process.

These measurements have been carried out empirically by a Flush&Reload
technique (see Section 3.3) for each one of the four tables. In the following,
Tj is the corresponding line of the observed table; the attack proceeds by first
performing a flush operation of different lines of the table, followed by a random
encryption request. The response to this request is then stored (S[i] stores the
encrypted text on the i-th encryption), together with the information that will
be necessary to perform the attack: a matrix X is created and Xij set to 1 if
line Tj was in L3 after completing the i-th encryption, 0 otherwise.

1A cache line –64 bytes in our target architecture– can store 16 elements of a table,
provided each element is stored as a 4-byte unsigned integer.
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Once these data are obtained, we proceed by searching for the most probable
characters belonging to the last round key, following the pseudo-code depicted
in Algorithm 1.1, that will return, for each position of the last round key, those
characters with the lowest probability. Hence, we will select:

LastRoundKeyi,j = min
t ∈ 0,...,num encrypt

LRKi,j [t] (3)

Once the characters of the last round key have been obtained, the last step
is just an inversion of the code used by AES to obtain the last round key, and
hence the initial key of the server.

Listing 1.1: Pseudo-code to obtain Last Round Key candidates.

1 f o r t in 0, · · · , num encrypt
2 f o r i in 0, 1, 2, 3
3 i f X[ ( i +2)%4][ t ] == 0
4 f o r j in 0, 1, 2, 3
5 f o r l in 0, · · · , line elems
6 LRKi,j [S

t
i,j ⊕ T(i+2)%4[l]] + +

7 end f o r
8 end f o r
9 end i f

10 end f o r
11 end f o r

5 Attack detection using PMCs

Cache timing attacks cause an anomalously high number of L3 misses, due to
the flush and reload activity; hence, measuring L3 misses is an straightforward
mechanism to detect them. As explained in Section 2, there have been some
works in this field and most of them use L3 misses.

In addition to L3 cache misses, we chose the total number of load instruc-
tions executed by the victim as a way to estimate the number of encryptions
being performed by the victim, so that the ratio between both counters provides
a metric that is constant for different levels of load in the victim. Thus, our
detection metric is the number of L3 cache misses per 1000 load instructions.

Figure 1 reports the observed PMC values chosen for the victim both in the
presence and absence of attack. The experiment was repeated at different sam-
pling frequencies, to study the effect of the sampling frequency in the detection
capability. Figure 2 shows the values of the proposed metric for the results in
Figure 1. The first observation is that the selected metric is an effective mecha-
nism to detect the attack; the values under attack are close to 1 while the values
without attack are 10 to 100 times lower. In this situation, the attack is detected
if, after the initial cold misses (identified as 50 ms in our experiments), the value
remains close to 1.

A second conclusion from Figure 2 is that sampling PMCs at 100 µs leads to
more noisy results for the no-attack experiment. Given that this sampling rate
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(a) Attack. Detection freq.: 100 µs (b) No attack. Detection freq.: 100 µs

(c) Attack. Detection freq.: 1 ms (d) No attack. Detection freq.: 1 ms

(e) Attack. Detection freq.: 10 ms (f) No attack. Detection freq.: 10 ms

Fig. 1: Results obtained from performance counters at different sampling rates.
Each one of the three rows reports the results obtained for the L3 cache misses
(above) and number of load instructions (below) in the victim under attack (left)
and with no attack (right). The three rows correspond to the three sampling rates
analyzed: 100 µs (first row), 1 ms (middle row) and 10 ms (last row).
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also produces a higher overhead, we will not use that sampling frequency in the
following.

(a) Attack. Detection freq.: 100 µs (b) No attack. Detection freq.: 100 µs

(c) Attack. Detection freq.: 1 ms (d) No attack. Detection freq.: 1 ms

(e) Attack. Detection freq.: 10 ms (f) No attack. Detection freq.: 10 ms

Fig. 2: Metric evaluation for attack detection at different sampling rates. Each
row displays the proposed metric: L3 cache misses per 1000 load instructions
in the victim under attack (left-side column) and without attack (right-side
column). The three rows correspond to the three sampling rates analyzed: 100
µs (first row), 1 ms (middle row) and 10 ms (last row).

6 Analysis of a time-fragmented attack

In this section, we propose a complete set of experiments in order to determine
if the division of the attack in discrete pieces and their distributed execution in
time can potentially disguise the attack and invalidate the action of our detector.
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We proceed by dividing the 50, 000 encryptions needed for the attack into
equally-sized groups (or “packets” in the following) of encryptions. We have
evaluated packets of decreasing sizes, namely: 5, 000, 500, 50 and 5 encryptions.
Furthermore, in order to analyze the effect of increasing the gap (time) between
packets, we called “interval” the separation between two consecutive packets. In
our experiments, we vary the interval between packets from 10 µs to 10 ms. For
each combination of packet size and interval we used the three sampling rates
of the previous section: 100 µs, 1 ms, 10 ms.

The most interesting results are obtained for small packets and large intervals,
as expected. Figure 3 shows the results when the attack is divided into 10 packets
of 500 encryptions, and the time interval between two consecutive packets is 10
ms. The sampling rate is either 1ms or 10 ms. The metrics obtained from the
10 ms samples are close to the usual value for the attack, but the results for 1
ms samples switch from the values corresponding to an attack (close to 1) to
the no-attack values (close to 0). As expected, for the high resolution frequency
some samples do not find any difference between attack and no-attack, because
they fall in the interval of time between packets of the attack. On the contrary,
the low resolution samples always find the “big picture”.

Figure 4 reports an equivalent evaluation for packets 10 times smaller, with
the aim of reducing the time in which the attack can be detected. In this case,
the difference between the obtained results at different sampling rates is more
evident. For the 1 ms sampling rate, on one hand, the no-attack experiment has
higher number of L3 misses due to the separation between packets. During those
intervals some cache lines are evicted due to normal functioning of the system.
On the other hand, the experiment with attack also switches from low to high
values of the metric as in the previous experiment. This fact can be observed
in Figure 5, which is an augmented view of the results for the attack with 1 ms
sampling. It confirms that the attack can be more easily hidden from the high
resolution samples than from the lower ones.

Finally, the packet size is decreased to 5 encryptions. In this experiment,
when the interval between packets is longer than 1 ms the attack stops working.
The results for 1 ms interval are show in Figure 6 and they confirm that our
detection metric is able to detect the attack with a sampling rate of 10 ms.

7 Conclusions

In this paper, we proposed a mechanism to protect victim processes running in
multi-core servers (either native or inside a VM) against cache timing attacks
by adding to the server a new detector process that monitors only the PMCs
associated to the victim process. To that end, we implemented a cache timing
attack against the table based AES encryption algorithm. We used L3 cache
misses per 1000 load instructions as a detection metric and achieved detection
of the attack for all the different sampling rates, although sampling at high
frequency is worse than at lower ones.
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(a) (b)

(c) (d)

Fig. 3: Detection metric for packets of 500 encryptions with interval of 10 ms.
There is an attack in the left column and no attack in the right one. The sampling
rate is 1 ms (top) and 10 ms (bottom).

(a) (b)

(c) (d)

Fig. 4: Detection metric for packets of 50 encryptions with interval of 10 ms.
There is an attack in the left column and no attack in the right one. The sampling
rate is 1 ms (top) and 10 ms (bottom).
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Fig. 5: Augmented view of the detection metric for the attack with packets of 50
encryptions, interval of 10 ms and sampling rate of 1 ms.

(a) (b)

(c) (d)

Fig. 6: Detection metric for packets of 5 encryptions with interval of 1 ms. There
is an attack in the left column and no attack in the right one. The sampling rate
is 1 ms (above) and 10 ms (below).
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We have tried to hide the attack dividing it into small parts and interleav-
ing time slots with attack and without attack. Thus, sampling PMC at high
frequency makes detection of the attack more difficult. Again, lower frequency
monitoring results in higher detection capability.
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