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Abstract. Currently, there are benchmark sets that measure the per­
formance of HPC systems under specific computing and communication 
properties. These benchmarks represent the kernels of applications that 
measure specific hardware components. If the user’s application is not 
represented by any benchmark, it is not possible to obtain an equiva­
lent performance metric. In this work, we propose a benchmark based 
on the signature of an MPI application obtained by the PAS2P method. 
PAS2P creates the application signature in order to predict the execution 
time, which we believe will be very adjusted in relation to the execution 
time of the full application. The signature has two performance qual­
ities: the bounded time to execute it (a benchmark property) and the 
quality of prediction. Therefore, we propose to extend the signature by 
giving the benchmark capacities such as the efficiency of the application 
over the HPC system. The performance metrics will be performed by the 
benchmark proposed. The experimentation validates our proposal with 
an average error of prediction close to 7%.

Keywords: High Performance Computing, MPI Application, Perfor­
mance Prediction, Performance metrics.

1 Introduction

High Performance Computing (HPC) systems combine powerful hardware and 
software, present in clouds or clusters, used by scientists as an indispensable tool 
in many areas of research. The performance evaluation of these systems requires 
that the benchmarks subject the entire system to great stress and that they are 
representative of the type of workload that is executed on the machines.

In HPC, these benchmarks have followed two different approaches: The first 
approach consists of a set of applications and kernels, such as NAS Parallel 
Benchmark (NPB) [2], which aim to represent the totality of the measures of
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performance through a set of relevant workloads. The second approach consists of 
a single application susceptible to the properties of the system that it considers 
most relevant for the typical workloads, such as the well-known High Perfor­
mance Linpack (HPL) [4], which is used to classify the systems in the Top500 
list [10].

When using a benchmark, it will be executed in such a way as to maximize 
performance, thus hiding the influence of certain properties and emphasizing the 
influence of other properties. For example, running HPL on very large problems 
makes the influence of the interconnection network negligible, causing this action 
to go unreported. This has the result of making it difficult to obtain an idea of 
application performance for different problem sizes.

Each application has data, memory structures and different arithmetic calcu­
lations, since each one tries to solve a different problem. This is reflected in the 
amount of memory that is needed to load the data and the type of instructions 
that the CPUs will compute and the memory access pattern. That is why systems 
exhibit different performance indices according to the applications that execute 
them, making it difficult to reflect, relate or select the appropriate benchmark 
that reflects the type of operation or the amount of data to be computed which 
is similar to that of the application.

PAS2P (Parallel Application Signature for Performance Prediction) [12] is a 
tool that allows us to analyze the dynamic behavior of the application, charac­
terizing it in a set of phases that represent the performance of the application. 
With the phases, PAS2P constructs the application signature, which is defined 
by the set of phases which represent the application behavior at the performance 
level. To evaluate a system, the signature executes the phases to measure their 
execution times, which are multiplied by their weights, in order to obtain the 
total execution run time of the application.

We propose using the signature in order to create the benchmark that rep­
resents the application behavior, keeping the same memory, compute and com­
munication requirements, as well the memory access pattern, reproducing the 
specific calculation and workload properties that the application has. The sig­
nature will allow us to obtain the performance behavior of each phase, where 
we can apply performance metrics such as the efficiency and the application 
execution time, obtaining results in a bounded time with high accuracy.

The performance evaluation proposal is presented in Fig. 1. Here we can 
observe that one of the problems is selecting the benchmark that has similar 
behavior to the parallel application in order to evaluate the suitable HPC sys­
tem. On the other hand, our performance evaluation proposal is extracting the 
benchmark which represents the application performance that will be executed 
in order to evaluate the target machines.

In the following Section, the related works are presented. In Section III, we 
provide general information on PAS2P methodology and Section IV presents the 
benchmark model based on PAS2P. Section V provides the experimental results 
and Section VI presents the conclusions and future work.



Benchmark based on application signatures. 3

User’
Parallel Applications

L~

..

Set of Benchmarks

Benchmark
Selection

Traditional Performance Evaluation

\ similar naraware
requirements 

than application

onerous time

Ji C 
.2 
I 

Q.

cc
Q 
CL

Fig. 1: Performance Evaluation using benchmarks and Proposal Performance Evalua­
tion.

Is

2 Related Work

In recent times, the supercomputing community has paid significant attention to 
three benchmarks: The HPL mentioned above, the High Performance Conjugate 
Gradient (HPCG) [6] and the High Performance Geometric Multigrid (HPGMG) 
[1]. Although HPL offers direct solutions with a computational complexity of 
O(N3), the two alternatives benchmarks, HPCG and HPGMG, offer iterative 
solutions with a linear complexity of computational calculation O(N).

According to the benchmarking present in the literature, HPL and HPCG act 
as performance metrics and data access patterns commonly found in scientific 
applications, while HPGMG aims to reproduce the requirements of a specific 
workload class, without being clearly linked to any calculation or memory pat­
tern, providing a balance of machine capabilities in relation to the scientific 
application of interest.

All the most commonly used benchmarks in HPC, in particular HPL, HPCG 
and HPGMG, significantly define a notion of the size of the problem, which 
they use as parameters to be established. But this is not enough to characterize 
performance, since benchmarks generally reflect the behavior of a limited set of 
applications, at best.

There are numerous benchmarks that represent a variety of domains. On 
the one hand, there is the suite of applications highlighted by the Mantevo 
mini-applications [5] and the Parallel NAS Benchmarks [2]. On the other hand, 
there is another approach consisting of a single application susceptible to the 
system properties that it considers most relevant for the workloads, such as 
HPL [4], HPCG [6]. These benchmarks are written in C / C ++ or Fortran and 
parallelized with MPI message passing.
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Mantevo [5] presents miniapps of various kinds of scientific applications. 
These applications are based on the property that the performance is usually 
concentrated in a small subset of lines of code. This property is exploited by 
the miniapps, encapsulating only the most important computational operations, 
achieving a code smaller than the original, capturing the performance behavior 
of the application.

NAS Parallel Benchmarks (NPB) [2] are small application suites designed to 
help in the evaluation of the performance of parallel supercomputers developed 
by NASA. The benchmarks are based on Computational Fluid Dynamics (CFD) 
applications. The selection of the workload of the applications is given by five 
predefined classes (A, B, C, D or F). The application suite is composed of eight 
problems classified into five cores that mimic five numerical methods used in 
CFD and three simulated applications that represent a series of data calculations 
in complete CFD codes, which require a greater amount of resources than the 
cores.

HPL [4] consists of a single application composed of a single kernel. This 
became a point of reference in the 90s to measure the rate of execution in float­
ing point and thus enabling the classification of supercomputers, originating the 
TOP500 project. HPL solved a complex system of linear equations with a com­
plexity of O(n3). One of the main limitations of this benchmark is that it does 
not consider the transfer of memory or the cost in communications, which today 
are fundamental properties of scientific message passing applications.

On the other hand, in 2014 the benchmark HPCG [6] was developed, taking 
into account the limitations ofHPL. It obtains a better representation of the 
behavior of scientific applications, making multiplications of matrix vectors in 
order to strongly link the benchmark with hardware memory. In addition, it uses 
a simple pattern and small communication messages, which make the commu­
nication time depend mainly on the latency of the interconnection network [8].

3 PAS2P Overview.

Parallel scientific applications are typically composed of a set of phases that 
are repeated throughout the application. These phases are written in the ap­
plication code using specific communicational and computational patterns. As 
shown in Fig. 2, PAS2P [12] identifies the application phases in a transparent 
and automatic way, and it generates the Application Signature, which contains 
the application phases (the phases which have an impact on the application’s 
performance) and their repetition rates (weights). The Signature execution al­
lows us to analyze and predict the application performance in an efficient way 
on target machines, covering approximately 95 per cent of the total application 
code in 1 per cent of the application execution time.

On the base machine, the PAS2P tool instruments each process of the ap­
plication, creating a trace file. This trace, composed of hardware counters, is 
obtained between each MPI call. The instrumentation is performed by the MPI 
wrapper of the PAS2P dynamic library and the integration with the PAPI [11]
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library for the hardware counters. Finally, PAS2P defines as an event an MPI 
call associated with the computational data between one MPI Call and the next 
one.

Once the PAS2P tool intruments the application, it analyzes the data col­
lected in order to create a machine-independent application model. To do this, 
it is necessary to create a logical global clock for all processes to maintain the 
precedence between the events. When all the events have been ordered, The 
PAS2P tool creates the logical trace, where the events are inserted so as to later 
analyze the logical trace to extract the application phases.

To construct the signature, PAS2P instruments the application (binary); to 
do this, PAS2P re-runs the application using a phase table to instrument and 
detect where the phases occur. To predict the execution time (PET) of the 
application on a target machine, the equation shown in Fig. 2 is used. When 
the signature multiplies the execution time of each phase (PhaseETi) by its 
weight (Wi defined as the number of phase repetitions), the signature obtains 
the application execution time.

The information provided by the Performance Prediction allows us to obtain 
a prediction of performance measures, such as application execution time and 
performance metrics as computational time and the efficiency of each application 
phase.

4 Benchmark based on the application signature.

To measure the performance of an HPC system, researchers have often used a 
set of application kernels as benchmarks [3, 4, 6, 7], a suite of benchmarks and 
mini-applications [2,5]. However, it is not always possible to characterize the 
performance using only benchmarks [9], due to each application having differ­
ent computing and communication behavior to solve a distinct problem. This is

2iqn.it
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Fig. 3: Analysis and modelling the information given by the signature to obtain per­
formance metrics.

reflected in the instructions that the CPUs will execute and the communication 
and memory access pattern present in the application. That is why we proposed 
to use the signature as a benchmark. The signature uses the application code to 
predict whether the performance will be the same as the application. In other 
words, this means same compute, same communication messages and same mem­
ory access pattern. As we have said before, a very important characteristic of the 
benchmarks is the bounded time in which they execute, a characteristic which 
we have transferred to the signature. With this advantage, we guarantee that 
the quality of the performance results are in a bounded time.

In order to provide this capacity to the application signature, we need to 
analyze how we can apply the performance metrics in each phase. Each phase 
represents parallel code between two MPI communications and each phase scales 
independently from the others. This process is called application characterization 
(AC), as is shown in Fig. 3.

The execution of the signature allows us to extract information about the 
behavior of each relevant phase from the application. This information is stored 
in one trace file per process, as shown in Table 1, called the Signature Physical 
Trace (TSPX). The TSPX groups the information of the application in phases 
with its respective degree of repeatability (weight), as well as providing informa­
tion from the source or destination of each message, the type of MPI primitive, 
the computational time between each MPI communication, the number of in­
structions, cycles and cache MISSES (LI or L2).

By using TSPX, it will be possible to model the behavior of the phases, 
which provide information on the application processes such as computational 
time, number of instructions, number of cycles and cache misses, along with the
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Table 1: Information of the phases (process 1) for application N-Body with 360,000 
particles.

Source Type of
MPI primitive Destination Computational

Time
Number of

Instructions Cycles
Cache
Misses

(L2)
PHASE 0 WEIGHT 289

1 MPIJrecv 0 3725272115 3923734167 5911572490 1107574
1 MPI.WaitAll 0 70532 62343 85415 7582
1 MPIJSend 2 17165 412 1271 30

PHASE 1 WEIGHT 10
1 MPIJrecv 0 3643785450 3923734084 5778196900 1117380
1 MPI.WaitAll 0 176601 1766014 222832 3021
1 MPIJSend 2 17687 412 1533 25

Processes Pha 1 Pha 2 Pha 3

Pi 4.564704 4.753993 2.30216

P2 4.681574 4.843167 2.352629

P3 4.815845 4.988005 2.506059

P4 6.308725 4.845168 0.675086

P15 6.198137 5.413365 0.003244

P: Processes
Pha: Phase

STP: Sequential 
time prediction

CTP: Computational 
time prediction

_________ J

Fig. 4: Signature information: Computational Time of each phase per process.

weight of each phase H'„,. With this information, we obtain the computational 
time prediction (CTP) of the executed phases, which we use to calculate the 
sequential time prediction (STP), as shown in Fig. 4. This stage is called the 
Computational Time Prediction Model (CTPM).

To predict sequential time (STP) on a parallel computer, we use the Eq. 1, 
for which we perform the sum of the computation time of each process of the 
phase (pcC p) and multiply it by its weight, Wi in all phases i, obtaining an 
approximation to the sequential execution time of the application. On the other 
hand, if we add the average computational time of each process, x^, and multiply

Table 2: Information obtained by executing the application signature.

CG Class D, 128 Processes

Phase ID
Compute 

Time 
(sec)

Average
Compute time 

(sec)
Weight

Total compute
Time prediction 

(sec)

Representative 
Compute Time 
Prediction (sec)

0 0.47 0.004 5024 2361.28 20.09
1 11.15 0.087 5023 56006.45 437.00
2 10.68 0.083 200 2136.00 16.60
3 1.63 0.013 199 324,37 2.58
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it by its weight, W.t, in each of the phases, we obtain an approximation of the 
computational time of the executed application, Eq. 2, where m is the number 
of phases.

m Px

STP = E'E (1)
i=0 p=0

m

CTP = ^x;*Wt (2)
t=o

We exemplify the calculation of STP and CTP, which we show in Table. 3. It 
shows two phases created by the signature when executing the LU application 
class D with 600 iterations in 128 processes. Each phase contains the compute 
time of each process expressed in seconds, as well as its weight Wt, the sum of 
computational time phase.t, the compute average and the standard
deviation of computational time a. The STP value is obtained by the sum of the 
multiplication of the total computational time by the weight up for each phase. 
The CTP value is obtained by multiplying the compute average by the weight 
in each phase and then the sum of each one of the values.

In Table 2 we show the information obtained by the execution of the CG 
signature with 128 processes and workload class D with 200 iterations. In the 
same Table, we show the ID phase, the total computational time (all processes), 
the average computational time value and the weight of each phase. In the same 
way, we show the prediction of the total computational time, as well as the 
prediction of the representative computational time in each phase.

Table 3: Exemplification of LU application computational times with 128 processes.

Processes Phase 0 Phase 1
P0 0.69393 1.09571
P1 0.71858 1.14146

P2 0.73267 1.14258

P3 0.72727 1.13940

P127 0.72588 0.91355

Weight (W) 599 598
Pm 

phasei
p=0

105.904 130.353
1 Pm
y ( y phase; * W;i = 141388.350.se g. = STP
i=0 p=0

Xphasef 0.837 1.018
1

* W, = H04.597.seg = CTP
1=0

O 0,048 0,053

141388.350.se
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The last stage, CTPM, will allow us to numerically obtain the performance 
measures of the application that the user executes. STP, as previously mentioned, 
is obtained if we sum all the phases from the prediction of the total computing 
time. The value of STP for the CG application represented by the phases shown 
in Table 2 is 60828.1 seconds. Likewise, when summing the prediction of the 
computational time representative of all phases, we obtain CTP. The CTP value 
for the CG application shown in Table 2 is 476.27 seconds. These two times 
will allow us to obtain performance measures such as speedup and efficiency. 
These measures are specific to the executed parallel application and reflect its 
computing and communications behavior, allowing it to have a performance 
index associated with the executed application.

5 Experimental results

Throughout this section, we will show the results of the measures obtained us­
ing the benchmark based on the application signature. In order to validate the 
prediction results, we compare the obtained performance time with the real ex­
ecution time of the application.

In order to validate the experimental results, a set of scientific messages 
passing applications has been selected. Suites with different communication and 
compute patterns such as NAS parallel benchmarks, Mantevo and the Nbody 
application have been tested along with the application to be able to analyze 
their efficiency and execution time in comparison and therefore select the one 
that run better and validates the results. The four experimental applications are 
described in the Table 4.

Table 4: Application description.

Application Description
MiniMD [5]. It is an application of the Mantevo suite on molecular 

dynamics (MD), it uses the spatial decomposition MD, 
where the processors of a cluster have subsets of the sim­
ulation problem.

LU (Lower-Upper Gauss- 
Seidel solver) [2].

It is an application of the NAS suite, dealing with fluid 
dynamics. It solves flows in a cubic domain.

CG (Conjugate Gradient) 
[2]-

It is an application of the NAS suite that uses the inverse 
power method to find an estimate of the largest eigen­
value of a symmetric sparse matrix using the conjugate 
gradient method as a subroutine to solve the systems of 
linear equations.

N-Body. It is an application that simulates the interaction of a dy­
namic system of particles under the influence of different 
physical forces, such as gravity.
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Table 5: Cluster characteristics.

Cluster Characteristics
DELL AMD Opteron1“ 6200 1.60GHz, 8 nodes ( 512 cores), 

256 GB RAM per node (2048 GB total memory), 
Interconnection Infiniband QDR.

Table 6: Benchmark time results compared to the whole application.

Procs. Application Benchmark Error

Execution 
Time 
(sec)

Computational 
Time 
(sec)

Predicted 
Execute 

Time, (PET) 
(sec)

Predicted 
Computational 
Time, (PCT) 

(sec)

BET 
(%)

BCT 
(%)

Application: miniMD
16 1687.11 1607.21 1509.69 1426.66 -11.75 -12.66
32 839.53 810.15 751.11 726.43 -11.77 -11.52
64 532.14 489.01 463.05 423.59 -14.92 -15.44
128 279.74 245.69 251.44 245.69 -11.25 -12.16

Application: CG
16 6825.80 6601.83 6840.98 6601.83 0.22 -0.50
32 2360.95 2257.26 2359.94 2243.03 -0.04 -0.63
64 1407.04 1222.85 1379.23 1216.74 -2.01 -0.50
128 757.07 483.41 738.57 475.438 -2.50 -1.67

Application: LU
16 11735.83 11101.71 12037.17 11075.91 2.50 -0.23
32 5464.36 5195.83 5447.42 5175.61 -0.31 -0.39
64 2647.85 2382.46 2750.72 2361.66 3.74 -0.88
128 1315.88 1110.75 1380.00 1110.75 4.65 -0.55

Application: N-Body
16 1849.01 1844.83 1675.35 1700.25 -10.37 -8.50
32 927.34 821.15 864.69 860.48 -7.25 -7.05
64 469.50 463.41 446.79 446.87 -5.08 -3.70
128 397.22 386.76 410.92 364.42 3.33 -6.13

For the execution environment, a DELL machine whose characteristics are 
described in Table 5 was used. For the experimentation set, four different execu­
tions were performed for each application in accordance to the number of pro­
cesses to be executed: 16, 32, 64 and 128 processes. N-Body was executed with a 
workload of 360000 particles, partitioned into the number of defined processes. 
For the MiniMD application of the Mantevo suite, we arranged a workload of 192 
x 192 x 192 with 500 iterations. The CG and LU application of the NAS suite 
was executed with a Class D workload with 200 and 600 iterations respectively.

The table 6 shows the results we obtained from the executions. We used 1:1 
mapping (one process per core) having a maximum of 128 cores per applica­
tion. Therefore, if each node of the Dell cluster has 64 cores, when we run the 
application with 128 cores we are actually using two nodes. The average percent­
age error in the execution time of the benchmarks was 4.70 %. The maximum 
value was 14.92 %, which is below the whole application value, obtained by the 
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miniMD application executed with 64 processes. On the other hand, the aver­
age percentage of error in computing time was 5.15 %, and a maximum value of 
15.44 % according to the value of the whole application, obtained by the miniMD 
application with 64 processes. The MiniMD application obtained these results 
because of its distinct behaviors for different groups of processes, making the 
PAS2P method have a low representativeness of the application.

The table 6 shows the scalability of the applications. It can be appreciated 
that the CG and LU applications have a superlinear behavior when they are 
executed with 16 and 32 processes. This is due to the mapping we used, which 
favors the use of the second level cache memory. In Fig. 7, we can observe 
the sublinear behavior of the applications when changing the mapping of the 
processes.

Our proposal allows us to obtain a prediction of the sequential time of par­
allel message passing applications, as seen in Fig. 4, thus, allowing us to obtain 
performance measures that are commonly used such as speedup and efficiency. 
Fig. 5 and Fig. 6 show the prediction of both metrics with the mapping previ­
ously used to avoid the superlinearity of the results, with an average percentage 
error of 6.1% for speedup and 7.6% for efficiency. As seen in both figures, the 
results show a similar behavior to that of the real application.

Running the signature instead of the full application has two important ben­
efits. For instance, the prediction of the execution time and the computing time. 
It also provides extensive information concerning each phase of the application 
to model its behavior allowing, for example, the prediction of the sequential 
time of the application. The sequential execution time is often impossible to 
achieve, due to the amount of memory that a sequential process needs to be 
executed and the time involved in its execution. Fig. 8 shows the bounded time 
in which the signature was executed versus the execution time of the entire CG 
application. As seen, the signature executed up to 80 times faster compared to 
the application, thus obtaining measurements that will allow us to evaluate the 
performance of the application with a low error rate.

Fig. 5: Benchmark efficiency and whole ap­
plication efficiency.

Fig. 6: Benchmark speedup and whole ap­
plication speedup.
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Processes

Fig. 7: Prediction of execution time with 
processes mapping.

Processes

Fig. 8: Speed gain of benchmark on the CG 
application.

6 Conclusion and Future Work

We validated the proposed benchmark based on the application signature as 
follows. We gave the signature the same functionality a benchmark has in order to 
evaluate a system. To achieve this goal, we begin by analyzing the computational 
behavior on each phase to predict the sequential time that the application would 
have. In this way, we calculate and predict computational time, speedup and 
efficiency using the proposed benchmark. The performance measures obtained 
allowed us to detect inefficiencies without executing the application completely, 
since the information was obtained directly from the benchmark, thus achieving 
a bounded execution time with a low margin of error.

Benchmarks that are based on application signatures obtain performance 
measures of a specific MPI application on a specific machine, without having 
to depend on a suite of applications or a specific application that characterizes 
the overall performance. In other words, what we are proposing is a benchmark 
adapted to the MPI application that the user wants to execute.

Currently, the signature is built using checkpoint libraries. If the user or 
system administrator wants to evaluate performance in a different system, it 
is necessary to transport the signature to the new location. One of the disad­
vantages of using the checkpoint mechanism is the size it achieves. The more 
processes the application has, the larger the size of the checkpoints we have to 
save. For future work, we are analyzing how to detach the checkpoint from the 
signature. Being portable is another important characteristic of benchmarks, we 
are working on the creation of compute models that include the characterization 
of memory access pattern as it is an important factor in the performance impact 
on the execution time.
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