Skip to main content

Simple and Robust Automatic Detection and Recognition of Human Movement Patterns in Tasks of Different Complexity

  • Conference paper
  • First Online:
  • 371 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10057))

Abstract

In many different research areas it is important to understand human behavior, e.g., in robotic learning or human-computer interaction. To learn new robotic behavior from human demonstrations, human movements need to be recognized to select which sequences should be transferred to a robotic system and which are already available to the system and therefore do not need to be learned. In interaction tasks, the current state of a human can be used by the system to react to the human in an appropriate way. Thus, the behavior of the human needs to be analyzed. To apply the identification and recognition of human behavior in different applications, it is of high interest that the used methods work autonomously with minimum user interference. This paper focuses on the analysis of human manipulation behavior in tasks of different complexity while keeping manual efforts low. By identifying characteristic movement patterns in the movement, human behaviors are decomposed into elementary building blocks using a fully automatic segmentation algorithm. With a simple k-Nearest Neighbor classification these identified movement sequences are assigned to known movement classes. To evaluate the presented approach, pick-and-place, ball-throwing, and lever-pulling movements were recorded with a motion tracking system. It is shown that the proposed method outperforms the widely used Hidden Markov Model-based classification. Especially in case of a small number of labeled training examples, which considerably minimizes manual efforts, our approach still has a high accuracy. For simple lever-pulling movements already one training example per class sufficed to achieve a classification accuracy of above \(95\%\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aarno, D., Kragic, D.: Motion intention recognition in robot assisted applications. Robot. Auton. Syst. 56, 692–705 (2008)

    Article  Google Scholar 

  2. Adi-Japha, E., Karni, A., Parnes, A., Loewenschuss, I., Vakil, E.: A shift in task routines during the learning of a motor skill: Group-averaged data may mask critical phases in the individuals’ acquisition of skilled performance. J. Exp. Psychol. Learn. Mem. Cogn. 24, 1544–1551 (2008)

    Article  Google Scholar 

  3. Fearnhead, P., Liu, Z.: On-line inference for multiple change point models. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 69, 589–605 (2007)

    Article  Google Scholar 

  4. Fod, A., Matrić, M., Jenkins, O.: Automated derivation of primitives for movement classification. Auton. Robots 12, 39–54 (2002)

    Article  Google Scholar 

  5. Gong, D., Medioni, G., Zhao, X.: Structured time series analysis for human action segmentation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1414–1427 (2013). http://doi.org/4B458234-5E6D-453D-B6A0-C9F3A51683BB. http://www.ncbi.nlm.nih.gov/pubmed/24344075

    Article  Google Scholar 

  6. Gräve, K., Behnke, S.: Incremental action recognition and generalizing motion generation based on goal-directed features. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 751–757 (2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6386116

  7. Graybiel, A.: The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998)

    Article  Google Scholar 

  8. Gutzeit, L., Fabisch, A., Otto, M., Metzen, J.H., Hansen, J., Kirchner, F., Kirchner, E.A.: The besman learning platform for automated robot skill learning. Front. Robot. AI 5, 43 (2018). https://doi.org/10.3389/frobt.2018.00043. https://www.frontiersin.org/article/10.3389/frobt.2018.00043

    Article  Google Scholar 

  9. Gutzeit, L., Kirchner, E.A.: Automatic detection and recognition of human movement patterns in manipulation tasks. In: Proceedings of the 3rd International Conference on Physiological Computing Systems (2016)

    Google Scholar 

  10. Kirchner, E.A., Fairclough, S., Kirchner, F.: Embedded multimodal interfaces in robotics: Applications, future trends and societal implications. In: Oviatt, S., Schuller, B., Cohen, P., Sonntag, D. (eds.) Handbook of Multimodal-Multisensor Interfaces, vol. 3, Chap. IX, p. n.A. ACM Books, Morgan Claypool (2017)

    Google Scholar 

  11. Kirchner, E.A., de Gea Fernandez, J., Kampmann, P., Schröer, M., Metzen, J.H., Kirchner, F.: Intuitive interaction with robots – technical approaches and challenges. In: Drechsler, R., Kühne, U. (eds.) Formal Modeling and Verification of Cyber-Physical Systems, pp. 224–248. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-09994-7_8

    Chapter  Google Scholar 

  12. Kulić, D., Ott, C., Lee, D., Ishikawa, J., Nakamura, Y.: Incremental learning of full body motion primitives and their sequencing through human motion observation. Int. J. Robot. Res. 31(3), 330–345 (2012)

    Article  Google Scholar 

  13. Metzen, J.H., Fabisch, A., Senger, L., Gea Fernández, J., Kirchner, E.A.: Towards learning of generic skills for robotic manipulation. KI - Künstliche Intelligenz 28(1), 15–20 (2013). https://doi.org/10.1007/s13218-013-0280-1

    Article  Google Scholar 

  14. Morasso, P.: Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981)

    Article  Google Scholar 

  15. Mülling, K., Kober, J., Koemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. Int. J. Robot. Res. 32, 263–279 (2013)

    Article  Google Scholar 

  16. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 763–768. IEEE, May 2009. https://doi.org/10.1109/ROBOT.2009.5152385. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5152385

  17. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010). https://doi.org/10.1016/j.imavis.2009.11.014. http://linkinghub.elsevier.com/retrieve/pii/S0262885609002704

    Article  Google Scholar 

  18. Senger, L., Schröer, M., Metzen, J.H., Kirchner, E.A.: Velocity-based multiple change-point inference for unsupervised segmentation of human movement behavior. In: Proccedings of the 22th International Conference on Pattern Recognition (ICPR2014), pp. 4564–4569 (2014). https://doi.org/10.1109/ICPR.2014.781

  19. Stefanov, N., Peer, A., Buss, M.: Online intention recognition in computer-assisted teleoperation systems. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010. LNCS, vol. 6191, pp. 233–239. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14064-8_34

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Gutzeit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutzeit, L., Otto, M., Kirchner, E.A. (2019). Simple and Robust Automatic Detection and Recognition of Human Movement Patterns in Tasks of Different Complexity. In: Holzinger, A., Pope, A., Plácido da Silva, H. (eds) Physiological Computing Systems. PhyCS PhyCS PhyCS 2016 2017 2018. Lecture Notes in Computer Science(), vol 10057. Springer, Cham. https://doi.org/10.1007/978-3-030-27950-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27950-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27949-3

  • Online ISBN: 978-3-030-27950-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics