
Applying Blockchain to Improve the Integrity of
the Software Development Process

Murat Yilmaz1, Serdar Tasel5, Eray Tuzun2, Ulas Gulec3, Rory O’Connor4,1,
and Paul Clarke4,1

1 Dublin City University, Ireland
murat.yilmaz@dcu.ie, rory.oconnor@dcu.ie, paul.m.clarke@dcu.ie

2 Bilkent University, Turkey
eraytuzun@cs.bilkent.edu.tr

3 Hasan Kalyoncu University, Turkey
ulas.gulec@hku.edu.tr

4 Lero, the Irish Software Engineering Research Center
5 Çankaya University, Turkey

fst@cankaya.edu.tr

Abstract. Software development is a complex endeavor that encom-
passes application and implementation layers with functional (refers to
what is done) and non-functional (how is done) aspects. The efforts to
scale agile software development practices are not wholly able to address
issues such as integrity, which is a crucial non-functional aspect of the
software development process. However, if we consider most software fail-
ures are Byzantine failures (i.e., where components may fail and there is
imperfect information on which a component has failed.) that might im-
pair the operation but do not completely disable the production line. In
this paper, we assume software practitioners who cause defects as Byzan-
tine participants and claim that most software failures can be mitigated
by viewing software development as the Byzantine Generals Problem.
Consequently, we propose a test-driven incentive mechanism based on
a blockchain concept to orchestrate the software development process
where production is controlled by a similar infrastructure based on the
working principles of blockchain. We discuss the model that integrates
blockchain with the software development process, and provide some rec-
ommendations for future work to address the issues while orchestrating
software production.

Keywords: Software Production, Blockchain, Software Development In-
tegrity, Test-driven Software Development.

1 Introduction

The communication structure of a software development organization might be
likely to affect the software development process which may be based on a set
of different methodologies combined for software production [1]. Accordingly, a



goal of the continuous integration practice is to bring up different software devel-
opment roles together and formalize cross-functional teams that are expected to
be mirrored in their software design [2]. Although the quantity of software devel-
opment releases increases and automated deployment becomes more essential in
many software development landscapes, there remain some challenges when ap-
plying agile development methodologies to the development of large and complex
software systems [3]. Recently, many software development organizations have
started to use integrated DevOps approaches which heavily rely on automation
tools [4]. To verify the desired functionality, an agile practice called test-driven
development (TDD) is frequently used. TDD relies on the repetition of a very
short development cycle: requirements are turned into very specific test cases,
then the software is improved to pass the these tests [5]. TDD is philosophy and
can be applied to any aspect of software development (and not just requirement-
to-system based testing), for example, with unit testing, it is possible to code
the unit tests prior to writing the code itself, thereby another example of TDD.

Typically, software development organizations rely on a central control or an
authority such as project or development manager for production management.
Designing a software development incentive model for such an orchestration
requires modularity and connectivity (i.e. interoperations among modules and
repository) that seems incredibly difficult when there would be no central con-
trol which promotes or enforces the trust. However, as the source code grows
and new features are developed, complexity increases and reaching a stable code
base becomes more challenging. We argue whether a large scale agile develop-
ment production could be achieved by decentralization without losing integrity
and trust. For example, the scaled agile framework [6] proposes a release train
metaphor to highlight the importance of a fast and flexible flow with connected
compartments to deliver a part of a software product. In particular, such con-
nected (i.e. release train-like) structures may be constructed using the blockchain
technology.

Blockchain technology can address the Byzantine Generals’ Problem (BGP) [7]
which (in this context) queries how software practitioners, when separated, can
totally agree on the integrity of software production (i.e. software delivery, in-
cremental releases). Let’s imagine an army with a group of generals (i.e. leader-
follower setup) which is planning to attack. However, a consensus is required to
perform an attack where the commanding general and all lieutenants must agree
on the same decision (i.e. attack or retreat). The generals are apart from each
other and messenger are utilized for communication. There are some lieutenants
who are hidden traitors who would be likely to cripple the situation. An algo-
rithm confirms that all loyal lieutenant generals follow the action plan, traitors
can play as they wish, and a small number of traitors are not be able to change
loyal lieutenants minds for adopting a bad strategy. The algorithm should pro-
vide that loyal lieutenants should reach an agreement and agree on a reasonable
plan. BGP can be illustrated by the needs for consensus for distributed ledgers
(i.e. nodes) which should work collaboratively to agree on a set of rules and able



to agree on a particular transaction before it is added to a repository. However,
it is also vital to protect the information to be sabotaged by traitor agents.

Blockchain is a transparent distributed digital ledger technology which is op-
erational as a decentralized system. There is no possible (single) point of failure
scenario that may bring down the whole structure. The chain structure consists
of immutable batches called blocks (i.e. information baskets) that are tamper-
proof. These blocks have the following components: (i) current timestamp, (ii)
version as an index number for active transaction, (iii) information regarding
transaction, (iv) a code called hash that links the block to the previous block,
(v) a number (i.e. nonce) that needs to solved by using the computing power
of participants, (vi) hash, which is a code that needs to be generated from all
identified information to form the block. A blockchain database is distributed
over a network of computers called nodes which stores a copy of all activities or
transactions individually. Each block should reference through the previous block
other than the Genesis (initial) block. To deal with BGP, Bitcoin has been imple-
mented using the blockchain technology where a block is linked to another using
a random number which requires a high amount of computation to generate.
Based on the computational power, mining is used as a competitive technique
of collecting and adding transactions as blocks to the ledger. The participants
with enough computational power could be able to add a new block to the tail of
blockchain by verifying the block and broadcast it to the network that ultimately
solves the “proof-of-work” issue. Consequently, selecting a random number and
creating the longest chain requires honest participants to create at least 50% of
the total computation power solves the BGP problem. To sum up, blockchain
is a novel kind of data structure which can be operationalized on participants’
computers as a distributed blockchain database (i.e. a ledger) which transmits
each transaction to any identical repository where a consensus-based agreement
is essential for any alteration. Therefore, the ledger is immutable, all changes
should be validated by participants and be captured as new blocks.

The aim of this investigation is to create an incentive mechanism to or-
chestrate software development production using blockchain technology. This
technology enables software artifacts to be incremented by means of intercon-
nected blocks that encompasses a piece of working software by decentralizing
the production line. We aim to reduce the centralized management costs by
introducing the notions of proof-of-work and proof-of-stake to improve the ac-
tivities of software development. The rest of the paper is organized as follows.
Section 2 reviews the previous studies to explore the possible implementations
of blockchain technology both in software engineering and in different domains.
Section 3 is concerned with the methodology employed for this study. The pur-
pose of the final section is to discuss the extent to which this study has proposed
and future work.



2 Literature Review

Although there is still a relatively small body of literature that is concerned with
blockchain technology, more recent attention has focused on the application of
blockchain in a variety of domains including but not limited to data storage
and management [8], internet of things (IoT) [9], a reputation and rating system
based on Bitcoin transactions [10], software licence validation [11], modern bank-
ing with ledgers [12], online learning [13], educational record and reputation [14],
decentralization and auditability [15], and various reviews for blockchain usage
for IoT [16–18].

Recently, researchers have shown an increased interest in applying blockchain
in software development and propose a new area for software engineering re-
search. Porru et al. [19] coin the term Blockchain-Oriented Software (BOS) to
refer the software that operationalized by using an effective implementation of
the blockchain technology. Authors claim that BOS should enable large scale
team collaboration, enhance testing activities and ultimately more tools should
be developed to foster the creation of smart and self-executing contracts (i.e.
transaction protocol that executes the terms of a contract in a blockchain net-
work). This study has shown that a blockchain implementation should benefit
from the features that blockchain offers e.g. an improvement in data redundancy,
designing the software in sequentially ordered blocks, practitioner regulation by
using the public-key cryptography, etc. Marchesi [20] suggests that the applica-
tion of practices to Blockchain software development is important for improving
the software development process (e.g. analysis, design, quality improvement,
metrics). In addition, he mentions the benefits of blockchain such as (i) data
reliability in empirical research, (ii) a possible blockchain based payment system
for software practitioners, (iii) performing acceptance test using smart contracts
that do not require human intervention to complete, and (iv) allowing token-
based payment for software usage. In addition, there have been a limited num-
ber of research involving smart contracts that have reported the importance of
addressing the issues posed by a potential application that should operationalize
on the blockchain networks.

Destefanis et al. [21] highlight the significance of Blockchain-Oriented Soft-
ware Engineering (BOSE) that seeks to enhance blockchain applications in terms
of security, reliability, modeling, and verification. Authors conduct a case study
that has given consideration to the advantages of using software engineering
standards, design patterns, and best practices while developing blockchain ap-
plications. However, what is not yet known is the extent of how we can bridge the
gap between conventional software engineering and blockchain software devel-
opment. Wohrer and Zdun [22] propose six design patterns to mitigate security
problems for smart contracts, and authors aim to construct a design pattern
language to improve the software development quality and trace the refactoring
process. Beller and Hejderup [23] propose a blockchain-based continuous inte-
gration approach includes a build service and a package system. They highlight
the importance of reaching a consensus for professionalizing the software engi-
neering tasks, improve the quality of products and services and trust in GitHub



or Travis CI. In addition, they envision a more democratized open package sys-
tem for Linux systems with a participation awards. However, the literature on
blockchain based software development is still limited, and a detailed model for
how to realize blockchain in software development practices has not been detailed
yet.

2.1 Blockchain Basics

Blockchain is an advanced data structure (sometimes called a database) based on
the notion of decentralized ledger which aims to provide data integrity and mu-
tual trust without a central authority. A blockchain implementation consists of
nodes where has a copy of the whole system. The data included in the blockchain
is collected by transactions which are considered as a valid messaging between
two authorized participant. A typical blockchain implementation should also en-
compass a consensus (i.e. validation) mechanism, a messaging protocol, and the
strategy to update the data stored in the blockchain. A well-known implemen-
tation of blockchain is the Bitcoin i.e., a digital cryptocurrency, which can be
considered as an innovative digital money exchange model.

A conventional blockchain, a distributed consensus state machine, comprises
immutable blocks to store the transaction data where blocks are digitally signed
(i.e. through the medium of cryptographic hashing to assure that the decentral-
ized ledger is well-protected) and ultimately linked to the previous block. The
primary goal is to maintain trust and promote integrity while creating a block.
Consequently, the process of block creation is a common task among the trusted
network nodes. The nodes listen to the requested transactions which are queued
for validation. A transaction encompasses the data regarding a list of sender
and receiver information and the data that needs to be transferred which can be
validated only if a consensus among the nodes has been reached. For Bitcoin’s
blockchain, block creation is evaluated with a proof-of-work schema which is a
cryptographic puzzle where its difficulty needs to be adjusted based on the total
computing power of the blockchain network. The puzzle solvers are also called
miners who need to prove their computational power to process transactions,
and their progress would be awarded by Bitcoins.

As one recent example of a next-generation decentralized ledger is the Ethereum
blockchain (state machine) which is designed as a platform to build and dis-
tribute decentralized applications. Ethereum blockchain could function as a de-
centralized application store that would function using the notion of smart con-
tracts. These contracts are computer programs that are able to store and com-
pute the data and implements the terms and conditions of a contract. These
bits of the source code enables individuals and computers to initiate and com-
plete transactions which might be useful for validation, permission management,
checking data availability. Consequently, these self-executing applications guide
us to exchange values and goods (e.g. money or shares) without using a media-
tor in a conflict-free manner. There are various applications of smart contracts
including but not limited to banking, digital identity, tax recording, insurance,



and real estate businesses especially they are useful for forming decentralized
organization structures [24].

Fig. 1. Conceptual design of proposed model

2.2 Proposed Model

Here, we propose a blockchain oriented incentive mechanism to address the prob-
lems that exist in the software production. Firstly, we consider developers who
create software bugs as Byzantine participants and aim to address the Byzantine
general problem using what blockchain technology offers. To minimize the impli-
cation of these bugs, we use the Nakamoto Consensus which consist of four main
parts; (i) proof of work (PoW), (ii) block selection, (iii) scarcity, (iv) incentive
structure.

The goal is to keep the consensus effective based on the assumption that ma-
jority of effort contributed to the software development process is in the control
of software practitioners who would cause less bugs. Consequently, a ledger is
used to validate every piece of software using such a consortium. Secondly, we
hypothesize a test-driven software production line based on a blockchain. The
goal is to start with an automated test case with simple functionality that is
needed to implement before start coding and the code should be developed to
fulfill the test requirements and ultimately aims to make the test pass.

Analogically speaking, software developers can be considered as miners in
a production system that develop code and software testers are the validators



who would increment a working piece of software in the form of a block. The
production line shall be formed as a release train that consists of concrete and
immutable wagons that carries minimum viable products or artifacts. Most im-
portantly, however, this model does not promote a task assignment scheme for
software practitioners. Instead, practitioners could be able to select the tasks
they prefer to perform. However, it is essential to note that there could be a set
of duplicate works that may be performed by software developers. The goal for
the testers are to find the best performance among proposed solutions.

Therefore, the structure of blockchain shows the workflow of the development,
e.g. we intend to explore the creation and execution of each block and hence
measure the velocity of software production. The key point here is that the code
base is completely decentralized. As the conceptual design of the proposed system
is depicted in Fig. 1, the project leader identifies and introduces new works to
the blockchain network. Developers share their code (implementations) fulfilling
desired works. Afterwards, testers acknowledge the work done by developers
and shares a candidate block. Finally, all candidate blocks are used to form a
subsequent block by a consensus algorithm.

In order to initialize the blockchain, we expect to form a genesis block which
includes a project description and a number of work structs which would be
digitally signed by an authority such as project leader. Each work struct consists
of the work description, test description and is signed by the creators of work that
might be the project or team leaders. Moreover, this work package additionally
needs to have reputation/reward points (to be distributed to developers and
testers) and expiration time based on its priority and challenge level. Growing
speed of the blockchain will mostly depend on the expiration dates of works
and also developer’s response time. All blocks other than the genesis block are
called a consequent blocks which will be generated in collaboration and digitally
signed by software testers. A block generated by each software tester can be
considered as a candidate block which has a potential to be a part of the actual
next block in the blockchain after having approved by the consensus algorithm in
which a variant of a proof of stake mechanism is employed. A consequent block
shall consist of additional work structs (which could be null in some cases),
code structs and a reference to the previous block. Each code struct involves
a piece of code that claims to fulfill the requirements of work and provides a
reference to the associated work struct (via using an ID number generated by
the hash of the work struct). As a whole, this would be called a transaction
which needs to be signed by a tester in order to establish the proof of work.
Ultimately, candidate blocks are merged by the consensus algorithm to produce
the actual consequent block which is to be added to the blockchain. Similar
to the other blockchain applications, a tail with a reasonable length must be
formed in order to ensure that the added block is secured. Normally, all new
blocks should be subjoined to the lattermost block. However, in some special
cases, a block can be specifically attached to a former block, which is called a
fork. This pattern analogically corresponds to fork events occured in software



repositories. Furthermore, a block can be arranged to refer to some particular
locations of multiple blockchains, which means, in this case, merging.

The proposed software production line would be based on a reputation/re-
ward sub-mechanism which would potentially address starvation problems (i.e.
participants should be matched with tasks at hand) that the system might pos-
sibly encounter. In this context, software practitioners in a software development
organizations should be assigned to an issue based on their incentives and skillset.
In particular, every participant should be able to deliver a piece of work and get
a reputation and/or reward based on their proper progress.

Fig. 2. Structures of genesis and consequent blocks, work and code structs (a); sample
blockchain for the proposed model (b).

Fig. 2(a) illustrates the genesis and subsequent block structures such that
the latter establishes a link to the previous block whereas code struct refers to
work struct by providing its ID number. Fig. 2(b) shows a sample blockchain in
which the blocks are linked together as indicated by the solid arrows. On the
other hands, dashed arrows indicate the works accomplished by the pieces of
code contained in the code structs.

To produce a block in the blockchain each candidate block shall be validated
by a consensus algorithm. The consensus algorithm consists of five steps to finish
the process:



1. Collect the candidate blocks generated by the testers to form a set of the
work and code structs called a merged block.

2. In the merged block, identify all code structs that refer to a particular work
struct. If a code struct contained in the merged block uniquely refers to a
work struct, then confirm.

3. Otherwise:

(a) Compute the contribution (i.e. total reputation/reward) of each devel-
oper who claims to accomplish the same work.

(b) Calculate the waiting time for each developer (i.e. the elapsed time since
the last activity of the developer recorded in the blockchain).

(c) Count how many times the same code struct exists in the merged block
(i.e. the number of votes for each code struct)

(d) Construct a probability distribution function (PDF) of developer con-
sidering 3a, 3b, and 3c and choose a random developer in accordance
with PDF. Confirm the code struct of the chosen developer and remove
the others.

4. Repeat steps 2-3 for the remaining code structs until all work structs are
uniquely referenced.

5. Add the digital signatures of the testers that have contributed the block.
The testers get their reputation/reward share based on this information.

Note that the testers -the block creators- register their shares with their sig-
natures in consequent blocks and the developer prove their ownership of the
work done with their signatures in code structs according to the aforementioned
consensus algorithm and proposed blockchain system. In addition, for each con-
sensus phase, a PDF should be constructed based on the developer’s activity and
testers’ preference. If the contribution (reputation/reward, or stake in a sense) or
waiting time of a developer is higher, then the probability of the developer being
chosen randomly will be higher. This scheme is expected to reduce the effect
of the starvation. Similarly, if a developer is voted by more testers, the proba-
bility of his/her work being confirmed will be higher. The randomness can be
realized by non-uniform pseudo-random generators seeded by the synchronized
blockchain data.

3 Discussion

Previously, we have proposed a model for employing the economic mechanism
design concept in the software development process. The aim was to consider
software development as an economic activity inside an information exchange
economy [25], and consequently, a basic model was formed on game theoretic
principles to maximize the delivered value of a software project. The present
study is designed to construct an incentive mechanism based on a blockchain
to orchestrate software production. To promote trust and integrity, we form a
blockchain oriented workflow model which would be valuable to address trust
issues, especially when conducting large scale agile development [26]. We argue



that there is a need for a reputation and a reward-based consensus approach for
addressing the possible issues of software development more effectively. It has
been observed that software development organization usually consider the soft-
ware development process as a trust contract where trustworthiness demands a
process-oriented viewpoint [27]. However, a blockchain-based decentralized pro-
duction system can help us to construct an incentive system where practitioners
compete for building the best work struct rather than having their tasks assigned
by a central authority such as project manager or a team leader. Therefore, soft-
ware practitioners should have to compete to create a consequent block using
such a self-organizing approach.

This study defines the blockchain-based software development as all software
activities are working with an implementation of a blockchain which is a data
structure characterized by redundancy and validation for the sequentially or-
dered recording of data that uses public-key cryptography. We aim to create a
distributed record of software development events based on a consensus method
to agree whether a module (i.e. new set of code) is legitimate that can be as-
sessed from many different perspectives. We aim to add a proof of work structure
for validation of coding and testing to this framework. Therefore, this research
initially aims to derive a framework based on a smart contract system to assess
validation factors and other benefits of a consensus approach.

In addition, authors have observed that a significant number of agile soft-
ware development organizations have started to rely on tools more than the
process [28, 2]. We report that when software practitioners lose trust with their
teammates, they are looking for a workaround on the working software pro-
cess or sometimes request mediation from third parties. We hypothesize that
a blockchain based software development model guides practitioners to solve
decentralized trust issues in software development. In particular, a test-driven
development environment can be operationalized, and collective code ownership
and coding standards can be guaranteed using the smart contracts.

Further research should be undertaken to investigate the issues raised by
our proposed model and its implementation both in a simulation environment
and in a software development organization. There are still many unanswered
questions about the description of the model, such as, how a fork is handled, how
the growing speed of the blockchain is adjusted and how the reputation/reward
points are distributed to the contributors. Furthermore, it is also necessary to
elucidate the issues about the underlying network issues, such as, how the data
packets are transferred and secured. A further study will be carried out with
more focus on fake developers/testers and simulation of the system. It is also
required (i) to investigate our approach for robustness to attacks such as altering
a block in the chain, (ii) to establish a linkage to smart contracts, (iii) to explore
how a payment system can be established using cryptocurrencies. Finally, to
develop a full picture of a blockchain-based software production line, additional
studies will be needed for the realization of the system as a whole.



References

1. Conway, M.E.: How do committees invent. Datamation 14 (1968) 28–31
2. Clarke, P., O’Connor, R.V., Yilmaz, M.: In search of the origins and enduring

impact of agile software development. In: Proceedings of the 2018 International
Conference on Software and System Process, ACM (2018) 142–146

3. Clarke, P., O’Connor, R.V., Leavy, B.: A complexity theory viewpoint on the
software development process and situational context. In: Proceedings of the In-
ternational Conference on Software and Systems Process, ACM (2016) 86–90

4. Verona, J.: Practical DevOps. Packt Publishing Ltd (2016)
5. Beck, K.: Test-driven development: by example. Addison-Wesley Professional

(2003)
6. Hayes, W., Lapham, M.A., Miller, S., Wrubel, E., Capell, P.: Scaling agile methods

for department of defense programs. Technical report, Carnegie Mellon University,
Pittsburgh, United States (2016)

7. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS) 4 (1982) 382–
401

8. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to protect
personal data. In: 2015 IEEE Security and Privacy Workshops, IEEE (2015) 180–
184

9. Zhang, Y., Wen, J.: An iot electric business model based on the protocol of bit-
coin. In: 2015 18th International Conference on Intelligence in Next Generation
Networks, IEEE (2015) 184–191

10. Vandervort, D.: Challenges and opportunities associated with a bitcoin-based
transaction rating system. In: International Conference on Financial Cryptography
and Data Security, Springer (2014) 33–42

11. Herbert, J., Litchfield, A.: A novel method for decentralised peer-to-peer software
license validation using cryptocurrency blockchain technology. In: Proceedings of
the 38th Australasian Computer Science Conference (ACSC 2015). Volume 27.
(2015) 30

12. Peters, G.W., Panayi, E.: Understanding modern banking ledgers through
blockchain technologies: Future of transaction processing and smart contracts on
the internet of money. In: Banking beyond banks and money. Springer (2016)
239–278

13. Devine, P.: Blockchain learning: can crypto-currency methods be appropriated to
enhance online learning? (2015)

14. Sharples, M., Domingue, J.: The blockchain and kudos: A distributed system for
educational record, reputation and reward. In: European Conference on Technology
Enhanced Learning, Springer (2016) 490–496

15. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain tech-
nology: Architecture, consensus, and future trends. In: 2017 IEEE International
Congress on Big Data (BigData Congress), IEEE (2017) 557–564

16. Conoscenti, M., Vetro, A., De Martin, J.C.: Blockchain for the internet of things:
A systematic literature review. In: 2016 IEEE/ACS 13th International Conference
of Computer Systems and Applications (AICCSA), IEEE (2016) 1–6

17. Novo, O.: Blockchain meets iot: An architecture for scalable access management
in iot. IEEE Internet of Things Journal 5 (2018) 1184–1195

18. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the use of blockchain for
the internet of things. IEEE Access 6 (2018) 32979–33001



19. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software en-
gineering: challenges and new directions. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), IEEE (2017) 169–171

20. Marchesi, M.: Why blockchain is important for software developers, and why
software engineering is important for blockchain software (keynote). In: 2018 In-
ternational Workshop on Blockchain Oriented Software Engineering (IWBOSE),
IEEE (2018) 1–1

21. Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., Hierons, R.:
Smart contracts vulnerabilities: a call for blockchain software engineering? In: 2018
International Workshop on Blockchain Oriented Software Engineering (IWBOSE),
IEEE (2018) 19–25

22. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosys-
tem and solidity. In: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), IEEE (2018) 2–8

23. Beller, M., Hejderup, J.: Blockchain-based software engineering. In: 41st Inter-
national Conference on Software Engineering (ICSE), New ideas and Emerging
Results (NIER) track. (2019)

24. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: International Conference on Financial Cryp-
tography and Data Security, Springer (2017) 494–509

25. Yilmaz, M., O’Connor, R.V., Collins, J.: Improving software development process
through economic mechanism design. In: European Conference on Software Process
Improvement, Springer (2010) 177–188

26. McHugh, O., Conboy, K., Lang, M.: Agile practices: The impact on trust in soft-
ware project teams. Ieee Software 29 (2012) 71–76

27. Yang, Y., Wang, Q., Li, M.: Process trustworthiness as a capability indicator for
measuring and improving software trustworthiness. In: International Conference
on Software Process, Springer (2009) 389–401

28. O’Connor, R.V., Elger, P., Clarke, P.M.: Continuous software engineering—a mi-
croservices architecture perspective. Journal of Software: Evolution and Process
29 (2017) e1866


