N

N

Quality Assurance and Traceability in Containerized
Continuous Delivery Process
Oyewale Adedayo Oyelami, Alexander Poth, Johannes Hintsch, Andreas Riel

» To cite this version:

Oyewale Adedayo Oyelami, Alexander Poth, Johannes Hintsch, Andreas Riel. Quality Assurance
and Traceability in Containerized Continuous Delivery Process. Walker A., O’Connor R., Messnarz
R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2019. Communications in
Computer and Information Science, vol 1060. Springer, Cham, pp.368-377, 2019, 10.1007/978-3-030-
28005-5_28 . hal-02147831

HAL Id: hal-02147831
https://hal.science/hal-02147831
Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02147831
https://hal.archives-ouvertes.fr

Quality Assurance and Traceability in Containerized

Continuous Delivery Process
Oyewale Adedayo Oyelami?, Alexander Poth?, Johannes Hintsch®, Andreas Riel*

12 Volkswagen AG, Berliner Ring 2, D-38436 Wolfsburg, Germany
{oyewale.adedayo.oyelami|alexander.poth } @volkswagen.de
3 Magdeburg Research and Competence Cluster, Universititsplatz 2, D-39104 Magdeburg,
Germany
johannes.hintsch@ovgu.de
4 Grenoble Alps University, F-38031 Grenoble, France
andreas.riel@grenoble-inp.fr

Abstract. Companies embrace digitalization to have a shorter time to market.
This drive for digitalization also demands that the quality of products and ser-
vices is high. Containerization is one of the concepts that are core to achieving
these objectives in information technology today as it is central to the develop-
ment and delivery of software products. Therefore, to meet the expectations, the
containerization process needs state-of-the-art quality assurance. To achieve this,
a quality assurance methodical procedure is being developed with bi-directional
traceability. Its usefulness is demonstrated by integrating and successfully apply-
ing it into the continuous integration and delivery (CI/CD) pipeline of the
Volkswagen Group IT.

Keywords: Containers, Containerization Process, Agile Software Develop-
ment, Quality Assurance (QA), Bi-Directional Traceability, CI/CD

1 Motivation

Fast and reliable software product delivery is crucial in today’s software projects. IT
companies as well as companies in different sectors, such as the automobile industry,
are performing software product delivery in increasingly complex scenarios. To many
companies, also and particularly automobile, quality assurance and traceability are im-
portant requirements for software product delivery. A key enabler of fast and reliable
software product delivery has been containerization, augmenting existing processes and
methodologies such as Agile and DevOps [1].

Containerization itself can be described as the process of performing operating-sys-
tem-level virtualization by a software thereby allowing the existence of multiple iso-
lated user-space instances called containers. Therefore, software applications are “con-
tainerized” to harness the benefits and possibilities of a level of abstraction away from
the host system, easier scalability, simpler dependency management, shared layering,
composability, predictability and application versioning [2].

The need for containerization has therefore been growing due to its relevance in
solving the challenges attributed to the delivery of software products. Challenges such

mailto:%7d@volkswagen.de
mailto:johannes.hintsch@ovgu

as maintenance, reliability, migration after development are part of the issues contain-
erization is addressing which have led to its continual relevance growth [2].

The collective chaining of all the points where containers are being or can be used,
how they are being used and what they are being used for in the software product jour-
ney from development to final delivery is what is contextually described as ”Contain-
erization Process™ here. It can, therefore, be said to be an individual or customizable
process as its structure and components will vary from one organization to another de-
pending on adoption level, obtainable level of expertise, capital and time, preferences,
which all can contribute to the adoption depth.

However, the role and importance of traceability in this process can never be over-
stated as we need to be able to map and track the changes, stages and effects for a
software product from the initiation (requirement) phase to the final phase, reflectively
in a continuous delivery setup. A practical benefit is the root cause of failure, which
can easily be traced from appearance location back to its origin. This is important for
enterprises, for them to be responsive in the most obtainable shortest duration as they
seek to stay ahead of quality assurance issues which can range from legal, meeting user
requirements, cost-effectiveness to security [3].

Consequently, this paper proposes, based on detailed requirements and tool analy-
sis, a methodology to achieve quality assurance and traceability in the delivery of
software products that are containerized. This methodology was evaluated in an internal
process improvement project of the VVolkswagen Group IT.

The rest of the paper is organized as follows: after introducing the topic as well as
the motivation for carrying out this work in the first section, we described the contextual
description of a containerization process as well as quality assurance in the second sec-
tion. In the third section, we described our methodical procedure for containerization
quality assurance, the role of bi-directional traceability and a generic implementation
approach. We concluded in the fourth section by itemizing the vital points necessary
for consideration in implementing the methodical procedure and in the last section,
we describehow this work fits into the SPI1 manifesto.

2 Containerization Process and Software Quality Assurance

Sequel to its earlier succinct description as a type of virtualization, containerization
uses the same kernel as that of the host to run multiple virtual environments tagged
“Containers”. These containers provide the isolated environments with required re-
sources; memory, network, storage etc., which can be shared with the host or reside
completely in the container as exemplified in Figure 1 and this makes them capable of
executing application [22].

Container’s architectural design make it relevant for several use-cases depending on
the depth of adoption by each organization. There is the recommended use-cases cate-
gory, which is documented and supported officially by the provider of the container-
type, such as configuration simplification, multi-tenancy and deployment efficiency.
There also exists the common use-cases category which is prevalent among application

developers, using it for software packaging, delivery and dependency management. Se-
curity and integration within infrastructure are use-cases that have also been adopted
among cloud providers [1].

Given that continuous integration and delivery generally cut-across the three cate-
gories described. Using containers to achieve any of the use-cases, chaining the point
of usage together in a continuous delivery approach is what we tagged “Containeriza-
tion Process” and our example of such is described later.

App App App
Bins/Libs Bins/Libs
Caontainer Container

Container Engine

Host O3

Hardware or Infrastructure

Figure 1: Architectural representation of a Container

Quality Assurance can be described as an orchestrated, systemic flow of actions,
accessed necessary to ascertain the adequate level of confidence that an item or product
must undergo to meet desired requirements, technically or otherwise.

e Quality: This is the summation of the characteristics of a product or service,
which encapsulate its ability to meet the purpose of its creation.

e Quality Control: These are the actions in the assurance process where the
characteristics of the product or service are measures against established or
known metrics. Decisions, which are solely a function of the outcome of
the evaluation are designed to be part of these actions. [3]

Software Quality Assurance (SQA) as defined in [4] is a process for providing ade-
quate assurance that the specified requirements and established plans are adhered to
through the product life cycle. These requirements and plans are the standards that de-
fine the quality characteristics of the product as well as the yardsticks with which the
quality is evaluated [5]. The seeming complexity associated with an ecosystem of soft-

ware delivery from repositories, orchestrators to platforms with a high significant de-
gree of automation makes the assurance of the quality thereof to be of utmost im-
portance as the presence of containers in this generally enhance the ecosystem central
part [1].

Quality assurance of (preferred and established stages) the containerization process
as defined by each organization is important as it is a determinant of the quality of the
product delivered thereof. This quality assurance can be categorized into compliance
and monitoring, where the former contains the set of actions taken before the deploy-
ment and the latter contains the set taken to ensure that the deployed artifact stays im-
mutable as designed and desired. Few of the possible and already established contain-
erization issues are kernel exploitation, address resolution protocol spooling, compro-
mised secrets, poisoned container image [6], denial of service [6, 8], container breakout
[6, 7], as well as free or open-source license compliance.

3 Traceability in Containerized Process

Software Traceability which is also an important element of the qualities of a well-
designed software system [9] can be defined as “the capability to monitor or study out
in detail, or step by step, the history of a certain action of a procedure” [10], iS now
being extended and infused into the quality assurance process as the gap between both
fields of software development and operations continues to fuse into a singular delivery
process. Therefore, relating artifacts created during software development to describe
the system from multiple perspectives is a precise description of the concept of trace-
ability.

The major importance of traceability is first to: achieve process compliance and
product improvement which is obtainable when it is performed as part of the product
development life cycle and the outcome is directly applied on the product under con-
sideration. Secondly, for software understanding and reuse which is when it is carried
out on a completed project data for use in product and process analysis. [11]. Imple-
menting traceability at every step and stages of a typical containerization process which
is triggered by the respective project changes is the easiest and most efficient way to
achieve this [12].

There exists also, attributed software delivery improvements due to the presence of
traceability which is most effective if done in full automation [17] as it tracks, uniquely,
software and their changes along the process from the initiation to the final stage.

Reliability, availability and fault tolerance are part of the identified concerns of high
assurance systems and are factors that can influence them. The identified aspects of
traceability that can be considered to mitigate these factors are [13]:

i how a decision is made, hierarchically or not;

ii. visibility of the decisions made;

iii. the granularity of the architectural impact of the decision;
iv. architectural trade off if there is any;

V. the richness of the decision made as regard semantics.

3.1 Methodical Procedure for Quality Assurance of Containerization Process

The robustness and level of containerization process will vary from one organ-
ization to another; a reflection of the agreed objectives which will also determine how
expansive or not the methodical quality assurance procedure will be. After an exhaus-
tive examination of our system, we summarized our assurance objectives to be: secu-
rity, performance, compliance and automation and therefore our methodical procedure
contains six core steps described as follows:

i Selection of Base Image

This is the first step of the process and it basically involves the selection of the starting
image on which the eventual container to be built will be based. The selection at this
stage will mostly be manual and likely to be made by the Engineer or the Person-in-
charge of the product, who likely has an end-to-end overview of what the final product
should look like. The technologies to be used in building the said application, the
targeted platform of deployment, as well as the desired artifact size, are three notable
factors that were identified with the possibility of influencing this decision [14].
There is also the possibility of using Distroless (language-focused container images
without the operating system components) [21] images which do not generally negate
the factors mentioned above but have the added advantage of reducing the possible
surface area of attack, and disabling of secondary modifications.

ii. Code Security Checks

Considering the higher percentage of cyber-attacks recorded, with 84% to have taken
place at the application layer of software systems [18] it is therefore very important to
ensure that this is adequately mitigated against to further enhance the assurance of our
quality. This is analyzing the codebase of the product being built as its being modified
to identify the exploitable style, patterns and configurations.

This step ensures that the security level of the containerized application is therefore up
to the acceptable standard at the organization as well as general standards and best
practices. Security vulnerabilities such as SQL Injection, Cross-Site Request Forgery,
Insecure server configuration and communication, cross-site scripting and command
injection which are also part of the Open Web Application Security Project (OWASP)
annual top ten lists need to be a check on any application.

iii. Dockerfile Validation

The vast majority of Docker images are built using the file called Dockerfile; which
determines what is or not possible in the image built thereof. Validation, as used here,
is basically “linting” the Dockerfile. Linting is the process of passing source code or
script through a tool generally called the “linter”’; which analyzes and flags any form of
errors or non-conformation to preferred best practices standard [10].

Therefore, validation of Dockerfile’s compliance with best and agreed practices will
further improve the quality of the image being produced especially as regards
functionality and reliability.

iv. Free and Open Source Software (FOSS) Compliance Checks

There are multiple software existing licenses; Apache License 2.0, MIT license, GNU
General Public License (GPL) just to mention but a few [16], from which software
creators can choose from depending mainly on their underlying purpose of creating or
distributing the software. Every user is meant to adhere to the terms and conditions of
a software, either in the context of distribution, contribution or usage.

This step ensures that all the FOSS dependencies used and their context of usage in the
containerized application is in compliance with the license. There are several
compliance software tools which can be used to achieve this.

V. Dependencies Security Checks

Security checks on all the dependencies used in the application, especially for
vulnerabilities is a good approach to further enhance and ascertain the quality of the
resulting containers and the process. This checks go beyond FOSS checks but include
all forms of dependencies, proprietary or not, application or container level
dependencies to further enhance the overall security of the product produced.

Vi. Container and Infrastructure Testing

There also exists the concept of testing containers base on what is expected of it
especially in terms of performance and reliability and that of the infrastructure on which
they will be deployed to ensure that negative quality deviations as a result of container’s
destination are prevented. Testing of the infrastructure is very important because it
hosts the application and therefore must conform to the similar standard.

[Base Image Seleclion]—)[Development H Commit Source Code]
QA Step 1
Code Security Checks

QA Step 2

Dockerfile Validation

QA Step 3

[Free and Open Source Software Compliance Checks]

LJ, QA Step 4

[Dependency Security Checks

ﬁm Step 5

[Container and Infrastructure Testing]

QAStep 6

Fig. 2. A methodical procedure for Quality Assurance of Containerization Process

3.2 Generic Methodology to Bi-Directional Traceability Implementation

Infusing bi-directional traceability into a containerization quality assurance process
is largely dependent on how comprehensive the process is as well as the versatility of
the tools adopted for implementation by the respective organization. For our six-step
methodical procedure, we described here, an abstracted flow of our implementation.

The containerization process, which got initiated, automatically by changes to the ap-
plication source code is being monitored to effectively offer this bi-directional tracea-
bility feature. In the implementation, the output of every step is tagged aggregately
based on the chosen tagging implementation for each step and the aggregated tag is
what the final artifact carries. The final artifact produced by the process can, therefore,
be validated for completeness before moving it to the next stage in the deployment
pipeline.

The final artifact with the aggregated tag can be used as the release tag for the stage
in the system. It thereby becomes feasible to trace, in both ways, the initiated code
changes, which repository or change led to a final tag as well as the last step completed,
successfully or not.

Table 1 shows a trial sample of three initiation of the containerized process by a
Project A.

Attempts/Proce- | 1 2 |3 4 5 6 Final Arti-
dure Steps facts

I X Xa | Xab Xab

Il Y Ya | Yab Yabc Yabc

11 Y4 Za | Zab Zabc Zabcd | Zabcde | Zabcde

The X, Y and Z as used can be the unique commit identification in case of a source-
code versioned initiated process or any other preferred means of uniquely identifying
changes to the project. The alphabets a, b, ¢, d and e, as used, also represents the asso-
ciated tag of each step and should be carefully aggregated in such a way that they can
easily be used and process in the context of the final artifact. Keeping in mind that only
artifacts that passes the entire procedure successfully should be considered for use in
production.

Notable points for the implementation are that:

i The steps are procedural.

ii. All the sub-actions in each of the steps are grouped together as one and there-
fore seen as such at the traceability level.

iii. The tagging scheme or algorithm for each step should be unique and aggre-
gated along the process.

iv. Our entire infrastructure complements this process, especially as regards
toolchain and artifacts management.

Considering the context of containerization process of each organization, there is a
need to carefully examine possible existing structure, evaluation of tools, quality assur-
ance objectives as well as available resources; tools, infrastructure and expertise. This
we have done, which reflect on the scope of our process and procedure, tools adopted
for usage and our implementation.

4 Conclusion

In this paper, we have presented a contribution to making industrial IT quality assurance
more agile thanks to a procedure for the containerization of the continuous delivery
process. We have implemented this procedure at Volkswagen AG Group IT cloud ser-
vice instantiations, whose challenges can be considered representative for process-
driven industrial organizations of similar size. The procedure as implemented also
brings other non-development but equally important units of the organization together,
to be on the same level, style and speed of operation as the product development unit
and we can thereby conclude that:

i A sequence of actions is needed for the maturity of a container.

ii. The sequence should be clearly defined by propagation criteria.

iii. Propagation leads to handover in the process which demands for traceabil-

ity

iv. Traceability need to be established by tooling for CI/CD

V. Traceability has to be part of the DevOps culture for effective product de-
livery.

This paper also shows our effort to ensure quality even with a high development
velocity and our experiences about agile/lean product development in large and some-
times bureaucratic corporations. From a software process improvement view, the pro-
cess and method authority is not sufficient to deliver added value. So, in the future, the
involved technological principles, which are the drivers for operative excellence in a
fast-changing and scaling environment, should be better understood.

5 SPI Manifesto Reflection

The presented methodical procedure for quality assurance for containerization process

also follows the values and principles that are described in the Software Process Im-

provement (SPI) Manifesto [18][19][20]. Especially the following aspects are strongly

related to SPI:

i. The change comes from the technology push of automation options.

ii. Drives the business to pull to be faster on the market (Conway’s law: organization
follows the architecture of CI/CD technology).

iii. The people get benefits of this technology-driven SPI to deliver an approach to be
more efficient with containers and deterministic procedures based on traceability
in the new DevOps mindset, which is a new culture of product delivery in an agile
continuous improvement version.

The team has worked with people and units involved, for example, the open source
compliance, infrastructure and security teams. The outcome of this work is available
like a template for projects which want to set up a container-based delivery chain. As
good SPI practice, the suggestion should be customized to the needs of the projects and
feedbacks will enhance the “template” in the future.

References

[1] Martin, A., Raponi, S., Combe, T. and Di Pietro, R., 2018. Docker ecosystem—vulnerability
analysis. Computer Communications, 122, pp.30-43.[2] https://www.digitalocean.com/com-
munity/tutorials/the-docker-ecosystem-an-overview-of-containerization

[3] Buckley, F.J. and Poston, R., 1984. Software quality assurance. IEEE Transactions on Soft-
ware Engineering, (1), pp.36-41.

[4] Docker Image Specification: https://github.com/moby/moby/blob/master/image/spec/vl.md

[5] 1SO 12207 (ISO/IEC12207.0-96)

[6] Yasrab, R., 2018. Mitigating docker security issues. arXiv preprint arXiv:1804.05039.

[7] https:/iwww.heise.de/security/meldung/Sicherheitsforscher-brechen-aus-Docker-Container-
aus-4276108.html

[8] Pinkpreet, K., Anuoama, G., & Er. Harpreet, K. A novel system defined network solution for
user legitimacy Assurance in Docker Containers. December 2018

[9] Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mader, P. and Zisman, A., 2014, May.

Software traceability: trends and future directions. In Proceedings of the on Future of Software

Engineering (pp. 55-69). ACM.

[10] Park, Y. and Lee, C.P., 2008. The Impact of RFID-based Traceability System on Perceived

Competitive Advantage in the Food Industry. Oklahoma State University,[White Paper],

pp.4301-4306.

[11] Spanoudakis, G. and Zisman, A., 2005. Software traceability: a roadmap. In Handbook Of
Software Engineering And Knowledge Engineering: Vol 3: Recent Advances (pp. 395-428).
[12] Sundaram, S.K., Hayes, J.H., Dekhtyar, A. and Holbrook, E.A., 2010. Assessing traceability

of software engineering artifacts. Requirements engineering, 15(3), pp.313-335.

[13] Mirakhorli, M. and Cleland-Huang, J., 2011, May. Tracing architectural concerns in high
assurance systems (NIER track). In Proceedings of the 33rd International Conference on Soft-
ware Engineering (pp. 908-911). ACM.

[14] https://lwww.ca.com/en/blog-developers/docker-containers-os-base-image.html

[15] https://en.wikipedia.org/wiki/Lint_(software)

[16] https://opensource.org/licenses

[17] Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Griinbacher, P. and An-

toniol, G., 2012, September. The quest for ubiquity: A roadmap for software and systems trace-

ability research. In 2012 20th IEEE international requirements engineering conference (RE) (pp.

71-80). IEEE..

[18] Korsaa, M., Biro, M., Messnarz, R., Johansen, J., Vohwinkel, D., Nevalainen, R., & Schwei-

gert, T. (2012). The SPI Manifesto and the ECQA SPI manager certification scheme. Journal of

Software: Evolution and Process, 24(5), 525-540.

https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-overview-of-containerization
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-overview-of-containerization
https://www.heise.de/security/meldung/Sicherheitsforscher-brechen-aus-Docker-

[19] Messnarz, R., Sicilia, M. A., Biro, M., Garcia Barriocanal, E., G. Rubio, M., Siakas, K., &
Clarke, A. (2014). Social responsibility aspects supporting the success of SPI. Journal of Soft-
ware: Evolution and Process, 26(3), 284-294.

[20] Sanchez-Gordon, M. L., Colomo-Palacios, R., & Amescua, A. (2013). Towards measuring
the impact of the spi manifesto: a systematic review. In Proceedings of European System and
Software Process Improvement and Innovation Conference (pp. 100-110).

[21]. https://github.com/GoogleContainerTools/distroless/tree/master/base

[22 Kozhirbayev, Z. and Sinnott, R.O., 2017. A performance comparison of container-based
technologies for the cloud. Future Generation Computer Systems, 68, pp.175-182..

https://github.com/GoogleContainerTools/distroless/tree/master/base

