Skip to main content

Data Quality Transaction on Different Distributed Ledger Technologies

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11473))

Abstract

Data quality is a bottleneck for efficient machine-to-machine communication without human intervention in Industrial Internet of Things (IIoT). Conventional centralised data quality management (DQM) approaches are not tamper-proof. They require trustworthy and highly skilled intermediation, and can only access and use data from limited data sources. This does not only impacts the integrity and availability of the IIoT data, but also makes the DQM process time and resource consuming. To address this problem, a blockchain based DQM platform is proposed in this paper, which aims to enable tamper-proof data transactions in a decentralised and trustless environment. To fit for different quality requirements, our platform supports customisable smart contracts for quality assurance. And to improve our platform’s performance, we discuss and analyze different distributed ledger technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Recommended elliptic curve domain parameters, version 2.0. Certicom Research

    Google Scholar 

  2. FIPS 180–4. Secure hash standards, federal information processing standards publication 180–4. National Institute of Standards and Technology (2013)

    Google Scholar 

  3. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. (CSUR) 36(4), 335–371 (2004)

    Article  Google Scholar 

  4. Ballou, D.P., Tayi, G.K.: Enhancing data quality in data warehouse environments. Commun. ACM 42(1), 73–78 (1999)

    Article  Google Scholar 

  5. Bano, S., Al-Bassam, M., Danezis, G.: The road to scalable blockchain designs (2017)

    Google Scholar 

  6. Bano, S., et al.: Consensus in the age of blockchains. arXiv preprint arXiv:1711.03936 (2017)

  7. Batini, C., Scannapieco, M.: Data and Information Quality - Dimensions, Principles and Techniques. Data-Centric Systems and Applications. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24106-7

    Book  MATH  Google Scholar 

  8. Baumgart, I., Mies, S.: S/kademlia: a practicable approach towards secure key-based routing. In: 2007 International Conference on Parallel and Distributed Systems, pp. 1–8. IEEE (2007)

    Google Scholar 

  9. Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint arXiv:1407.3561 (2014)

  10. Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol. 310 (2016)

    Google Scholar 

  11. Conoscenti, M., Vetro, A., De Martin, J.C.: Blockchain for the internet of things: a systematic literature review. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1–6. IEEE (2016)

    Google Scholar 

  12. Gaetani, E., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., Sassone, V.: Blockchain-based database to ensure data integrity in cloud computing environments (2017)

    Google Scholar 

  13. Environmental Research Group and King’s College. Air quality by local authority

    Google Scholar 

  14. Heckman, J.R., Boehmer, E.L., Peters, E.H., Davaloo, M., Kurup, N.G.: A pricing model for data markets. In: iConference 2015 Proceedings (2015)

    Google Scholar 

  15. Helu, M., Libes, D., Lubell, J., Lyons, K., Morris, K.C.: Enabling smart manufacturing technologies for decision-making support. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V01BT02A035. American Society of Mechanical Engineers (2016)

    Google Scholar 

  16. Howard, J.H., et al.: Scale and performance in a distributed file system. ACM Trans. Comput. Syst. (TOCS) 6(1), 51–81 (1988)

    Article  MathSciNet  Google Scholar 

  17. IOTA: Iota documents. https://docs.iota.org/introduction/what-is-iota. Accessed 16 Nov 2018

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  19. Red, V.A.: Practical comparison of distributed ledger technologies for IoT. In: Disruptive Technologies in Sensors and Sensor Systems, vol. 10206, p. 102060G. International Society for Optics and Photonics (2017)

    Google Scholar 

  20. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc., Sebastopol (2015)

    Google Scholar 

  21. Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward quality data: an attribute-based approach. Decis. Support Syst. 13(3–4), 349–372 (1995)

    Article  Google Scholar 

  22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

  23. Xavier, B., Christopher, C., Thomas, H.: Blockchain-free cryptocurrencies. A rational framework for truly decentralised fast transactions. Inf. Syst., 45–90 (2015)

    Google Scholar 

  24. Yu, H., Zhang, M.: Data pricing strategy based on data quality. Comput. Ind. Eng. 112, 1–10 (2017)

    Article  Google Scholar 

  25. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: architecture, consensus, and future trends. In: 2017 IEEE International Congress on Big Data (BigData Congress), pp. 557–564. IEEE (2017)

    Google Scholar 

  26. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE of Security and Privacy Workshops (SPW), pp. 180–184. IEEE (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Cybervein-ZJU Joint Lab, Fundamental Research Funds for the Central Universities, Artificial Intelligence Research Foundation of Baidu Inc, Program of ZJU Tongdun Joint Research Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wu .

Editor information

Editors and Affiliations

A Smart Contracts

A Smart Contracts

In this section we provide the function signatures and main variables of our smart contract.

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, C., Zhou, L., Xie, C., Zheng, Y., Yu, J. (2019). Data Quality Transaction on Different Distributed Ledger Technologies. In: Li, J., Meng, X., Zhang, Y., Cui, W., Du, Z. (eds) Big Scientific Data Management. BigSDM 2018. Lecture Notes in Computer Science(), vol 11473. Springer, Cham. https://doi.org/10.1007/978-3-030-28061-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28061-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28060-4

  • Online ISBN: 978-3-030-28061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics