Skip to main content

Progress in Interpretability Research of Convolutional Neural Networks

  • Conference paper
  • First Online:
Mobile Computing, Applications, and Services (MobiCASE 2019)

Abstract

Convolutional neural networks have made unprecedented breakthroughs in various tasks of computer vision. Due to its complex nonlinear model structure and the high latitude and complexity of data distribution, it has been criticized as an unexplained “black box”. Therefore, explaining the neural network model and uncovering the veil of the neural network have become the focus of attention. This paper starts with the term “interpretability”, summarizes the results of the interpretability of convolutional neural networks in the past three years (2016–2018), and analyses them with interpretable methods. Firstly, the concept of “interpretability” is introduced. Then the existing research achievements are classified and compared from four aspects, data characteristics and rule processing, model internal spatial analysis, interpretation and prediction, and model interpretation. Finally pointed out the possible research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilpin, L.H., et al.: Explaining Explanations: An Overview of Interpretability of Machine Learning (2018)

    Google Scholar 

  2. WHI: 2017 Homepage. https://sites.google.com/view/whi2017/home

  3. Lipton, Z.C.: The Mythos of Model Interpretability. Communications of the ACM (2016)

    Google Scholar 

  4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(6), 1157–1182 (2003)

    MATH  Google Scholar 

  5. Geras, K.J., et al.: High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks (2017)

    Google Scholar 

  6. Ling, J., et al.: Building data-driven models with microstructural images: generalization and interpretability. Mat. Discov. 10, 19–28 (2018). S235292451730042X

    Article  Google Scholar 

  7. Chen, J., et al.: Learning to Explain: An Information-Theoretic Perspective on Model Interpretation (2018)

    Google Scholar 

  8. Freitas, Alex A.: Comprehensible classification models: a position paper. ACM Sigkdd Explor. Newsl. 15(1), 1–10 (2014)

    Article  Google Scholar 

  9. Zilke, J.R.: DeepRED – Rule Extraction from Deep Neural Networks (2016)

    Chapter  Google Scholar 

  10. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree induction. In: International Joint Conference on Neural Networks (2001)

    Google Scholar 

  11. Wang, H.: ReNN: Rule-embedded Neural Networks (2018)

    Google Scholar 

  12. Erhan, D., et al.: Visualizing higher-layer features of a deep network. University of Montreal, 1341.3(1) (2009)

    Google Scholar 

  13. Nguyen, A., Jason Y., Jeff C.: Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks (2016). arXiv preprint arXiv:1602.03616

  14. Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks (2013)

    Google Scholar 

  15. Bolei, Z., et al.: Interpreting Deep Visual Representations via Network Dissection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1 (2018)

    Google Scholar 

  16. http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

  17. https://cs.stanford.edu/people/karpathy/convnetjs//demo/classify2d.html

  18. Zhou, B., et al.: Object detectors emerge in deep scene CNNS (2014). arXiv preprint arXiv:1412.6856

  19. Yosinski, J., et al.: How transferable are features in deep neural networks?. Eprint Arxiv 27, 3320–3328 (2014)

    Google Scholar 

  20. Fong, R., Vedaldi, A.: Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks (2018)

    Google Scholar 

  21. Szegedy, C., et al.: Intriguing properties of neural networks. Computer Science (2013)

    Google Scholar 

  22. Kim, B., et al.: Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) (2017)

    Google Scholar 

  23. Raghu, M., et al.: SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability (2017)

    Google Scholar 

  24. Kindermans, P.J., et al.: Investigating the influence of noise and distractors on the interpretation of neural networks (2016)

    Google Scholar 

  25. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: 2017 IEEE International Conference on Computer Vision (ICCV) IEEE Computer Society (2017)

    Google Scholar 

  26. Hara, S., et al.: Maximally Invariant Data Perturbation as Explanation (2018). arXiv preprint arXiv:1806.07004

  27. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier. In: 22nd ACM SIGKDD International Conference ACM (2016)

    Google Scholar 

  28. Shrikumar, A., Greenside, P., Kundaje, A.: Learning Important Features Through Propagating Activation Differences (2017)

    Google Scholar 

  29. Sebastian, B., et al.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  30. Lundberg, S., Lee, S.I.: A Unified Approach to Interpreting Model Predictions (2017)

    Google Scholar 

  31. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic Attribution for Deep Networks (2017)

    Google Scholar 

  32. Hendricks, L.A., et al.: Generating Visual Explanations. In: European Conference on Computer Vision (2016)

    Chapter  Google Scholar 

  33. Hendricks, L.A., et al.: Generating Counterfactual Explanations with Natural Language (2018)

    Google Scholar 

  34. Mahendran, A., Vedaldi, A.: Understanding Deep Image Representations by Inverting Them (2014)

    Google Scholar 

  35. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. Computer Science (2013)

    Google Scholar 

  36. Zeiler, M.D., et al.: Deconvolutional networks. Computer Vision & Pattern Recognition (2010)

    Google Scholar 

  37. Mahendran, A., Vedaldi, A.: Salient deconvolutional networks. In: European Conference on Computer Vision (2016)

    Google Scholar 

  38. Springenberg, J.T., et al.: Striving for simplicity: the all convolutional net (2014). arXiv preprint arXiv:1412.6806

  39. Smilkov, D., et al.: Smoothgrad: removing noise by adding noise (2017). arXiv preprint arXiv:1706.03825

  40. Zolna, K., Krzysztof, J.G., Kyunghyun, C.: Classifier-agnostic saliency map extraction (2018). arXiv preprint arXiv:1805.08249

  41. Le, Q.V., et al.: Building high-level features using large scale unsupervised learning (2011). arXiv preprint arXiv:1112.6209

  42. Yosinski, J., et al.: Understanding neural networks through deep visualization (2015). arXiv preprint arXiv:1506.06579

  43. Dosovitskiy, A., Thomas B.: Inverting visual representations with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  44. Zhou, B., et al.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  45. Selvaraju, R.R., et al.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization (2016)

    Google Scholar 

  46. Oramas, J., Kaili W., Tinne, T.: Visual explanation by interpretation: improving visual feedback capabilities of deep neural networks (2017). arXiv preprint arXiv:1712.06302

  47. Bau, D., et al.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  48. Zhang, Q., et al.: Interpreting CNN Knowledge via an Explanatory Graph (2017)

    Google Scholar 

  49. Zhang, Q., et al.: Interpreting CNNs via Decision Trees (2018)

    Google Scholar 

  50. Ba, L.J., Caruana, R.: Do deep nets really need to be deep?. In: International Conference on Neural Information Processing Systems, MIT Press (2014)

    Google Scholar 

  51. Abbasi-Asl, R., Yu, B.: Interpreting Convolutional Neural Networks Through Compression (2017)

    Google Scholar 

  52. Zhang, Q., Wu, Y.N., Zhu, S.-C.: Interpretable Convolutional Neural Networks (2018)

    Google Scholar 

  53. Wu, T., et al.: Towards Interpretable R-CNN by Unfolding Latent Structures (2017). arXiv preprint arXiv:1711.05226

Download references

Acknowledgment

This work was funded by Science and Technology Commission of Shanghai Municipality Program (No. 17411952800, No. 18441904500, 18DZ1113400) and Science and Technology Department of Hainan Province (No. ZDYF2018022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Cai, L., Chen, M., Wang, N. (2019). Progress in Interpretability Research of Convolutional Neural Networks. In: Yin, Y., Li, Y., Gao, H., Zhang, J. (eds) Mobile Computing, Applications, and Services. MobiCASE 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-030-28468-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28468-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28467-1

  • Online ISBN: 978-3-030-28468-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics