Skip to main content

An Active Defense Model in Edge Computing Based on Network Topology Mimetic Correlation

  • Conference paper
  • First Online:
Mobile Computing, Applications, and Services (MobiCASE 2019)

Abstract

A large amount of real-time data, including user privacy information, control commands, and other sensitive data, are transmitted in edge computing networks. Aiming at the high-speed and reliable transmission requirements of data in the uncontrollable environment of edge computing networks, and maximizing the defense revenue, this paper proposes an active defense method for data interaction attacks in edge computing networks based on network topology mimic correlation, by pseudo-randomly constructing a moving communication path alliance and combining the network security state with a reliable prediction of transmission. A network topology mimetic association diagram and a communication path alliance mimetic transformation method based on dynamic threshold are proposed to ensure the data transmission service quality of the active defense technology of edge computing networks. The active defense model of the edge data network interaction process against the new attack and with the optimal defense cost is constructed, which provides a powerful guarantee for the active defense before the attack. The experimental results show that our method outperforms the popular methods in terms of transmission efficiency, reliability, and anti-attack performance.

This paper supported by The Fundamental Research Funds for the Central Universities (No.30918012204), Jiangsu province key research and development program (BE2017739), 2018 Jiangsu Province Major Technical Research Project “Information Security Simulation System”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: MT6D: a moving target IPv6 defense. In: Military Communications Conference, 2011 – Milcom, pp. 1321–1326. IEEE (2012)

    Google Scholar 

  2. Bunz, M., Meikle, G.: The internet of things. Sci. Am. 4(1), 20–25 (2018)

    MathSciNet  Google Scholar 

  3. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, Fog et al.: a survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78(2), 680–698 (2018). S0167739X16305635

    Article  Google Scholar 

  4. Wang, F., Xu, J., Wang, X., Cui, S.G.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2017)

    Article  Google Scholar 

  5. Chen, Y., Zhang, Y., Maharjan, S.: Deep Learning for Secure Mobile Edge Computing (2017)

    Google Scholar 

  6. Atighetchi, M., Pal, P., Webber, F., Jones, C.: Adaptive use of network-centric mechanisms in cyber-defense. In: IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, pp. 183–192. IEEE (2003)

    Google Scholar 

  7. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against hitlist worms using network address space randomization. In: ACM Workshop on Rapid Malcode, pp. 30–40. ACM (2005)

    Google Scholar 

  8. Badishi, G., Herzberg, A., Keidar, I.: Keeping denial-of-service attackers in the dark. IEEE Trans. Dependable Secure Comput. 4(3), 191–204 (2007)

    Article  Google Scholar 

  9. Jafarian, J.H.H., Al-Shaer, E., Duan, Q.: Spatio-temporal address mutation for proactive cyber agility against sophisticated attackers. In: ACM Workshop, pp. 69–78. ACM (2014)

    Google Scholar 

  10. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: transparent moving target defense using software defined networking. In: The Workshop on Hot Topics in Software Defined Networks, pp. 127–132. ACM (2012)

    Google Scholar 

  11. Wang, W., Wang, L., Huang, W.: Detection of low-rate distributed rejection attack based on renyi entropy in SDN environment. J. South-Central Univ. Nationalities Nat. Sci. Ed. 36(03), 131–136 (2017)

    Google Scholar 

  12. Zhao, C.: Research on adaptive strategy of end information hopping system. Nankai University (2012)

    Google Scholar 

  13. Zhang, X., Niu, W., Yang, G., Zhuo, Z., Lv, F.: APT attack prediction method based on tree structure. J. Univ. Electron. Sci. Technol. China 45(4), 582–588 (2016)

    Google Scholar 

  14. Haggerty, J., Shi, Q., Merabti, M.: Beyond the perimeter: the need for early detection of denial of service attacks. In: Computer Security Applications Conference 2002 Proceedings, pp. 413–422. IEEE (2002)

    Google Scholar 

  15. Zhang, J., Gunter, C.A.: Application-aware secure multicast for power grid communications. In: IEEE International Conference on Smart Grid Communications, pp. 339–344. IEEE (2010)

    Google Scholar 

  16. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Netw. 32(1), 96–101 (2018)

    Article  Google Scholar 

  17. Ai, Y., Peng, M., Zhang, K.: Edge computing technologies for internet of things: a primer. Digital Commun. Netw. 4(2), 77–86 (2018)

    Article  Google Scholar 

  18. Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: MT6D: a moving target IPv6 defense. In: Proceedings of the Military Communications Conference (MILCOM 2011), pp. 1321–1326. IEEE, Baltimore, November 2011

    Google Scholar 

  19. Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: The blind Man’s bluff approach to security using IPv6. IEEE Secur. Priv. 10(4), 35–43 (2012)

    Article  Google Scholar 

  20. MacFarland, D.C., Shue, C.A.: The SDN shuffle: creating a moving-target defense using host-based software-defined networking. In: Proceedings of the 2nd ACM Workshop on Moving Target Defense, MTD 2015, USA, pp. 37–41 (2015)

    Google Scholar 

  21. Skowyra, R., Bauer, K., Dedhia, V., Okhravi, H.: Have No PHEAR: networks without identifiers. In: Proceedings of the 2016 ACM Workshop on Moving Target Defense, MTD 2016, Austria, pp. 3–14 (2016)

    Google Scholar 

  22. Sun, J., Sun, K.: DESIR: decoy-enhanced seamless IP randomization. In: Proceedings of the 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE INFOCOM, April 2016

    Google Scholar 

  23. Chen, J., Su, C., Yeh, K.-H., Yung, M.: Special issue on advanced persistent threat. Future Gener. Comput. Syst. 79(Part 1), 243–246 (2018)

    Article  Google Scholar 

  24. Yang, L.-X., Li, P., Yang, X., Tang, Y.Y., et al.: A risk management approach to defending against the advanced persistent threat. IEEE Trans. Dependable Secure Comput. 2018, 1 (2018)

    Google Scholar 

  25. Wan, J., Chen, B., Imran, M., et al.: Toward dynamic resources management for IoT-based manufacturing. IEEE Commun. Mag. 56(2), 52–59 (2018)

    Article  Google Scholar 

  26. Wang, J., Cao, J., Ji, S., et al.: Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. J. Supercomput. 73, 3277–3290 (2017)

    Article  Google Scholar 

  27. Liang, W., Long, J., Chen, Z., et al.: A security situation prediction algorithm based on HMM in mobile network. Wirel. Commun. Mob. Comput. 2018 (2018)

    Google Scholar 

  28. Wan, M., Yao, J., Jing, Y., Jin, X.: Event-based anomaly detection for non-public industrial communication protocols in SDN-based control systems. Comput. Mater. Contin. 55(3), 447–463 (2018)

    Google Scholar 

  29. Yan, Q., Huang, W., Luo, X., et al.: A multi-level DDoS mitigation framework for the industrial internet of things. IEEE Commun. Mag. 56(2), 30–36 (2018)

    Article  Google Scholar 

  30. Vaidya, P., Chandra Mouli, P.V.S.S.R.: A robust semi-blind watermarking for color images based on multiple decompositions. Multimedia Tools Appl. 76, 25623–25656 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianmu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Li, Q., Meng, S., Zhang, B., Zhou, C. (2019). An Active Defense Model in Edge Computing Based on Network Topology Mimetic Correlation. In: Yin, Y., Li, Y., Gao, H., Zhang, J. (eds) Mobile Computing, Applications, and Services. MobiCASE 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-030-28468-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28468-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28467-1

  • Online ISBN: 978-3-030-28468-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics