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Abstract

This paper presents an evaluation of several approaches of plants

species distribution modeling based on spatial, environmental and co-

occurrences data using machine learning methods. In particular, we re-

evaluate the environmental convolutional neural network model that ob-

tained the best performance of the GeoLifeCLEF 2018 challenge but on a

revised dataset that fixes some of the issues of the previous one. We also

go deeper in the analysis of co-occurrences information by evaluating a

new model that jointly takes environmental variables and co-occurrences

as inputs of an end-to-end network. Results show that the environmental

models are the best performing methods and that there is a significant

amount of complementary information between co-occurrences and envi-

ronment. Indeed, the model learned on both inputs allows a significant

performance gain compared to the environmental model alone.

1 Introduction

Automatically predicting the list of species that are the most likely to be ob-
served at a given location is useful for many scenarios in biodiversity informatics.
First of all, it could improve species identification processes and tools by reduc-
ing the list of candidate species that are observable at a given location (be they
automated, semi-automated or based on classical field guides or flora). More
generally, it could facilitate biodiversity inventories through the development of
location-based recommendation services (typically on mobile phones) as well as
the involvement of non-expert nature observers. Last but not least, it might
serve educational purposes thanks to biodiversity discovery applications provid-
ing innovative features such as contextualized educational pathways.

This problem is known as Species Distribution Modeling (SDM) in ecology.
SDM have become increasingly important in the last few decades for the study
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of biodiversity, macro ecology, community ecology and the ecology of conser-
vation. An accurate knowledge of the spatial distribution of species is actually
of crucial importance for many concrete scenarios including landscape man-
agement, preservation of rare and/or endangered species, surveillance of alien
invasive species, measurement of human impact or climate change on species,
etc. Concretely, the goal of SDM is to infer the spatial distribution of a given
species, and they are often based on a set of geo-localized occurrences of that
species (collected by naturalists, field ecologists, nature observers, citizen sci-
ences project, etc.). However, it is usually not reliable to learn that distribution
directly from the spatial positions of the input occurrences. The two major
problems are the limited number of occurrences and the bias of the sampling
effort compared to the real underlying distribution. In a real-world dataset, the
raw spatial distribution of the occurrences is actually highly influenced by the
accessibility of the sites and the preferences and habits of the observers. An-
other difficulty is that an occurrence means a punctual presence of the species,
while no occurrences doesn’t mean the species is absent, which makes us very
uncertain about regions without observed specimens.

For all these reasons, SDM is usually achieved through environmental niche
modeling approaches, i.e. by predicting the distribution in the geographic space
on the basis of a representation in the environmental space [1, 2, 3, 4, 5, 6, 7].
This environmental space is in most cases represented by climate data (such as
temperature, and precipitation), but also by other variables such as soil type,
land cover, distance to water, etc. Then, the objective is to learn a function
that takes the environmental feature vector of a given location as input and
outputs an estimate of the abundance of the species. The main underlying hy-
pothesis is that the abundance function is related to the fundamental ecological
niche of the species. That means that in theory, a given species is likely to live
in a privileged ecological niche, characterized by an hypervolume in the envi-
ronmental space. However, this volume can have a very irregular shape and,
in addition, many phenomena can actually affect the distribution of the species
relative to its so called abiotic preferences. The real distribution of the species is
called realized ecological niche it can differ from the fundamental ecological niche
by environmental perturbations, geographical constraints, or interactions with
other living organisms (including humans) that might have encourage specimens
of that species to live in a different environment. As a consequence, the realized
ecological niche of a species can be much more diverse and complex than its
hypothetical fundamental niche.

Very recently, SDM based on deep neural networks have started to appear
[8]. These first experiments showed that they can have a good predictive power,
potentially better than the models used conventionally in ecology. Actually,
deep neural networks are able to learn complex nonlinear transformations in a
wide variety of domains. In addition, they make it possible to learn an area of
environmental representation common to a large number of species, which sta-
bilizes predictions from one species to another and improves them globally [9].
Finally, spatial patterns in environmental variables often contain useful infor-
mation for species distribution but are generally not considered in conventional
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models. Conversely, convolutional neural networks effectively use this informa-
tion and improve prediction performance.

In this paper, we report an evaluation study of four main kinds of plants
SDM:

1. A convolutional neural network aimed at learning the ecological prefer-
ences of species thanks to environmental image patches provided as inputs
(temperature, soil type, etc.).

2. Two purely spatial models, one based on a random forest fitted on the
spatial coordinates of the occurrences of each species. The other named
closest-locations classifier is close to a nearest neighbours classifier.

3. A species co-occurrence model aiming at predicting the likelihood of pres-
ence of a given species thanks to the knowledge of the presence of other
species.

4. We finally introduce a new neural network that jointly learn on environ-
ment and co-occurrences and compare it to the two separated models to
study the joint information between the environment and co-occurrences.
And in parallel to it, a model consisting of a late merging of the outputs
of the co-occurrences model and the environmental CNN.

This paper is an extended and revised version of the working note that we wrote
beforehand in the context of our participation to the GeoLifeCLEF 2018 chal-
lenge [10]. It improves it two main ways. First we re-evaluate the environmental
convolutional neural network models that obtained the best performance during
the GeoLifeCLEF 2018 challenge but on a revised dataset that fixes some of the
issues of the previous one (that were discovered after the end of the challenge).
We also go deeper in the analysis of co-occurrences information by evaluating
a new model that jointly takes environmental variables and co-occurrences as
inputs of an end-to-end network. Section 2 gives an overview of the data and
evaluation methodology. Section 3 and 4 provide the detailed description of the
evaluated models. Section 5 presents the results of the experiments and their
analysis.

2 Data and Evaluation Methodology

A detailed description of the protocol used to build the GeoLifeCLEF2018
dataset is provided in [11, 12]. In a nutshell, the dataset was built from occur-
rence data of the Global Biodiversity Information Facility (GBIF), the world’s
largest open data infrastructure in this domain, funded by governments. It
is composed of 291, 392 occurrences of N = 3, 336 plant species observed on
the French territory between 1835 and 2017. This dataset was split in 3/4 for
training and 1/4 for testing with the constraints that: (i) for each species in
the test set, there is at least one observation of it in the train set and (ii), an
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observation of a species in the test set is distant of more than 100 meters from
all observations of this species in the train set.

Concerning the environmental images used to learn CNN models, those given
during the 2018 session of the challenge were found to be erroneous and enabled
the models to actually overfit a part of the test set (mostly the occurrences that
overlapped the sea). To resolve this problem, new environmental images of each
occurrence were extracted using the patch extractor from GeoLifeCLEF2019
1. The environmental data is composed of 33 environmental rasters. Each
raster encodes an environmental variable on the French territory. They were
constructed from various open datasets including Chelsea Climate, ESDB soil
pedology data, Corine Land Cover 2012 soil occupation data, CGIAR-CSI evap-
otranspiration data, USGS Elevation data (Data available from the U.S. Geo-
logical Survey.) and BD Carthage hydrologic data. To construct the input
tensor we extract for each occurrence a matrix of 64×64 pixels from each raster
centered of the location of the occurrence. Most of the environmental variables
are continuous variables such as the average temperature, the altitude or the
distance to water. Thus, the corresponding 64× 64 pixel matrices can be pro-
cessed as classical image channels provided as input of the CNN. Some of the
variables are rather of ordinal type (such as ESDB v2). However, they still can
be considered as additional channels of the CNN in the sense that the order of
the pixel values remains meaningful. This is not true, however, for categorical
variables such as the Corine Land Cover variable. This variable take up to
45 different categorical values but the order of these values does not have any
meaning. Consequently, this patch is unstacked into 45 different binary patches.
We finally obtain a tensor of size 64× 64× (32 + 45 = 77) for each occurrence.

In the following, we usually denote as x ∈ X a particular occurrence, each
x being associated to a spatial position p(x) in the spatial domain D, a species
label y(x) and an environmental tensor g(x) of size 64 × 64 × 77. We denote
as P the set of all spatial positions p covered by X . It is important to note
that a given spatial position p ∈ P usually corresponds to several occurrences
xj ∈ X, p(xj) = p observed at that location (18 000 spatial locations over a total
of 60 000, because of quantized GPS coordinates or Names-to-GPS transforms).
In the training set, up to several hundreds of occurrences can be located at the
same place (be they of the same species or not). The occurrences in the test set
might also occur at identical locations but, by construction, the occurrence of
a given species does never occur at a location closer than 100 meters from the
occurrences of the same species in the training set.

The used evaluation metric is the Mean Reciprocal Rank (MRR). The MRR
is a statistic measure for evaluating any process that produces a list of possible
responses ordered by probability of correctness. It is well adapted to assess the
scenario targeted by the GeoLifeCLEF challenge, i.e. providing a short-list of
species that are the most likely to be observed at a given location to users of
field applications. The reciprocal rank of a query response is the multiplicative
inverse of the rank of the first correct answer. The MRR is the average of the

1https://github.com/maximiliense/GLC19
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reciprocal ranks for the whole test set:

MRR =
1

Q

Q∑

q=1

1

rankq
(1)

where Q is the total number of query occurrences xq in the test set and rankq
is the rank of the correct species y(xq) in the ranked list of species predicted by
the evaluated method for xq.

3 Evaluated SDM Models in GeoLifeCLEF2018

3.1 Convolutional Neural Network

It has been previously shown in [8] that Convolutional Neural Networks (CNN)
may reach better predictive performance than classical models used in ecology.
Our approach builds upon this idea but differs from the one of Botella et al in
two important points:

• Softmax loss: whereas the CNN of Botella et al. [8] was aimed at pre-
dicting species abundances thanks to a Poisson regression on the learned
environmental features, our model rather attempts to predict the most
likely species to be observed according to the learned environmental fea-
tures. In practice, this is simply done by using a softmax layer and a
categorical loss instead of the Poisson loss layer used in [8].

• Model architecture: we also used a different architecture of the con-
volutional layers compared to the one of Botella et al. and the one sub-
mitted during our participation in the challenge [10]. We used the incep-
tion v3 architecture [13] but with the three following modifications: (i) we
change the classifier size to 3336 (number of classes), (ii) we add a dropout
layer between the last fully-connected layer and the classifier, and (iii), we
change the input size from 3 channels (classical images classification) to
77 channels according to the size of the input environmental tensors.

Learning set up and parameters: All our experiments were conducted using
PyTorch deep learning framework2 and were run on a single computing node
equipped with 4 Nvidia GTX 1080 ti GPU. We used the Stochastic Gradient
Descent optimization algorithm with a learning rate of 0.1 (divided by 10 at
epoch 90, 130, 150 and 170), a momentum of 0.9, a mini-batch size of 128 and
a dropout of 0.7. We perform a validation every 10 epochs and the final model
is chosen as the one with the highest validation score.

2https://pytorch.org/
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3.2 Spatial Models

For this category of models, we rely solely on the spatial positions p(x) to model
the species distribution (i.e. we do not use the environmental information at
all). We did evaluate two different classifiers based on such spatial data:

1. Closest-location classifier: For any occurrence xq in the test set and
its associated spatial position p(xq), we return the labels of the species
observed at the closest location pNN in Ptrain (except p(xq) itself if p(xq) ∈
Ptrain). The species are then ranked by their frequency of appearance
at location pNN . Note that p(xq) is excluded from the set of potential
closest locations because of the construction protocol of the test. Indeed,
as mentioned earlier, it was enforced that the occurrence of a given species
in the test set does never occur at a location closer than 100 meters from
the occurrences of the same species in the training set. As a consequence,
if we took pNN = p(xq), the right species would never belong to the
predicted set of species.
One of the problem of the above method is that it returns only a subset
of species for a given query occurrence xq (i.e. the ones located at pNN .
Returning a ranked list of all species in the training set would be more
profitable with regard to the used evaluation metric (Mean Reciprocal
Rank). Thus, to improve the overall performance, we extended the list of
the closest species by the list of the most frequent species in the training
set (up to reaching the authorized number of 100 predictions for each test
item).

2. Random forest classifier: Random forests are known to provide good
performance on a large variety of tasks, including in ecology [14, 15], and
are likely to outperform the naive closest-location based classifier described
above. In particular we used the random forest algorithm implemented
within the scikit-learn framework3. We used only the spatial positions
p(x) as input variables and the species labels y(x) as targets. For any
occurrence xq in the test set, the random forest classifier predicts a ranked
list of the most likely species according to p(xq). Concerning the hyper-
parametrization of the method, we conducted a few validation tests on
the training data and finally used 50 trees of depth 8 for the final runs
submitted to the GeoLifeCLEF challenge.

3.3 Co-occurrence Model

Species co-occurrence is an important information in that it may capture inter-
dependencies between species that are not explained by the observed environ-
ment. For instance, some species live in a community because they share pref-
erences for a kind of environment that we do not observe (communities of weeds
are often specialized to fine scale agronomic practices that are not reported in
our environmental data), they use the available resources in a complementary

3http://scikit-learn.org/stable/
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way, or they favor one another by affecting the local environment (leguminous
and graminaceous plants in permanent grasslands). On the opposite, some
species are not likely to be observed jointly because they live in different envi-
ronments, they compete for resources or negatively affect the environment for
others (allelopathy, etc.).

To capture this co-occurrence information, it is required to train a model
aimed at predicting the likelihood of presence of a given species thanks to the
knowledge of the presence of other species (without using the environmental
information or the explicit spatial positions). Therefore, we did train a feed-
forward neural network taking species abundance vectors as input data and
species labels as targets. The abundance vectors were built in a similar way
than the closest-location classifier described in section 3.2. For any spatial posi-
tion q ∈ D, we first aggregate all the occurrences located at the closest location
pNN in Ptrain (except q itself). Then, we count the number of occurrences
of each species in the aggregated set. More formally, we define the abundance
vector z(q) ∈ R

N of any spatial position q ∈ D as:

∀i, ∀x, zi(q) =
∑

p(x)=pNN

1(y(x) = i) (2)

where 1() is an indicator function equals to 1 if the condition in parenthesis is
true and 0 otherwise and zi(q) is the component of z(q) corresponding to the
abundance of the i-th species at position q.
Architecture description: The neural network we used to predict the most
likely species based on a given abundance vector is a simple Multi-Layered Per-
ceptron (MLP) with one hidden layer of 256 fully connected neurons. We used
ReLU activation functions [16] and Batch Normalization [17] for the hidden
layer, and a softmax loss function as output of the network.
Learning set up and parameters: This model was implemented and trained
within PyTorch deep learning framework4 and were run on a single computing
node equipped with 4 Nvidia GTX 1080 ti GPU. We used the Stochastic Gradi-
ent Descent optimization algorithm with a learning rate of 0.001, a momentum
of 0.9, a mini-batch size of 32. We perform a validation every epochs and the
final model is chosen as the one with the highest validation score.

3.4 Late Fusion of Previous Models

We also produced an other model corresponding to a late fusion of the environ-
mental CNN and the co-occurrence model. Indeed, the two base models being
trained on different kinds of input data, we expect that their fusion may ben-
efit from their complementarity. We process the late fusion by averaging the
prediction probabilities of the two models and then we re-sort the predictions.

4https://pytorch.org/
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4 New Model using Jointly Environment and

Co-occurrences in an End-to-End Network

The previous neural networks allow to capture in one case information contained
in plant co-occurrences and in the other case environmental information from
patches. However, co-occurrences can also be seen as a complementary envi-
ronmental information. Indeed, the species close to a plant are directly part of
its environment. Thus, species interact with each other and with the physical
environment. To capture the interdependencies between co-occurrences and the
environment we have developed a model that uses both inputs: environmental
tensors and vector of co-occurrences.

Architecture description: the environmental tensors are exactly the same
as the CNN model and are described in section 2. The co-occurrences inputs
remains the same as the co-occurrences model of the previous section, i.e. the
abundance vector describe in section 3.3. This model is a deep neural network
that is partly convolutional. The architecture is describe in table 1. It is first
composed of two separate branches. One branch of the network is identical to
the environmental CNN with the inception v3 architecture without the dropout
layer. The other branch of the network is a small neural network like the co-
occurrence model consisting in two fully-connected layer of size 32 with a batch
normalization after the first one. Instead of making two classifiers, the tensors
from the last layers of the two branches are concatenated and, followed by a
batch normalization and a dropout layer, and finally a single classifier on this fi-
nal tensor. The role of this additional layer is to learn a common representation
space that captures the potential interdependencies between the environment
and the co-occurrences.

Learning set up and parameters: This model is learned with the same
setup, parameters and process than the environmental CNN (see section 3.1)
but with dropout of 0.8 instead of 0.7.

5 Experiments and Results

5.1 Evaluated Models Synthesis

In summary, we evaluate the six following models:
Spa-CC: the spatial closest-location classifier model (see section 3.2).
Spa-RF: the spatial random forest classifier (see section 3.2).
Cooc-NN: the co-occurrence model (see section 3.3).
Env-CNN: the environmental CNN (see section 3.1).
Env-Cooc-LF: late fusion of the probabilities given by the Env-CNN and the
Cooc-NN models (see section 3.4).
Env-Cooc-JNN: joint neural network on environment and co-occurrences (see
section 4).
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Table 1: Architecture of the fusion environmental and co-occurrences model

environmental tensors co-occurrences vector

size: 64x64x77 size: 3336

inception v3 fully-connected (32) + batch
normalization + fully-connected
(32)

size: 2048 size: 32

concatenation + batch normalisation + dropout

size: 2080

classifier

size: 3336

prediction

The 3 first ones (Spa-CC, Spa-RF and Cooc-NN) are exactly the same
than submitted in our participation in the challenge (see FLO 1, FLO 4 and
FLO 2 in [10]). Env-CNN is the new CNN architecture (see section 3.1)
that was trained on the revised GeoLifeCLEF patches. Env-Cooc-LF is the
same fusion model than FLO 5 in [10] but with the new environmental CNN
predictions. Finally, Env-Cooc-JNN is our new model no submitted in our
participation.

5.2 Model Selection and Validation Experiments

We conducted a first set of experiments to evaluate the performances of our
models in the case of an independently and identically distributed validation
set. Therefore, we extracted a part of the training set (10% occurrences selected
at random) and used it as a validation set. For neural networks we extracted
an additional 10% of remaining train occurrences to have a pre-validation set.
We choose two cross-validation protocols :

• For the three neural network models (i.e. co-occurrences neural network,
environmental CNN and environmental and co-occurrences fusion model)
we choose to fix the split between training set, validation set and pre-
validation set (Holdout cross-validation). As, the neural networks took
around one day to be learned completely, it was not workable to repeat
split and learning many times. Thus, we worked with a single validation
set to calibrate all our neural networks models. By fixing the split we
assume to introduce a bias, but this bias is then constant between the

9



Table 2: Results of our models on validation set and official test set.
Model validation MRR official test set MRR
Spa-CC (run FLO 1 of [10]) 0.0640 0.0199
Spa-RF (run FLO 4 of [10]) 0.0781 0.0329
Cooc-NN (run FLO 2 of [10]) 0.0669 0.0274
Env-CNN 0.0916 0.0458
Env-Cooc-LF 0.0908 0.0457
Env-Cooc-JNN 0.0927 0.0479

experiments which allows us to compare the performance obtained on a
single learning.

• For the two spatial models, that require a lower computation time, we
choose to not fix the train-validation split but to learn the model on twenty
random train-validation splits (Monte Carlo cross-validation). The per-
formance of a model is defined by the average performance of the model
on the twenty different splits. Like this we don’t introduce a bias as for
the neural networks but we keep the possibility to compare two models.
Note that for the random forest classifier of scikit-learn we need to have at
least one occurrence of each species in the training set and one occurrence
of each species in the test set. However, some species are present only
once in the data, so we had to remove them for validation experiments of
this model.

5.3 Results

The performance of each model is given in tables 2. In validation, the best
models are those based on environmental and co-occurrences data. The Env-

CNN achieves a pretty good MRR of 0.0916 knowing that the ideal MRR
cannot exceed 0.409 (due to the fact that several outputs exist for the same
entry). On average, it returns the correct species in the first position with a
success rate of 1/30 (0.0330) (knowing that there is 3336 species in the training
set). Concerning the two fusion models, if the late fusion did not result in
a performance gain, the joint model (Env-Cooc-JNN) give a better score
than the environmental model alone (0.0927 vs. 0.0916) and is the best model
evaluated here.

Nevertheless, the other models achieve good results too, all are over 0.06 of
MRR and the random forest (Spa-RF) reaches almost 0.08. They return the
good species label between 1 time out of 40 and 1 time out of 30. These results
show that some fairly simple models can capture a strong information. For all
models, the score on the official GeoLifeCLEF 2018 test set is much lower than
the one obtained in validation. However, the order of performance of the models
is maintained. The Env-Cooc-JNN model remains the best on the official test
set, not far but significantly ahead of the Env-CNN model alone (0.0479 vs.
0.0458).
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These results allow us to draw the following conclusions:

• official test set results vs. validation test set results: overall, the
MRR values achieved by our models on the blind test set of GeoLifeCLEF
are much lower than the ones obtained within our validation experiments
(see Table 2). We believe that this performance loss is mainly due to the
construction of the blind test set, i.e. to the fact that the occurrence of a
given species in the test set does never occur at a location closer than 100
meters from the occurrences of the same species in the training set. This
rule was not taken into account during our cross-validation experiments
on the training set. An other point is that, for the official evaluation, the
prediction size is limited at 100 ranked species for each test occurrences.
We observe that this have also an impact on the MRR score.

• Supremacy of environmental models: the results show that our mod-
els based on environmental data are the best performing ones. The en-
vironmental CNN model (Env-CNN) is ahead from co-occurrences and
spatial models. The late fusion model on environment and co-occurrences
(Env-Cooc-LF) obtained similar scores to the Env-CNN alone and the
Env-Cooc-JNN outperform all other models on the two evaluation pro-
cess. After the environmental models the spatial classifier based on ran-
dom forest (Spa-RF) obtains a very fair performance considering that it
only uses the spatial positions of the occurrences (which makes it very easy
to implement in a real-world system). The co-occurrence model (Cooc-

NN) obtains significantly lower performance, while the closest-location
classifier, which uses only the nearest point species data, is the worst
model (Spa-CC).

• The new environmental and co-occurrences model: the joint envi-
ronmental and co-occurrences model (Env-Cooc-JNN) is the best per-
forming one. It allows a significant gain compared to the environmental
model alone. This result indicates that there is a complementary informa-
tion between co-occurrences and the environment. It also indicates that
taking into account co-occurrences makes it possible to better characterize
the ecological niche of the species compared to abiotic-only models.

• Score with new patches vs. old patches: as discussed in section 2, in
this paper, we used a new set of environmental patches since a part of them
was corrupted in the initial GeoLifeCLEF 2018 dataset. However, the
results of this new study are still in accordance from the one reported in the
context of the challenge ([10]). In particular, the performance achieved by
the environmental CNN on the new dataset confirms its superior predictive
power over other proposed methods during the challenge. After patch
correction, it remains the best model of the challenge, even better than
the model learned on old environmental patches with a score of 0.0458
against 0.0435 (see FLO 3 in [10]).

11



• Species community: the co-occurrence model (Cooc-NN) seems to
generalize better than the closest-location classifier (Spa-CC), though
both methods used almost the same input information which is the species
of the neighborhood. It is likely that the neural network detect the sig-
nature of a community from its input co-occurrences. For example, the
network is able to predict a common Mediterranean species when it gets a
rare Mediterranean species as entry. Indeed, the probability of observing
this same rare species near its known observation is very small, but the
closest location classifier would do the error.

• Non-performing late fusion: the late fusion between the environmen-
tal model and the co-occurrence model (Env-Cooc-LF) did not result
in a performance gain. However the Env-Cooc-JNN shows that there
is some complementary information between co-occurrences and environ-
ment. This information seems to be therefore at the intersection of the
environment and co-occurrences and requires joint learning to be effec-
tively captured.

6 Conclusion and Perspectives

This paper compared four main types of models aimed at predicting species dis-
tribution: (i) a convolutional neural network trained on environmental variables
extracted around the location of interest, (ii) a purely spatial model trained with
a random forest, (iii) a co-occurrence based model aimed at predicting the like-
lihood of presence of a given species thanks to the knowledge of the presence
of other species, and (iv), two fusions models between the environmental CNN
and the co-occurrences model, one late fusion of predictions and one learned
jointly on the to inputs. Our study shows that the convolutional neural network
model maintains a high score with unbiased environmental patches. Indeed, it
achieved the best performance over the others GeoLifeCLEF 2018 submitted
models. However the main contribution of our study is the new joint model on
environment and co-occurrences that achieve good results, significantly better
than the environmental CNN. This shows that there is useful information in
co-occurrences and that this information is at least partly complementary to
environmental information. Few studies currently use this co-occurrences in-
formation. It would be interesting, in future work, to study more about how
useful is the information in co-occurrences and how its complementarity with
the environment can be explained.
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