Skip to main content

Deep Coverage: Motion Synthesis in the Data-Driven Era

  • Conference paper
  • First Online:
  • 2531 Accesses

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Effective robotic systems must be able to produce desired motion in a sufficiently broad variety of robot states and environmental contexts. Classic control and planning methods achieve such coverage through the synthesis of model-based components. New applications and platforms, such as soft robots, present novel challenges, ranging from richer dynamical behaviors to increasingly unstructured environments. In these setups, derived models frequently fail to express important real-world subtleties. An increasingly popular approach to deal with this issue is the use of end-to-end machine learning architectures, which adapt to such complexities through a data-driven process. Unfortunately, however, data are not always available for all regions of the operational space, which complicates the extensibility of these solutions. In light of these issues, this paper proposes a reconciliation of classic motion synthesis with modern data-driven tools towards the objective of “deep coverage”. This notion utilizes the concept of composability, a feature of traditional control and planning methods, over data-derived “motion elements”, towards generalizable and scalable solutions that adapt to real-world experience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agha-mohammadi, A.a., Chakravorty, S., Amato, N.M.: FIRM: Sampling-based feedback motion-planning under uncertainty and imperfect measurements. IJRR 33(2), 268–304 (2014)

    Google Scholar 

  2. Akametalu, A.K., Fisac, J.F., Gillula, J.H., Kaynama, S., Zeilinger, M.N., Tomlin, C.J.: Reachability-based safe learning with Gaussian processes. In: CDC, pp. 1424–1431 (2014)

    Google Scholar 

  3. Alessio, A., Bemporad, A.: A Survey on Explicit Model Predictive Control (2009)

    Google Scholar 

  4. Bai, H., Hsu, D., Lee, W.S.: Integrated perception and planning in the continuous space: a POMDP approach. IJRR 33(9), 1288–1302 (2014)

    Google Scholar 

  5. Berkenkamp, F., Moriconi, R., Schoellig, A.P., Krause, A.: Safe learning of regions of attraction for uncertain systems with Gaussian processes. In: CDC, pp. 4661–4666 (2016)

    Google Scholar 

  6. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot behaviors. IJRR 18(6), 534–555 (1999)

    Google Scholar 

  7. Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B 280(1755), 2012–2863 (2013)

    Article  Google Scholar 

  8. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. IJRR 35(1–3), 161–185 (2016)

    Google Scholar 

  9. Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance evaluation. IJRR 29(5), 585–597 (2010)

    Google Scholar 

  10. Fu, J., Levine, S., Abbeel, P.: one-shot learning of manipulation skills with online dynamics adaptation and neural network priors. In: IROS (2016)

    Google Scholar 

  11. Guldner, J., Utkin, V.I.: Sliding mode control for gradient tracking and robot navigation using artificial potential fields. IEEE TRA 11(2), 247–254 (1995)

    Google Scholar 

  12. Hou, Z.S., Wang, Z.: From model-based control to data-driven control: survey, classification and perspective. Inf. Sci. 235, 3–35 (2013)

    Article  MathSciNet  Google Scholar 

  13. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  14. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE TRA 12(4), 566–580 (1996)

    Google Scholar 

  15. Lee, C.S., Elgammal, A.: Human motion synthesis by motion manifold learning and motion primitive segmentation. In: Articulated Motion and Deformable Objects, pp. 464–473 (2006)

    Google Scholar 

  16. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. JMLR 17(39), 1–40 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Li, Y., Littlefield, Z., Bekris, K.E.: Asymptotically optimal sampling-based kinodynamic planning. IJRR 35(5), 528–564 (2016)

    Google Scholar 

  18. Lin, M., Manocha, D.: Efficient contact determination in dynamic environments. Int. J. Comput. Geom. Appl. 07(01n02), 123–151 (1997)

    Google Scholar 

  19. Onal, C.D., Rus, D.: Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration Biomimetics 8(2), 3–26 (2013)

    Article  Google Scholar 

  20. Pollack, J.B., Lipson, H., Ficici, S., Funes, P., Hornby, G., Watson, R.A.: Evolutionary techniques in physical robotics. In: Evolvable Systems: From Biology to Hardware (2000)

    Google Scholar 

  21. Reist, P., Preiswerk, P., Tedrake, R.: Feedback-motion-planning with simulation-based LQR-trees. IJRR 35(11), 1393–1416 (2016)

    Google Scholar 

  22. Rennie, C., Bekris, K.E.: Discovering a library of rhythmic gaits for spherical tensegrity locomotion. In: IEEE ICRA (2018)

    Google Scholar 

  23. Sabelhaus, A.P., Bruce, J., Caluwaerts, K., Manovi, P., Firoozi, R.F., Dobi, S., Agogino, A.M., SunSpiral, V.: System design and locomotion of SUPERball, an untethered tensegrity robot. In: IEEE ICRA, pp. 2867–2873 (2015)

    Google Scholar 

  24. Tai, L., Liu, M.: Deep-learning in mobile robotics - from perception to control systems: a survey on why and why not (2016). arXiv:1612.07139 [cs]

  25. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: feedback motion planning via sums-of-squares verification. IJRR 29(8), 1038–1052 (2010)

    Google Scholar 

  26. Walsh, G., Tilbury, D., Sastry, S., Murray, R., Laumond, J.P.: Stabilization of trajectories for systems with nonholonomic constraints. IEEE Trans. Autom. Control 39(1), 216–222 (1994)

    Article  MathSciNet  Google Scholar 

  27. Yang, Y., Brock, O.: Elastic roadmaps–motion generation for autonomous mobile manipulation. Auton. Robot. 28(1), 113 (2010)

    Google Scholar 

  28. Zhou, X., Bi, S.: A survey of bio-inspired compliant legged robot designs. Bioinspiration Biomimetics 7(4), (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas E. Bekris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surovik, D.A., Bekris, K.E. (2020). Deep Coverage: Motion Synthesis in the Data-Driven Era. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_15

Download citation

Publish with us

Policies and ethics