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Abstract The ability to reason about and predict the outcome of contacts is
paramount to the successful execution of many robot tasks. Analytical rigid-body
contact models are used extensively in planning and control due to their computa-
tional efficiency and simplicity, yet despite their prevalence, little if any empirical
comparison of these models has been made and it is unclear how well they approx-
imate contact outcomes. In this paper, we first formulate a system identification
approach for six commonly used contact models in the literature, and use the pro-
posed method to find parameters for an experimental data-set of impacts. Next, we
compare the models empirically, and establish a task specific upper bound on the
performance of the models and the rigid-body contact model paradigm. We high-
light the limitations of these models, salient failure modes, and the care that should
be taken in parameter selection, which are ultimately difficult to give a physical
interpretation.

1 Introduction

Real-time planning, control, and state estimation play a central role in modern
robotics. Many contemporary algorithms rely on accurate models of the dynam-
ics of a robot as well as models of interactions of the robot with its environment
([3, 11, 22]). Dynamic frictional interaction between bodies is important to robotic
systems undergoing contact, yet has proven to be a challenging phenomenon to
model. Challenges include, but are not limited to, non-smooth dynamics (i.e., transi-
tions from absence of contact to sticking/sliding contact), near-impulsive forces with
large magnitudes, local deformations (e.g., difficult to predict elastic/plastic inden-
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tations), wave propagation through the bodies (e.g., vibrations along rods from im-
pact), sensitivity to initial conditions, and acting friction—a complex phenomenon
that emerges from the interactions between microscopic surface asperities—through
necessarily coarse models.

Despite these difficulties, various contact models have been proposed and gener-
ally follow one of three paradigms: i) fully deformable, elasto-dynamic models; ii)
pseudo-rigid, compliant models; and iii) rigid contact. Fig. 1 shows, conceptually,
how each paradigm models contact.

(a) (b) (c) (d)

Fig. 1 Contact paradigms: a) Disk motion prior to contact, b) Elasto-dynamic (colors depict degree
of stress), c) Compliant (pseudo-rigid), d) Rigid

The elasto-dynamic paradigm models deformations for contacting bodies over
a finite contact time (i.e., impacts are correctly characterized as non-instantaneous
phenomena), can approximately predict elastic/plastic deformations, and are able
to model vibrations along the object. These modeling capabilities come at a high
computational cost and require identifying greater numbers of system parameters;
their greater predictive power is compromised by uncertainty in initial conditions
of robotics applications. As such, these models have not been prevalent in robotics,
where speed and simplicity play an important role and system identification cannot
yet be conducted accurately in real time.

The class of pseudo-rigid, compliant contact models (often designated “penalty
methods”) is the oldest, beginning with the seminal work of Hertz [10] followed
by numerous authors [15, 17, 19, 25]. These models assume a rigid core and a
thin, deformable layer and apply contact forces that are proportional to the magni-
tude of deformation. Simulation software such as DANCE [23] (open-source) and
ADAMS [18] (proprietary) have been developed under this paradigm. These mod-
els are numerically challenging to use in simulation and control applications due to
discontinuity in the Coulomb friction model [26] and nearly rigid contacts. Mod-
eling pseudo-rigid contact from the opposite direction—softening otherwise rigid
contacts—was pioneered by Lacoursiére [16] in MathEngine and has been used in
numerous rigid body dynamics simulations libraries since (e.g., ODE, Bullet, Mu-
JoCo, DART).

Like full elastodynamic models, pseudo-rigid body models require identifying
system parameters (Young’s Modulus and Poisson’s Ratio); when bodies are known
to be nearly rigid (the case of the objects in the present study), the extra flexibility
afforded by the pseudo-rigid body models can thus be undesirable.
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Rigid contact models resolve contact without permitting geometric intersections
between bodies. These methods assume that deformations are nonexistent and con-
tacts “appear” discontinuously as a function of configuration—meaning that impacts
must be resolved instantaneously. The rigid contact model distinguishes between
non-impacting and impacting contacts; while the combination of complementar-
ity conditions, Coulomb friction, and stiction constraints often yields a determinis-
tic model for non-impacting contact, while impacting contact is underdetermined.
Rigid impact models effectively add constraints (like restitution) to select points in
the feasible impact space (concept described by Chatterjee and Ruina [2]). Rigid-
body impact models span centuries of research, starting with Newton, to contri-
butions from Poisson, and more “modern” treatments [30, 28, 29]. These models
typically require 2–3 parameters (often referred to as normal restitution and friction
coefficient) and are commonly used in robotic manipulation [3, 11] and locomo-
tion [22].

Despite the variety and wide usage of existing rigid impact models, relatively
little empirical evaluation and comparison among models has been conducted. The
performance of such models has not been quantified; consequently, the limitations
of these models are not well understood. Additionally, systematic parameter estima-
tion methodologies have not been developed for the class of rigid impact models.
In this paper we empirically evaluate the performance of six common rigid impact
models used in robotics on a planar impact experiment, demonstrate that a funda-
mental upper-limit for performance of these models exists, and provide a systematic
methodology for optimal parameter identification to maximize the models’ predic-
tive performance. We further show that regions for good/poor predictions can be
identified and demonstrate the wide variability in model parameters depending on
the choice of data used to identify the models.

2 Rigid contact models

Rigid contact models couple the Newton-Euler equations of motion to contact equa-
tions (non-interpenetration constraints, Coulomb friction, stiction, etc.) to predict
forces imparted to the bodies, and, subsequent motion by extension. The class of
rigid contact models makes three simplifying assumptions: i) bodies undergoing
contact sustain negligible deformation (coupling this assumption with convex ge-
ometry implies that a single point of contact need be considered); ii) all impacts
and their resolutions are instantaneous, and therefore velocity changes discontinu-
ously; and iii) the configuration of impacting bodies does not change during impact
(follows from the instantaneity assumption).

Consider Fig. 2, where a planar object makes contact with a fixed horizontal
surface. The configuration of the object is qo ≡

[
x y θ

]T, the velocity vo ≡ q̇o, the

point of contact r ≡
[
rx ry

]T, and the mass and second moment of inertia m and
I respectively. Unless stated otherwise, all points and vectors defined in a “world”
(stationary) reference frame. We can represent a rigid model for contact of a planar
moving body with a fixed surface as a mapping:
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fc : {qo,v
i
o,r,m, I}→ {v f

o} (1)

where the superscripts i and f denote the pre- and post-contact values (recall that the
rigid body assumption, which implies instantaneity, entails that qi

o = q f
o , so we omit

such subscripts from qo). Under the rigid-body assumption, Newtonian mechanics
relates the pre- and post-contact states by:

M
v f

o −vi
o

dt
= J(q,r)TFc → v f

o = vi
o +M−1JTP (2)

where M ∈ R3×3 is the generalized inertia matrix of the rigid body, P = Fc dt de-
notes the impulse imparted to the bodies due to contact (Fc is the non-impulsive
version of this force), and J ∈ R2×3 denotes the Jacobian matrix that maps gener-
alized velocities to contact-frame velocities and contact-frame impulses to general-
ized impulses (via the transpose of the Jacobian). Note that this relation holds for
the moment before and after contact, but is insufficient to determine the contact im-
pulse (the vector operations above yield three equations and six unknowns: v f

o and
P ).

Given the unknown imparted impulse we can solve for the post-contact velocity;
choosing the imparted impulse is precisely the job of the contact models. To gain an
understanding of how contact models choose P , in sec. 2.1 we will briefly discuss
the fundamental constraints of contact. This understanding will lay the foundation
to the system identification formulation as well as the data-driven methods.

Fig. 2 Planar object
making contact with
a horizontal surface.
The contact point is
denoted by C.

2.1 Fundamental constraints of contact

Under the rigid-body assumption, all contact must obey three fundamental con-
straints: i) only compressive impulses may be applied along the surface normal
(contacts are not permitted to pull); ii) impacting bodies must not penetrate; and
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iii) the total system momentum must be conserved. To obtain a visual representa-
tion of the feasible impulse space for 2D contact we adopt the treatment discussed
in [2]. We write the change in momentum of the object due to contact as:

v f
o −vi

o = M−1JTP (3)

We write the change in velocity of the contact point by pre-multiplying both sides
of the expression by J:

J(v f
o −vi

o) = JM−1JTP → (v f
c −vi

c) = M−1
c P (4)

Here vc is the 2× 1 velocity vector of the point of contact c, Mc
−1 ≡ JM−1JT is

the 2× 2 contact space compliance matrix (making Mc the contact space inertia
matrix. We note that the kinetic energy of the system post-contact may not exceed
that of the energy prior to contact; we may write this constraint as:

v f
c
TMcv

f
c = αvi

c
TMcv

i
c, 0≤ α ≤ 1 (5)

Recall that the position of the object does not change during an instantaneous im-
pact, so potential energy remains the same. We re-write this expression using (4),
and after expansion and substitution:

(P +Mcv
i
c)

TM−1c (P +Mcv
i
c) = αvi

c
TM−1c vi

c (6)

The representation of the expression above is that of an ellipse in 2D due to the
positive definite nature of Mc; the term Mcv

i
c simply acts to translate the ellipse

PTM−1c P in P . The union of all ellipses for all 0 ≤ α ≤ 1 gives what we call the
Energy Ellipse [2].

Fig. 3 depicts an Energy Ellipse, where the shaded region is the admissible region
based on the fundamental constraints of rigid contact. Two important features of the
Energy Ellipse are the lines of sticking and maximum compression.

Admissible Impulses

Line of Sticking

Line of Max Comp
Fig. 3 The Energy Ellipse: This el-
lipse is constructed from application
of the conservation of energy law
before and after the contact event.
Points within the ellipse satisfy this
law, and points in the shaded re-
gion satisfy the non-negative normal
velocity component of the contact
point.

The line of maximum compression delimits the region for which the separation
velocity of the contact point changes sign; regions on and above this line obey the
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fundamental contact constraints. Points along the line of sticking signify contacts for
which the relative tangential velocity of the contact point is zeroed due to friction.
The intersection of these two lines is the impulse imparted that eliminates all relative
velocity between the bodies at the contact point. The diagram of the Energy Ellipse
graphically shows that the three fundamental constraints governing the impact are
not sufficient to select an impulse to resolve the impact. Contact models introduce
additional assumptions and constraints to choose a unique point within the feasible
space.

In the next section we briefly introduce the models considered in this paper, and
demonstrate how they select points within the Energy Ellipse.

2.2 Rigid contact models studied in this paper

The purpose of a rigid contact model is to select a point in the feasible impulse space
demarcated with the Energy Ellipse. In this section we very briefly introduce the six
models we used in this study; and refer the interested reader to [6] for further details.
The six models studied are all parameterized by two variables, denoted as (µ,ε)
and often referred to as the coefficient of friction and restitution, respectively. When
the contact-space compliance matrix is diagonal, the former is used to regulate the
magnitude of tangential momentum of the contact point and the latter is used to
regulate the normal component.

The first two models are Anitescu-Potra Newton [1] and Anitescu-Potra Pois-
son [1], which are closely related to Stewart-Trinkle [27], differing primarily in the
restitution used for contact resolution as their names suggest. The Drumwright-
Shell [4] also uses a Poisson-type contact model that computes contact forces that
maximize kinetic energy dissipation. Mirtich [20] is an incremental collision model
and a computational implementation of Stronge’s work [28] relating physical work
done in the compression and restitution phases of an impact. Wang-Mason [29] re-
lates the magnitude of the impulses in the compression and restitution phases of an
impact using a Poisson-type restitution. Whittaker [30, 12] is an algebraic model
that requires solution to a nonlinear system of equations and both 2D and 3D ver-
sions have been studied.

We now define two post hoc models, the Best Post Hoc and the Ideal Rigid-
Body Bound (IRB Bound). The Best Post Hoc model selects the best predict-
ing rigid-body contact model, of the six considered in this paper, after each im-
pact event, and the IRB Bound selects the best predicting impulse from the Energy
Ellipse. We emphasize that the IRB Bound is able to select any possible feasible
impulse, but the Best Post Hoc only selects a model (spanning a sub-space of the
Energy Ellipse). Consequently the IRB Bound quantifies the absolute best perfor-
mance feasible for any possible rigid-body contact model, and the Best Post Hoc
quantifies the best possible performance for the models studied. Neither model is
suitable for making predictions, since each makes their choice post hoc.

Fig. 4 depicts the admissible contact regions for each model, grouped based on
graphical similarity. This similarity is not necessarily indicative of the way the re-
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gions are constructed. These regions are the union of all predicted impulses for all
admissible values of the model parameters.

AP Poisson

Drumwright-Shell

Mirtich

AP Newton

Wang
Whittaker

(a) (b) (c)

Fig. 4 Regions of the admissible contact space covered by each model. Note the similarity between
the models and the limited coverage of the admissible space.

Fig. 4 (a) shows that the Drumwright-Shell and AP Poisson models cover very
similar regions of the space. Fig. 4 also provides intuition for the definitions used
in contact parameters. For example, the coefficient of restitution regulates the mag-
nitude of the normal impulse; therefore, models with vertical side boundaries use
the ratio of the post to pre-contact normal momenta. Fig. 4 (b) depicts the regions
from the AP Newton, Wang-Mason, and the Mirtich models. We note that the defi-
nition of the coefficient of restitution used in these three models relates the relative
normal velocities pre- and post-contact, resulting in fairly similar regions. Fig. 4 (c)
depicts the Whittaker model, for which the horizontal boundaries of the feasible re-
gion imply that the coefficient of friction relates the tangential momenta pre- and
post-contact, differing significantly in interpretation from the previous models.

Two key observations are: i) no single model is able to span the full admissible
region of contact (we further note that the regions covered by the various models are
quite similar in shape); ii) any given model will make predictions only up to the line
of sticking, but not beyond it; therefore the models are not able to predict “back-
spin” (i.e., the tangential velocity of the contact point post-contact changes direc-
tion). This issue is sometimes alleviated by contact models that utilize an additional
tangential restitution, but the physical interpretation and utility of such restitution is
debatable [2].

3 System identification formulation and model evaluation

System identification applied to inertial parameter estimation of robotic systems
has received considerable attention within the robotics research community [7, 5,
9, 13, 14] and several practical implementations have been developed and applied
to industrial robots [21]. Control architectures have also been developed to estimate
and adapt to uncertainties over these dynamic parameters [11, 24], and have been
shown to exhibit asymptotic convergence to desired trajectories in the case of free
space motion of manipulators.
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System identification is a necessary step to maximize the predictive performance
of these models, yet to our knowledge no systematic formulation of this step has
been proposed. To this end, we first propose a system identification formulation in
impulse space, leveraging the Energy Ellipse. Next, we briefly discuss the exper-
imental setup and data collection protocols used in this study; we then apply the
system identification procedure to find the optimal parameters for each of the stud-
ied models, allowing us to empirically compare predictions and use the IRB Bound
and Best Post Hoc models to establish upper limits in predictive performance. Fi-
nally, we study individual experimental trials and demonstrate the large variability
in model parameters across experimental trials (indicating challenges in interpret-
ing parameters). We also quantify the predictive range of each model by evaluating
the number of outcomes across individual instances of the experiment that can be
explained by any choice of parameter set.

To perform system identification, we first compute the impulse imparted on the
object from pre- and post-contact states (Fazeli et al [7]) under the ideal rigid body
impact model by solving:

PIRB = arg min
P

||M(v f
o −vi

o)−JTP ||2 (7)

Then we can identify the parameters for a single impact by solving the following
optimization program:

(µ∗,ε∗) = arg min
(µ,ε)

||PIRB−Model(µ,ε)||2 (8)

s.t. 0≤ µ ≤ µs 0≤ ε ≤ 1 (9)

The optimization program is convex within the constraints (as will be explained in
more detail in Sec. 3.2.1) and takes place in the space of imparted impulses and the
Energy Ellipse. The upper bound on the coefficient of friction µs is the lowest value
of the coefficient of friction for which the model predicts sticking contact and can be
found with a line search using a bisection method. For values of µ > µs and a fixed
ε , the predicted impulse from the model will remain the same and the cost function
will not have a gradient, making the optimization ill-posed numerically. This implies
that pre and post contact conditions exist which do not provide sufficient information
to estimate µ correctly and render this parameter unobservable, more on this in
Sec. 3.2.2.

To perform system identification for a batch of impacts, we simply sum up the
cost function over the set of impacts (Sec. 3.2.1).

3.1 Experimental data collection

In order to evaluate and compare the contact models we conceived the experimental
setup depicted in Fig. 5 [6, 7]. The purpose of the apparatus is to autonomously
collect measurements of the trajectory of falling planar objects initialized from a
specifiable set of initial conditions. We chose this experiment because it captures
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key features of a dynamic frictional interaction while being amenable to careful
monitoring and instrumentation resulting in high quality measurements; for further
details see [6].

Fig. 5 Experimental setup:
Autonomous data collection
for planar impact data. A
planar object is constrained to
move between two lubricated
vertical glass planes. The robot
uses a directional magnetic
latch to pick up the object
across the glass and provide
control over position and
velocity of the object. The
Vicon motion capture system
is used to track the states of the
object.

The experimental setup is composed of a “dropping arena” designed to constrain
the motion of planar objects to a plane using lubricated glass planes. The planar
objects are equipped with markers to be tracked using the Vicon motion capture
system at 250 Hz, and directional magnets allowing the robot to latch onto the object
and prescribe desired initial state to the object for each drop.

We collected a total of 2,000 drops. In some instances the tracking system may
lose frames or suffer spurious errors due to reflections; to detect and remove these
effects each experimental run was subjected to a series of tests to validate the cor-
rectness of the measurements. The three most important tests were: i) the energy
test: verifies constant energy during ballistic motion and energy loss during times
of contact, ii) a frame drop test, and iii) a deviation test: checks deviations of tra-
jectories during ballistic motion from parabolic paths. A total of 1,718 of the 2,000
drops passed all tests, and we used this set for the rest of this study. An example of
the recorded configurations for one experiment is shown in Fig. 6.

To detect the time of contact we use the fact that the object undergoes ballistic
motion, consequently the acceleration of the object is smooth. Any impact event
induces a spikes in the second time derivative of the state vector, and we use a
threshold on these spikes to detect events. We further use the ballistic motion of the
object to fit parabola to the pre- and post-contact trajectories, thereby mitigating the
effects of noise on the state measurements and yielding better approximations to
velocities of the object; for more details see [6].

3.2 Results of system ID and model prediction performance

We conduct the identification in two scenarios, once in batch (Sec. 3.2.1 ensemble
parameters), and once for individual impacts (Sec. 3.2.2 individual best parameters).
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Fig. 6 The configurations of the object as a function of time during an experimental run. θ is in
radians but has been scaled by the radius of gyration of the object.

The former scenario will allow us to evaluate the performance of the models in
predicting outcomes on previously unseen data, and we will use the latter to show
the large variation in parameters across impacts and limitations in the predictions
made by the models.
3.2.1 Ensemble parameter identification

Ensemble parameters were identified from a randomly selected subset of the data as
per the procedure described in Section 3. Fig. 7 (a) shows the shape of the cost func-
tion. Thifunction is convex, which is to be expected since the region of admissible
impulses predicted by all models is convex and the values of the predicted impulses
grow proportionally to the magnitudes of the parameters. Intuitively, if there exists
a pair of parameters for a given impact that perfectly predicts the impulse, then the
cost associated with that pair would be zero and all other points within the convex
set would have error values that grow proportional to deviations from the optimal
pair. For a point outside the set of admissible impulses—due to the imposed con-
straint µ ≤ µs—then there is a point that lies on the boundary of the set for which
the distance takes on a minimum.

Fig. 7 (b) shows the convergence of the parameters as a function of the number of
data used for the Whittaker model; for every k contact events we selected 20 sets of
size k at random without replacement from the experiments. Tab. 1 lists the results
of the identification for all 6 models for k = 120.

Tab. 1 shows that the values for the coefficient of friction found for each model
are much lower than the value (0.3) estimated from an inclined surface experiment
between PLA (material of the object used) and Aluminium (material of the impact
plate). We believe that the major contributing factor to the discrepancy is the com-
plex interaction that the coefficient of friction tries to model in the highly dynamic
dropping experiments. The object can undergo a number of rich and difficult to
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Fig. 7 a) Cost function plotted as a function of the parameters for the Whittaker model for 120
drops. b) Convergence behavior of the model parameters as a function of number of contacts used
for the identification, the solid colored lines are the average parameter values over a random set of
20 samples and the dashed black lines depict 1 standard deviation.

model interactions in a very short period of time, such as small local deformations,
finite-time impact, vibrations, and impulsive torsional frictional forces (in conjunc-
tion with the modeled linear ones). The use of just two parameters, which in this
case are state independent, is not sufficient to describe the resulting behavior, and
the identified parameters lose meaning as they are compensating for all the unmod-
elled dynamics. In contrast, the inclined surface experiment is slow and controlled,
and one parameter is more descriptive of the observations. This is a known phe-
nomenon, [2] discusses the simplicity of impact models, in that they attempt to cap-
ture a complicated phenomenon in a minimalistic way and with intuitive parameters.
This intuition is valuable: it gives a direct interpretation to the way these parameters
affect the outcome of a prediction, but it is unreasonable to expect the values found
for these parameters to match those found from other experiments. The coefficient
of friction in this context is not necessarily the same as that measured from the in-
clined surface experiment, though they have the same name; this thought will be
elaborated upon in Sec. 3.2.2. It is important to note that using the inclined surface
experimental value for µ leads to significantly poorer predictive accuracy. Fig. 8

Table 1 Average-best parameter identified values and the percentage a model was chosen as the
best and worst model

Model µ ε Best% Worst %
DrumShell 0.081±0.008 0.516±0.009 4 11
AP Poisson 0.101±0.007 0.526±0.008 7 6
AP Newton 0.084±0.007 0.547±0.009 25 0

Mirtich 0.062±0.009 0.558±0.010 17 43
Wang-Mason 0.120±0.008 0.537±0.010 16 10

Whittaker 0.111±0.008 0.484±0.011 31 30

depicts the estimated PDF of the `2-norm error of predicted vo (we normalize the
angular velocity by the radius of gyration so that the linear and angular terms are
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of the same order). The Best Post Hoc model is also plotted to show a performance
upper bound on the analytical model; that is to say, if, for each trial, we knew a pri-
ori which model would perform best. Tab. 1 shows the number of times each model
was chosen as the best and worst performing for the dataset. We can see that the
Whittaker model is quite erratic, while the most consistent model is the AP Newton
model, with a significant number of best predictions and no worst.

The IRB Bound model is the result of directly searching for the best impulse
that explains the difference between pre- and post-contact velocities subject to the
constraints of rigid-body point contact. This post hoc model quantifies the absolute
best possible performance for any rigid-body contact model under the assumption
of point contact.

It is important to note that the error introduced by the rigid body assumptions is
not distinguishable from error resulting from uncertainty in sensor measurements,
but our setup was designed to minimize the latter errors. The implication of this am-
biguity is that it may be impossible to construct a zero error model without violating
the rigid body or rigid contact models, meaning that the best we can hope to achieve
in terms of performance is the “Ideal” line. We can further examine the errors made
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APNewton
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Whittaker
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IRB Bound

Fig. 8 Estimated probability density functions (PDFs) of the `2-norm error in post-contact velocity
of the center of mass.

in the models’ predictions to quantify regions of the input space in which we expect
models to perform comparatively better and worse. This information is valuable if
we are interested in selecting initial conditions that are easier to predict or reject-
ing initial conditions that may be more difficult to predict (for purposes of control).
Fig. 9 depicts the performance of the AP Poisson model in predicting the outcome
of a contact (error in predicting the velocity of the COM) as a function of the nor-
mal and tangential components of the pre-contact system momentum measured at
the contact point. The region in which the tangential momentum at the contact point
is near zero or changes direction proves to be the most difficult to predict; we will
discuss this phenomenon in Section 3.2.2.
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3.2.2 Parameter identification for individual impacts

The optimization in Section 3.2.1 to find the ensemble parameters hides some of
the details of individual trials. In this section we find the values of (µ,ε) that best
explain each drop, for example Fig. 10 shows the identified parameters for the AP
Newton model, and we make the following observations:
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Fig. 10 Identified values of (µ,ε) for each drop, where a) parameter values colored by the ability
of the identified pair to predict the impulse, and b) distribution of the parameters.

1. We observe a sharp peak at µ = 0.
2. The lower left region in Fig. 10a shows a loss in performance.
3. The distribution of ε is uni-modal.
4. The means of the distributions of µ and ε are very close to the “optimal” values

computed for the ensemble parameters.
5. Neither distribution is tightly localized about a single value. This is perhaps the

most important feature to be noted since it is common practice to select a single
value of the parameters.
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The fact that such variation in parameter values exists, particularly for the value
of µ , begins to highlight issues of interpretation of the parameters. The intuitive ex-
pectation for a coefficient of friction is that it should be constant for all impacts, but
these experiments demonstrate that this is not the case. The coefficient of friction
in these models acts more similarly to a restitution variable that regulates the mag-
nitude of the tangential impulse as a function of the pre-contact conditions rather
than as the typical notion of the coefficient of friction (e.g., that used in the inclined
surface experiments).

Part of the challenge in identifying µ is that not all impacts are informative. Im-
pacts that stick provide no information other than a lower bound for µ . Effectively,
any coefficient of friction above the value found by the identification is also able to
explain the interaction equally well which partially explains the dispersion in iden-
tified µ . To prevent parameter drift and an ill-posed optimization, we use µs as a
bound on the coefficient of friction.

We now look at the anomalous cases for which µ = 0 in isolation; Fig. 11a shows
such an example. When the contact point lies directly below the center of mass of
the object, the Energy ellipse’s major axis aligns with the normal impulse direction
and the convex set of predictions for the outcome of the contact collapses to a very
narrow band, resulting in a very small predictive range. A small prediction range
coupled with sensor noise the predictive range of the models. In the case shown
in Fig. 11, the space spans to the left, but the measured impulse lies to the right;
consequently, the value of the coefficient of friction tends to zero to get as close as
possible to the target value. This issue highlights the difficulties in interpreting µ as
the coefficient of friction within the context of these impact models. The second
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Fig. 11 a) An example of µ = 0, this impact is characterized by the point of contact being located
directly under the center of mass of the object. In this situation, the Energy Ellipse’s axis is aligned
to the normal impulse direction. b) Example of a measured impulse outside the convex set of
predictions made by the model due to “spin-reversal”.

set of anomalous cases is characterized by the inability to predict “spin-reversal”, an
example of which can be seen in Fig. 11b). In these scenarios, the measured impulse
does not fall within the predictive range of the model and a residual error will always
be present, thereby explaining the region in Fig. 10 where the parameters take on
values with non-zero errors. Tab. 2 quantifies the fraction of data that lies within the
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convex set of each model. The relative ratios are quite low which indicates that the
models suffer from potentially restrictive prediction spaces. Note that models with
similar regions in the energy ellipse exhibit similar ratios, exemplified by the AP
Poisson and the Drumwright-Shell models.

Table 2 Fraction of drops that lie within the predictive range of each model

DrumShell AP Poisson AP Newton Mirtich Wang-Mason Whittaker
Fraction 0.355 0.357 0.458 0.413 0.455 0.456

4 Conclusion and Summary
Rigid contact models are popular due to their simplicity and computational effi-
ciency yet they exhibit clear limitations in predictive power and accuracy. In this
paper, we empirically demonstrated the inability to predict back-spin and challenges
with both system identification and interpretation of model parameters.

The limitations of these analytical models can partially be attributed to the pa-
rameterization of a subset of the admissible impulse space. The independence of
the parameters from the inputs to the models and the limited regions for prediction
(Tab. 2) contribute to the errors in predictions. Two approaches can remedy these
shortcomings, we may either learn the mapping directly from the impulses and do
away with the parameterization all together (data-driven approach) or use the model
predictions as a prior and correct the impulse predictions using a data-driven model
(data-augmented approach). In Fazeli et al [8] we explore these approaches and
compare performances across analytical and learned models.

The rigid models studied assume a single point contact and instantaneous impact.
This assumption is only an approximation and the impact event occurs over a finite
time and involves a small amount of local deformation leading to a distributed im-
pact impulse over a patch. In Fazeli et al [8] we develop a data-driven contact model
that accounts for this deformation using an instantaneous wrench and demonstrate
that the resulting model can significantly outperform the rigid contact models.

This study demonstrates the importance of data in model validation and high-
lights the importance of experimentation in parameter selection, and its potential
role in developing data-driven contact models [8, 31]. We hope that this study
serves as motivation to experimentally validate other models frequently leveraged
in robotics and leads to their better understanding.
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[16] Lacoursiére C (2007) Ghosts and machines: Regularized variational methods for interactive

simulations of multibodies with dry frictional contacts. PhD thesis, Umeå University
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