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Abstract— Autonomous exploration is a complex task where
the robot moves through an unknown environment with the
goal of mapping it. The desired output of such a process is
a sequence of paths that efficiently and safely minimise the
uncertainty of the resulting map. However, optimising over the
entire space of possible paths is computationally intractable.
Therefore, most exploration methods relax the general problem
by optimising a simpler one, for example finding the single
next best view. In this work, we formulate exploration as a
variational problem which allows us to directly optimise in
the space of trajectories using functional gradient methods,
searching for the Next Best Path (NBP). We take advantage of
the recently introduced Hilbert maps to devise an information-
based functional that can be computed in closed-form. The
resulting trajectories are continuous and maximise safety as
well as mutual information. In experiments we verify the ability
of the proposed method to find smooth and safe paths and
compare these results with other exploration methods.

I. INTRODUCTION

The objective of autonomous exploration is to produce
a consistent representation of the environment. It involves
complex decision-making, selecting the trajectories a robot
should take in order to minimise the overall uncertainty in
the model. Essentially, exploration is a path optimisation
procedure to find trajectories that efficiently learn the envi-
ronment. The difficulty lies in the dimensionality and shape
of the search space which prohibits a closed-form solution
to the general exploration problem, making autonomous
exploration an active field of research. The plethora of
exploration methods in the literature offer different strategies
for relaxing this intractable problem, most commonly by
reducing the search space dimensionality, for example by
discretising the path.

In this work, we formalise exploration as a variational
problem. We present a novel approach based on functional
gradient descent (FGD) to efficiently optimise exploratory
paths over continuous occupancy maps. We use stochastic
FGD to overcome the limitations of standard FGD methods
in order to ensure convergence. This process enables optimi-
sation over the entire path, resulting in continuous smooth
paths that maximise the overall map quality while keeping
the robot safe from collisions. Our contributions are:

1) A Next Best Path method. An information-driven vari-
ational framework for safe autonomous exploration in
continuous occupancy maps. Path optimisation is per-
formed directly in the space of trajectories using a
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combined objective; which considers safety, efficiency
and information. The method is invariant to the choice
of path representation as it uses stochastic functional
gradient descent to optimise the objective along the
entire path.

2) Developing a mutual information (MI) variational ob-
jective for continuous occupancy maps. This replaces
the common and expensive approach of computing
MI explicitly over the entire map for each evaluated
path. Instead, our method modifies the path using
MI functional gradients without the need to compute
MI explicitly. These gradients are obtained from local
perturbations on the map model which are derived in
closed-form.

The remainder of this paper is organised as follows.
Literature on autonomous exploration is surveyed in Section
II. The basic building blocks, such as Hilbert maps and FGD
are reviewed in Section III. Section IV describes in detail the
functional exploration algorithm. Experimental results and
analysis are presented in Section V. Finally, Section VI draws
conclusions on the proposed method.

II. RELATED WORK

The goal of autonomous exploration is to produce a con-
sistent environment model by minimising any uncertainties.
In a mapping context, exploration is the process of producing
high-fidelity maps [1]. This is a complex problem mainly due
the dimensionality of the solution space. Most exploration
methods use occupancy grid maps in their planning [2],
rather than continuous occupancy maps. Regardless of the
type of occupancy map, exploration methods take one of two
forms; frontier-driven or information-theoretic. Juliá et al. [3]
provide a quantitative comparison between these exploration
methods.

Frontier-based exploration methods drive the robot toward
the borders of the known space [4]. In a grid map, frontiers
are clusters of free cells neighbouring unknown cells. Once
frontiers are identified, a separate path planner finds a safe
path toward a selected frontier. Various utility functions
can be used when choosing the most desirable frontier.
The simplest form considers only the travelling costs [4].
González-Baños and Latombe [5] choose a goal point based
on a score of expected coverage penalised by the travelling
costs. A generalised approach for goal point selection given
several criteria were suggested by [6].

Information-theoretic exploration methods optimise a util-
ity function associated with the uncertainty of the map. Early
work optimised the selection of a discrete goal point rather
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than optimising an entire path. Elfes [7] suggested MI as
an information metric for exploration, while [8] proposed
a next best view (NBV) approach using the entire map
entropy. Vallvé and Andrade-Cetto [9] use a potential field
computed over the entire configuration space to find explo-
ration candidates. However, this method assumes discrete
steps, disregarding the reduction in entropy between con-
secutive robot poses. Charrow et al. [10] combined frontier
and information-based methods. While they optimised the
information heuristic over a continuous control input space,
in effect the path consisted of a fixed number of time steps.
Lauri and Ritala [11] formulate the exploration problem as
partially observable Markov decision process (POMDP) and
used sample-based approach to solve the POMDP. Similarly
to the work of [10], the action space is continuous, however,
the path consists of a finite set of time steps, which is
in contrast to the proposed method where optimisation is
performed in the space of trajectories.

Only a handful of algorithms tackle exploration in con-
tinuous occupancy maps. Yang et al. [12] employed rapidly-
exploring random tree (RRT) to sample a set of feasible
path candidates for a Gaussian Processes (GPs) maps. An
adaptation of the frontier method for continuous occupancy
maps was introduced by [13], where a discretised frontier
map was built from the continuous map. More recently,
Jadidi et al. [14] employed MI to rank these frontiers.
Bayesian optimisation (BO) has also been used for explo-
ration. Marchant and Ramos [15] utilised BO to optimise the
selection of continuous informative paths over a continuous
environmental model. Francis et al. [16] used constrained
BO for safe exploration to learn an MI objective. While
BO optimises over continuous paths, in practice it uses only
a limited path parameterisation such as quadratic or cubic
splines.

In summary, the exploration method proposed in this
paper uses an information-based utility to optimise path
selection. Employing calculus of variations, the optimisation
procedure is invariant to the path representation. This is a
major difference from existing methods that typically depend
on a finite path parametrisation, such as finite sets of time
steps or waypoints, or employ simple representations such as
quadratic or cubic splines. Instead, our method can utilise a
highly expressive path representation; such as non-parametric
[17] or approximate kernel paths [18]. As our method uses
continuous occupancy maps, the MI utility can be derived
directly from the map model in closed form, which simplifies
computations.

III. PRELIMINARIES

In this section, we review the basic building blocks of the
functional exploration method; Hilbert maps and functional
gradient path planning. In section IV, we adapt these building
blocks to support an information-driven safe exploration
algorithm.

A. Hilbert Maps

A Hilbert map [19] is a continuous discriminative model
that predicts occupancy based on sensors observations. Un-
like grid maps [20] that discretise space into a set of
independent cells, Hilbert maps maintain neighbourhood
information. Other continuous mapping methods based on
Gaussian Processes (GPs) [13], [21] hold similar properties.
However, these methods are limited by the scalability of the
associated GPs. Hilbert maps, on the other hand, use an
approximate kernel logistic regression model, which renders
updating and querying the map independent of the dataset
size. In addition, stochastic gradient descent (SGD) is used
to enable real-time performance.

Formally, a Hilbert map is a logistic regression (LR) clas-
sifier model that predicts occupancy anywhere in the map. It
uses nonlinear projection into a reproducing kernel Hilbert
space (RKHS) in order to represent a real environment.
Given a set of weights w, the predictive occupancy posterior
transforms into:

p(y =+1|x,w) = 1
1+ exp(−wT Φ̂(x))

= σ(wT
Φ̂(x)). (1)

In an occupancy map context x ∈RD represents either a 2D
or 3D location, while y ∈ {−1,+1} denotes two possible
binary outputs, unoccupied and occupied. We define σ as
the logistic sigmoid function. Φ̂(·) is a set of features that,
in expectation, approximate the inner product defined by
the kernel function k(·, ·). This approximation enables fast
training of a map model, suitable for use in a robotics setting.
There are several methods to approximate the kernel matrix
[19]. Given the desired approximation, the weights vector w
can be then trained by minimising the regularised negative
log-likelihood (NLL) as commonly performed in logistic
regression methods [19].

B. Functional Gradient Descent

Functional gradient descent (FGD) is a variational frame-
work to optimise nonlinear models. It has been successfully
applied to motion planning problem in recent years with the
main objective of producing safe, collision-free paths. It was
recently suggested as an alternative approach to sampling-
based methods for path planning using occupancy maps [17].
In this section, the general method is discussed, before the
extension for autonomous exploration is described in section
IV.

We first introduce notation. A path, ξ : [0,1]→ C ∈ RD,
is a function that maps a time-like parameter t ∈ [0,1] into
configuration space C. The objective functional U(ξ ) : Ξ→R
returns a real number for each path ξ ∈Ξ, corresponding to a
cost or loss associated with ξ . U(ξ ) captures path properties
such as smoothness and safety. The goal of the optimisation
process is to find a path that minimises the overall costs:

ξoptimal = argmin
ξ

U(ξ ) (2)

Finding the optimal path is performed by following the
functional gradient of the objective. This is an iterative



process where the functional gradient update rule is derived
from a linear approximation of the cost functional around
the current trajectory, ξn:

U(ξ )≈U(ξn)+∇ξU(ξn)(ξ −ξn). (3)

We enforce small updates by adding a regularisation term
based on the norm of the update:

ξn+1 = argmin
ξ

U(ξn)+(ξ−ξn)
T

∇ξU(ξn)+
1

2ηn
‖ξ−ξn‖2

Λ.

(4)
The regularisation term ‖ξ − ξn‖2

Λ
= (ξ − ξn)

T Λ(ξ − ξn) is
the squared norm with respect to a metric tensor Λ and ηn is
a user-defined learning rate. By differentiating the right hand
side of (4) with respect to ξ , we obtain the iterative update
rule:

ξn+1(·) = ξn(·)−ηnΛ
−1

∇ξU(ξn). (5)

We note that (5) forms a general update rule, regardless of the
choice of the objective function or the path representation.
The only requirements are that Λ is invertible and the
gradient ∇ξU(ξn) exists.

The general rule for computing the objective functional
gradient ∇ξU stems from the calculus of variations. As
a variational method, the objective functional must take
the form of an integral or sum. Generally, the objective
functional F takes the form F(ξ ) =

∫ b
a v(t,ξ ,ξ ′)dt, therefore

the functional gradient can be computed using the Euler-
Lagrange equation [22]:

∇Fξ (ξ ) =
∂v
∂ξ
− d

dt
∂v
∂ξ ′

. (6)

These gradients are then used to compute the iterative
update rule of (5). Constraints are incorporated using KKT
conditions, similar to [23], and are an explicit part of the
path representation.

IV. FUNCTIONAL EXPLORATION

The following section introduces our proposed functional
exploration method. The use of functional gradient descent
on an information-based objective results in trajectories
which are highly expressive and safe while optimising the
amount of information gained along the path.

A. Notation

We first introduce the notation used throughout the follow-
ing sections. The workspace of the robot W ∈R3 defines the
space where obstacles lie and the map is queried. In addition,
to account for the robot’s finite size or its pose uncertainty,
a set of body points, B ∈ R3 are defined. As the trajectory
ξ lies in configuration space C, we set a forward kinematic
transform g that maps a robot configuration, ξ (t) and body
point b ∈ B to a point in the workspace g : C×B→W . To
simplify notation, we define xt = g(ξ (t),b) as the workspace
location for the pair (t,b). We assume that the robot is
equipped with a sensor, such as laser range finder, with a
maximum range Rmax and an angular field of view Ω.

For a given function ξ , a functional returns a single
value U : RD→R. Functionals are usually represented by an
integral. However, whenever we compute the safety or MI
functionals, the cost is computed over W . As a result, the
functional must be approximated by a reduce operator, e.g.,
average or maximum, that aggregates the cost along ξ (·).
Given a workspace cost function c

(
g
(
ξ (t),b

))
: R3 → R,

we can approximate the functional by a sum over a finite set
T (ξ ) = {t,b}i of time and body points:

Uobs,MI(ξ )≈ ∑
(t,b)∈T (ξ )

cobs,MI

(
g
(
ξ (t),b

))
≡

∑
(t,b)∈T (ξ )

cobs,MI(xt). (7)

In addition, we note the difference between gradient opera-
tors. We define ∇ as a gradient with respect to ξ , while ∇x
is the workspace gradient.

B. Exploration Functional Objective
The goal of autonomous exploration is to safely reduce

the uncertainty of the environment model. Some exploration
methods compute a finite set of go-to points that locally
maximise information gain. Other methods optimise an
information-based objective over the entire path, however,
these are highly dependent on the path parameterisation.
Formulating exploration as a variational problem and solving
it using functional gradient descent, provides a general
optimisation framework which is invariant to the choice of
path parameterisation and can even take a non-parametric
form as shown in [17].

The approach taken in our work relies on maximising
mutual information along the entire path while keeping the
trajectory safe. This is attained by constructing an objective
functional U which is a weighted sum of three components:
• Uobs which maintains path safety by penalising proxim-

ity to obstacles,
• Udyn which penalises based on the shape of the trajec-

tory, keeping path smooth and short and,
• UMI which rewards the mutual information gained along

the path.
The overall objective takes a form of a weighted sum, as is
also shown schematically in Figure 1;

U(ξ ) = βobsUobs(ξ )+βdynUdyn(ξ )+βMIUMI(ξ ). (8)

Here βobs,βdyn,βMI are user-defined coefficients. In the fol-
lowing sections, we will introduce the different components
of the functional objective; Uobs(ξ ), Udyn(ξ ) and UMI(ξ ).
For each component we will derive its functional gradient
assuming a Hilbert map as the environment model.

1) Obstacle Functional Uobs(ξ ): Following our previous
work [17], we define the workspace cost function cobs as
the map occupancy of (1), i.e. cobs(xt) = p(y = +1|xt).
Given (7), the obstacle functional can be approximated by
Uobs(ξ )≈∑xt∈T (ξ ) cobs(xt). The functional gradient can then
be computed as

∇Uobs = ∑
xt∈T (ξ )

J(xt)∇xcobs(xt). (9)



+∇ξUdyn

∇ξUobs

∇ξUMI

Sample:
(t∗, u∗) ∈

T

Map
M

Path
ξ

∇ξU

Fig. 1: Given a sample (t,b), the functional U is the weighted
sum of the various objectives; obstacle, dynamic and MI. M
and ξ are global variables used to compute these objectives.

Here, J(xt) is the workspace Jacobian. Since the map model
is continuous and at least twice differentiable [19], the spatial
gradient of occupancy can be computed in closed-form from
(1) as:

∇xcobs(xt) = ∇x p(y =+1|xt) =

σ

(
wT

Φ̂(xt)
)(

1−σ
(
wT

Φ̂(xt)
))

wT
∇xΦ̂(xt). (10)

2) Path Dynamics Functional Udyn(ξ ): Udyn(ξ ) penalises
kinematic costs associated with ξ . The straightforward ap-
proach is to regularise on the trajectory length, which can be
attained by optimising the integral over the squared velocity
norm: Udyn(ξ ) =

1
2
∫ 1

0

∣∣∣∣ d
dt ξ (t)

∣∣∣∣2 dt. Following the Euler-
Lagrange equation (6), the functional gradient of Udyn is

∇ξUdyn(ξ (t)) =−
d2

dt2 ξ (t). (11)

3) Mutual Information Functional UMI(ξ ): Mutual in-
formation (MI) is used in many autonomous exploration
algorithms as an information-based objective function [24].
In this context, MI is defined as the reduction in entropy
conditioned on expected observations. Given an occupancy
map M and a set of expected observations ẑ, we can define
MI as:

MI(M; ẑ) = H(M)−H(M|ẑ) (12)

where H denotes Shannon’s entropy. The main computa-
tional challenge of (12) is resolving the expected observa-
tions ẑ. These are emulated observations that are produced
by ray casting based on the sensor model. Determining ẑ and
MI over an entire path is computationally intensive, leading
most exploration methods to solve a relaxed MI optimisation
problem, by either discretising or parameterising the paths.

The approach taken in this work uses the MI functional
UMI and its gradient to maximise MI efficiently over the
entire trajectory. To compute UMI , an MI reward func-
tion cMI(xt) ≈ MI(M; ẑ|xt) is computed over the robot’s
workspace W, in a similar fashion to the computation of Uobs.
However, computation of the conditional entropy H(M|ẑ)
entails changes to the Hilbert map model.

In the following section, we will describe the stages
involved in computing the MI functional gradient. The three
stages executed when computing ∇UMI are:

Algorithm 1: Stochastic Functional Exploration
Input: M: Occupancy Map.

ξ (0): Start state.
Psa f e: No obstacle threshold.
Optional: boundary conditions ξb, initial guess

ξo.
Output: woptimal
n = 0
while solution not converged do

//Stochastic sampling:
S∼U [0,1] Draw mini-batch
foreach xt ∈ S do

Pocc←M(xt)) Eq. (1)
if Pocc ≤ PSa f e then

ẑ f (xt)← simulated observations
∇Uobs← ∂

∂ξ
xt
(
σ

(
wT Φ̂(xt)

)(
1−

σ
(
wT Φ̂(xt)

))
wT ∇xΦ̂(xt)

)
Eq.(9)

∇Udyn←− d2

dt2 ξ (t) Eq.(11)
∇UMI ←

∑m∈mmax(xt )
∂

∂ξ
xt∇xMI

(
M(m); ẑ f (xt)

)
Eq.(17)

∇U ← Combine using Eq.(8)
wn+1← wξ

n −ηnΛ−1ϒ̂(ti)T ϒ̂(ti)∇ξU(ξn)(ti)
update rule Eq. 22

end
end
n = n+1

end

• Simulating expected observations
• Creating a perturbed Hilbert map model M|ẑ
• Obtaining MI functional gradient ∇UMI

Fig. 2 shows the steps required for MI gradient computations
at a given time t.
Simulating expected observations

Similarly to the obstacle functional, the MI functional
is approximated by a sum over a finite set of points xt ;
UMI(ξ )≈∑xt∈T (ξ ) cMI(xt). cMI is chosen in a way that will
estimate the infinitesimal change in MI at xt . To compute
cMI we emulate observations by ray casting, as done in
other information-driven exploration techniques [7], [14].
However, while other methods evaluate the MI reward over
the entire field of view of the sensor, our method is only
interested in the expected observations at the sensor’s limits
(maximum range). The rationale behind this approach is
that new information about the environment will be mainly
obtained at the sensor’s sensing limits Rmax. Fig. 3 illustrates
the difference between the two approach to compute MI.

The output of the ray casting process is a set of unoccupied
expected observations ẑ f for any time and body point xt .
ẑ f differs from the expected observations of (12), as we are
only interested in unoccupied (no obstacle) observation at the
sensor maximum range. Fig. 2b depicts ẑ f as cyan diamonds.
Creating a perturbed Hilbert map model M|ẑ

In this step, we generate M|ẑ f , the modified Hilbert map



Fig. 2: MI Functional gradient. The MI gradient is computed for a time sample t given a continuous occupancy map OM
(a). The current path estimate ξ is depicted in blue, while the expected pose at time t is shown in green. The modified OM
(b) is generated using hypothetical observations, shown as cyan diamonds, based on a robot’s configuration at time t. Only
observations at the edge of sensor range are considered for t. The entropy of the OM (c) and the modified OM (d) can be
computed from the occupancy values (high entropy shown in white), which produces MI (e). The MI gradient is estimated
by samples around observations (shown as black arrows). Accumulating gradient samples results in the overall MI gradient
for t, shown by the yellow arrow on the robot. Note that the images of occupancy, entropy and MI are only given here for
presentation purposes and full maps are never computed. The planner only accesses occupancy, entropy and gradient values
through stochastic samples.

conditioned on the expected observations. The straightfor-
ward approach is to train a new map model based on ẑ f .
This approach is commonly used in exploration methods for
occupancy grid maps. However the computational costs of
such an approach are high, as new maps must be generated
along the entire trajectory during optimisation. Instead, we
propose the use of a perturbed Hilbert map model.

The perturbed Hilbert map model modifies the predic-
tive map model σ

(
wT Φ̂(x)

)
(1) with a perturbed model

σ
(
Ψ(x, ẑ f )

)
. This model uses the expected observations as

a dataset ẑ f =
{

xi,ri
}N

i=1, where xi ∈ RD is a point in 2D
or 3D space and ri is the log odds of the desired predictive
occupancy posterior at xi, to fit a Gaussian process (GP):

Ψ(x, ẑ f )∼ GP
(
wT

Φ̂(x),k(xi,xi)
)
. (13)

We note that wT Φ̂(x) of the current occupancy map is the
mean function of the GP. The kernel function k is the same
function approximated by the Hilbert map features Φ̂(·). The
predictive probability of the perturbed map p̂ is given by:

p̂(x, ẑ f ) = σ
(
Ψ(x, ẑ f )

)
(14)

Fig. 2b depicts the resulting occupancy map following the
embedding of the expected observations in an existing map.

The computational cost of the perturbed Hilbert map is
cubic in the number of expected observations |ẑ f |. As we
are only modifying the map in a small region, a small set

of observations is required to generate perturbation, keeping
the computation load low.
Obtaining MI functional gradient ∇UMI

The workspace MI cost function for xt is defined
as the MI summed over the entire map, i.e. cMI(xt) =∫

M MI
(
M(m); ẑ f (xt)

)
dm. However, as we are only interested

in the change at the limits of the sensor range, cMI can
be replaced by; cMI(xt) =

∫
m∈mmax(xt )

MI
(
M(m); ẑ f (xt)

)
dm.

Where mmax(xt) denotes workspace locations which lie on
the arc given by the maximum sensing range Rmax and the
sensor’s field of view Ω, as shown in Fig. 3 . cMI can be
approximated with a sum using either a deterministic or a
Monte-Carlo schedule:

cMI(xt)≈ ∑
m∈mmax(xt )

MI
(
M(m); ẑ f (xt)

)
. (15)

Given the approximations (7) and (15), the MI functional
can be represented as

UMI(ξ )≈ ∑
xt∈T (ξ )

∑
m∈mmax(xt )

MI
(
M(m); ẑ f (xt)

)
. (16)

The MI functional gradient follows the same form as (9):

∇UMI(xt) = ∑
xt∈T (ξ )

∑
m∈mmax(xt )

J(xt)∇xMI
(
M(m); ẑ f (xt)

)
.

(17)



(a) Standard Exploration

(b) Functional Exploration

Fig. 3: Difference in MI calculation. xt is the robot’s pose
for which MI is computed, the black lines depict the sensor
field of view and the blue area is the region where MI is
computed. a MI is computed over the entire field of view of
sensor, producing ẑ. b MI is computed only at the sensor’s
range limits, producing ẑ f

The spatial gradient of MI, ∇xMI
(
M(m), can be expressed

in closed-form using the Hilbert maps’ continuous model.
Using the MI definition from (12), the gradient is defined
as ∇xMI(M; ẑ) = ∇xH(M)−∇xH(M|ẑ), where ∇xH is the
spatial gradient of the entropy. Using the chain rule we
rewrite the spatial gradient of H around a query point x as:

∇xH(x) =
dH
d p

∇x p(x), (18)

where p is the probability of occupancy at x given by
(1). As p is a Bernoulli random variable, dH

d p is simply;
dH
d p = log2

1−p
p . The occupancy gradient ∇x p(x) depends on

the occupancy map used. For the unperturbed map, ∇x p(x)
is given by (10). The spatial gradient of the perturbed map
(14) can be computed similarly to the unperturbed map;

∇x p̂(x, ẑ f ) = ∇xσ
(
Ψ(x, ẑ f )

)
= σ

(
Ψ(x, ẑ f )

)(
1−σ

(
Ψ(x, ẑ f )

))
∇xΨ(x, ẑ f )

(19)

As Ψ is a GP, its gradient can be computed in closed form.
Fig. 2e shows the computation of MI gradient by sampling

along the arc defined by the sensor range. Each sample
produces an MI gradient, schematically shown by the black
arrows. The overall MI gradient, which pushes optimisation
toward exploratory trajectories is computed from the sum of
all samples and is shown in Fig. 2e as a yellow arrow.

C. Functional Exploration Algorithm

In this section, we describe the functional exploration
algorithm, which aims to find a safe path that maximises

MI over its entire course.
Functional exploration is a general optimisation frame-

work, meaning it is invariant to the choice of path represen-
tation. Functional optimisation methods have used waypoint
parameterisation [22], Gaussian process representation [25],
[26], or defined trajectories over RKHS [23]. However, in
all methods the objective is sampled via a deterministic
schedule. Such approaches have proved unsatisfactory for
planning using occupancy maps [17]. To ensure convergence
to a safe solution, the path is stochastically sampled in
the entire t ∈ [0,1] domain and any uninformative gradient
updates, such as those coming from unsafe parts of the map,
are rejected.

The path representation used in this work is based on
kernel matrix approximations [18]. The path is essentially
a weighted sum of nonlinear features, similar to a regression
problem. This path model is highly expressive, yet concise.
Most importantly, the path can be optimised by SGD [27].
Given a set of weights wξ , the path is defined as:

ξ (t) = (wξ )T
ϒ̂(t)+ξo(t)+ξb(t). (20)

ξo is an initial path, which can be randomly chosen or can
be computed by a simple and fast planner. ξb is a term used
to adjust boundary conditions, such as the start and goal
pose. ϒ̂(·) are nonlinear features that approximates the inner
product defined by a kernel function kp by the following dot
product [18];

kp(t, t ′) = 〈ϒ(t),ϒ(t ′)〉 ≈ ϒ̂(t)T
ϒ̂(t ′). (21)

The kernel kp(t, t ′) maintains the correlation between various
time points.

Using (20), the general functional optimisation given in (2)
is transformed into an optimisation of the weights, wξ

optimal =
argminwξ U(ξ ). The iterative update rule of (5) takes the
following form:

wξ

n+1 = wξ
n −ηnΛ

−1
ϒ̂(ti)T

ϒ̂(ti)∇ξU(ξn)(ti), (22)

where ti ∈T .
The algorithm for functional exploration is given in Al-

gorithm 1. The essential inputs are the initial robot state
and the occupancy map. Boundary conditions or an initial
solution are optional inputs. In each iteration, a mini-batch
is drawn. The safety of each sample is checked, and if it
is below Psa f e, the sample is used to update the path. The
gradient of the various components (obs, dyn, MI) of the
objective functional are computed, and summed according
to (8). Once the overall functional gradient is computed, the
weights wξ

n+1 are updated according to (22) .
Figure 4 provides an insight into the optimisation process

of a single planning iteration. Each iteration starts with
an initial guess, which is depicted in blue. The obsta-
cle functional gradient repels the path from obstacles and
unknown space. The MI objective pulls the path toward
unexplored space. The intermediate path updates, following
the functional gradient, are shown in grey. The final optimal
path is shown in green.



Fig. 4: Functional planning iteration. Functional gradients deform the initial solution in blue. The obstacles gradient repels
path from obstacles and unknown space. The MI gradient pulls path toward unexplored space. The resulting path, in green,
is the optimised solution.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the stochas-
tic functional gradient path planner and compare it to other
exploration methods for continuous occupancy maps. As a
benchmark, we chose to compare our method to the RRT-
based exploration method of [12] which we modified to
use Hilbert maps. This method optimises MI during path
selection, and while its bottleneck lies in computational
complexity, it takes advantage of the fact the RRTs are
probabilistically complete. Another method used for com-
parison is based on frontier exploration [4], which takes
a grid approximation of the continuous map in a similar
approach to [13]. The path is then constructed by a smooth
RRT planner which reasons only about the path safety. All
methods, including Hilbert maps, are implemented in Python
and tested on an Intel i5-6200U with 8GB RAM.

A. Simulations

Figure 5 shows a qualitative comparison at various plan-
ning iterations. While all exploration methods successfully
build the map, there are some clear differences. The frontier-
based method produces jerky paths and tends to move
towards the edges and corners of the map. Path optimisation
methods, on the other hand, stay closer to obstacles. As
the RRT-based method maximises MI only, its path moves
closer to the edges of obstacles, while the proposed method
keeps a bigger distance, as its objective includes obstacle
safety explicitly. We note that increasing the safety margin
by applying a blurring filter, as done with grid maps, is
not applicable in continuous maps, as it requires expensive
discretisation of the map.

Quantitative comparisons are shown in Fig. 6 and in Table
I. Fig. 6 depicts the reduction in the entropy of the map.
The rate of reduction is similar for both our method and the
RRT-based exploration, albeit slightly better for the latter,
mainly due the fact that the paths generated by the RRT move

closer to obstacles. As a result, the RRT planner covers the
map faster, however with a higher probability of collision,
as shown in Table I by the maximum occupancy values
exceeding the 50% occupancy threshold. The convergence
of the frontier planner is slower, as a result of the over-
estimation of the path utility by the choice of a single goal at
each iteration. In addition, paths are jerky, leading to longer
time to cover the same area. As the frontier planner does not
explicitly minimise collision risk, the maximum occupancy
over the path is high. In contrast, the maximum occupancy
of the proposed method along the path is significantly below
the 50% occupied threshold.

Comparing the median runtime results shown in Table
I reveals that the RRT planner is significantly slower than
our method, mainly because MI is computed over the entire
map. Since frontier only queries the map for occupancy, its
runtime is significantly smaller. However, its average runtime
is similar to our method as occasionally resolving longer path
is required. It is worth noting that the runtime results are
limited by the Python implementation of the Hilbert map.
C++ implementation of the Hilbert map proved to be two to
three orders of magnitude faster, which makes it suitable for
online applications.

B. Real World Scenario

To evaluate the performance of the functional exploration
algorithm in a real world scenario, we simulated a robot

TABLE I: Performance comparison (40 planning iterations)

Proposed method RRT [12] Frontier[4]

Mean occupancy 1.2 5.1 3.0
Max. occupancy 26.3 75.2 47.9
Median Iter. Plan Time [s] 65.4 200.6 13.4
Mean Iter. Plan Time [s] 73.7 196.6 84.3
Max. Iter. Plan Time [s] 174.4 239.6 1345.2



Fig. 5: Comparison of exploration methods at various planning iterations using continuous occupancy maps. The hexagonal
markers are the planning poses. Triangle and star represent start and end points, respectively. The grey lines are either
candidate paths (RRT) or intermediate solutions (functional exploration). The pink line depicts the optimised path and the
green line is the traversed path. The path is assessed during execution, and a re-plan step is invoked if a path is no longer
safe.

exploring the Intel-Lab. We used the Intel-Lab dataset (avail-
able at http://radish.sourceforge.net/) to generate a ground
truth, shown in Fig. 7, from which we can emulate range
observations. However, the exploring robot does not have
direct access to the ground truth map. The map in Fig. 7
reveals a relatively simple structure. Yet, the small rooms
and narrow corridors pose a difficulty to a robot with limited
manoeuvrability. To prevent a situation where the robot
is stuck in a room, we added a reverse-on-path option.
Meaning, if the robot identifies a dead-end, it may reverse
on the path that took it to that spot.

Figure 8 shows the exploration process at various planning
iterations. The generated Hilbert map is overlaid with the
ground truth map of 7 as a reference to the map accuracy. The
robot successfully explore the majority of the map, moving
mainly in the main corridor. It enters only some of the rooms,
only where there is enough clearance at the entrance. We note

that the robot only relies on occupancy around the entrance
to assess safety.

Figure 8 provides an insight to the path optimisation pro-
cess. This is shown by the intermediate paths (in grey), which
reveals how the functional objective in Eq. (8) balances
safety with exploration during the path selection process.
The MI term in Eq. (8) pulls paths towards the border
between known and unknown space. The safety functional,
on the other hand, maintains a safe distance from obstacles
and unknown space. Consequently, paths tend to move in
the middle of the corridors and end close, but within some
margin, to a frontier.

The main limitation of the functional exploration approach
is the lack of global context during the optimisation. As
FGD in a local optimisation process, its outcome depends
on the starting point of the optimisation. This make FGD
sensitive to dead-ends. An exploration dead-end scenario is

http://radish.sourceforge.net/
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Fig. 6: Comparison of exploration methods - 2 repetitions;
the proposed functional exploration method (red), RRT-based
exploration (black) and frontier-based exploration (green).
RRT and the propose method converge in a similar fashion as
both optimise MI over entire path. The goal-based approach
of frontier converges slower as it does not explicitly optimise
on MI.

Fig. 7: Intel-Lab - Ground truth map based on the Intel-Lab
dataset. The robot does not have access to this map. It is
only used to emulate range observations.

shown in Fig. 8c, where a robot is inside a room unable
to find its way out. When the robot is inside a room, it can
not identify any planning horizon in its local neighbourhood.
Meaning, the MI functional’s contributions during optimisa-
tion are negligible, which results in non-exploring paths. To
somewhat resolve this problem, we added a reverse-on-path
option when the algorithm identifies a dead-end. However,
a more robust solution may include a global exploration
initial guess, such as a frontier, to start the optimisation.
This will require to develop a frontier detection method for
continuous occupancy maps, as current frontier exploration
methods require to discretise the occupancy map, which is
computationally intensive.

VI. CONCLUSIONS

This paper introduces a novel method for exploration
over continuous occupancy maps using stochastic functional
gradient descent. This approach formalises exploration as a
variational problem, where optimisation is performed directly
in the space of trajectories. The functional objective of
the proposed method explicitly optimises both safety and
information collection over the entire path, finding the Next
Best Path. While this approach can be used with any type
of occupancy map, it is highly effective with Hilbert maps,
where the introduced MI objective and its gradient can be
computed from a perturbed model of the map. Our proposed
approach eliminates the need for computing MI over the
entire map as done in other exploration techniques. Rather, it
computes variations to the path based on functional gradient
of MI which are efficiently derived in closed-form from the
map model.

Comparisons with other exploration methods show that
the proposed method improves on both safety and MI. Point
exploration methods, such as frontier, which do not optimise
the path selection, exhibit slower exploration rate. On the
other hand, sampling-based exploration methods, such as
[12], do not include safety in their objective, hence the
resulting paths tends to move closer to obstacles. Moreover,
these methods are computationally expensive due to the
need to repeatedly sample the MI objective over the entire
path. In comparison our proposed method achieves similar
exploration rates to [12] while taking less time to compute
and still maximising safety.
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