
ar
X

iv
:1

90
6.

06
96

5v
2

 [
cs

.D
S]

 2
9

Ju
l 2

01
9

Matching Patterns with Variables

Florin Manea1 and Markus L. Schmid2

1Kiel University, Kiel, Germany, flm@informatik.uni-kiel.de
2Trier University, Trier, Germany, MLSchmid@MLSchmid.de

Abstract

A pattern α (i. e., a string of variables and terminals) matches a word w, if w can
be obtained by uniformly replacing the variables of α by terminal words. The respective
matching problem, i. e., deciding whether or not a given pattern matches a given word, is
generally NP-complete, but can be solved in polynomial-time for classes of patterns with
restricted structure. In this paper we overview a series of recent results related to efficient
matching for patterns with variables, as well as a series of extensions of this problem.

1 Introduction

A pattern with variables, called simply pattern in the context of this work, is a string that
consists of terminal symbols (e. g., a, b, c) and variables (e. g., x1, x2, x3). The terminal symbols
are treated as constants, while the variables are to be uniformly replaced by strings over the set
of terminals (i. e., different occurrences of the same variable are replaced by the same string);
thus, a pattern is mapped to a terminal word. For example, x1abx1x2cx2x1 can be mapped to
acabaccaaccaaac and babbacab by the replacements (x1 → ac, x2 → caa) and (x1 → b, x2 →
a), respectively.

Patterns with variables appear in various areas of theoretical computer science, such as
language theory (pattern languages [2]), learning theory (inductive inference [2, 69, 75, 24],
PAC-learning [53]), combinatorics on words (word equations [51, 67], unavoidable patterns [61]),
pattern matching (generalised function matching [1, 70]), database theory (extended conjunctive
regular path queries [5]), and we can also find them in practice in the form of extended regular
expressions with backreferences [12, 37, 31], used in programming languages like Perl, Java,
Python, etc.

Generally, in all these contexts, patterns with variables are used to model various combinato-
rial pattern matching questions. For instance, searching for a word w in a text t can be expressed
as testing whether the pattern xwy can be mapped to t and testing whether a word w contains
a cube is equivalent to testing whether the pattern xy3z can be mapped to w, such that y is
not mapped to an empty word. Not only problems of testing whether a given word contains a
regularity or a motif of a certain form can be expressed by patterns, but also problems asking
whether a word can be factorised in a specifically restricted manner can be modelled in this way.
For instance, asking whether x2

1x
2
2 . . . x

2
k can be mapped to w, such that none of the variables

xi are mapped to an empty word, is equivalent to asking whether the word w can be factorised
into k non-empty squares.

Unfortunately, deciding whether a given arbitrary pattern can be mapped to a given word,
the matching problem, is NP-complete [2], whether we ask that the variables are mapped to
non-empty words or not. This intractability result severely limits the practical application of
patterns. Indeed, in many tasks related to applications of patterns, the matching problem is a
necessary step, so the tasks become intractable as well. For instance, this is the case for the
task of computing so-called descriptive patterns for finite sets of words (see [2, 35, 36] for more
information on descriptive patterns): one cannot solve this problem without solving a series of
(general) pattern matching tasks [27]. A more detailed analysis of the complexity of the hardness
of the matching problem will be presented in Section 3.

On the other hand, some strong restrictions on the structure of patterns yield subclasses for
which the matching problem is tractable (i.e., can be solved in polynomial time). This is clearly

1

http://arxiv.org/abs/1906.06965v2

the case of patterns where the number of different variables in the patterns is bounded by a
constant, but more sophisticated and general such subclasses can be defined. We will discuss
a series of results related to this topic in Sections 4.2, 5.1 and 5.2. In our analysis, the most
general class of patterns which allow for a polynomial-time pattern matching problem is defined
by establishing a deep connection between strings/patterns and graphs, and considering only
patterns which correspond to graphs with bounded structural parameters. As such, the subclass
of patterns with bounded treewidth. The question of finding classes of patterns which can be
matched in polynomial time but do not have bounded treewidth seemed interesting to us. We
show a natural construction of such patterns in Section 6.

We continue this survey with a result showing that considering some of the structural pa-
rameters, that lead to efficient pattern matching algorithms, as general structural parameters
of strings, may lead to remarkable results in other apparently unrelated domains. We show in
Section 7 how our results for strings can be used to obtain a state-of-the-art approximation
algorithm for computing the cutwidth of graphs.

We conclude the survey with a series of extensions. We discuss the problem of injective
pattern matching as well as the satisfiability problem for word equations with restricted form.

2 Basic Definitions

For detailed definitions regarding combinatorics on words we refer to [60].
We denote our alphabet by Σ, the empty word by ε, the set of all non-empty words over Σ

by Σ+, the set of all words over Σ by Σ∗, and the length of a word w by |w|. (Σ∗, ·, ε) is the
free monoid over Σ with concatenation as its binary operation, written ·. For w ∈ Σ∗ and every
integers i, j with 1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i] · · ·w[j], where w[k] represents the letter on
position k and 1 ≤ k ≤ |w|. A period of w is any positive integer p for which w[i] = w[i+p], for all
defined positions. Moreover, in this case, w is said to be p-periodic. Itsminimal period is denoted
by per(w) and represents the smallest period of w. For example, w = abacabacabacabacab has

periods 8 and 4; in particular, per(w) = 4. A word w is called periodic if per(w) ≤ |w|
2 .

The concatenation of k words w1, w2, . . . , wk is written Πi=1,kwi. If w = wi for all integers i
with 1 ≤ i ≤ k, this represents the kth power of w, denoted by wk; here, w is a root of wk. We

can further extend the notion of a power of a word by saying that w = w[1..per(w)]
|w|

per(w) . We
say that w is primitive if it cannot be expressed as a power of exponent ℓ of any root, where ℓ

is an integer with ℓ > 1. Conversely, if w = vℓ for some integer ℓ > 1, then w is also called a
repetition. The infinite repetition vvv · · · of some word v is denoted vω.

For any word w ∈ Σ+ with w = xyz, we say that y is a factor of w. If x is empty, then y

is also a prefix of w, while when z is empty, then y is also a suffix. Whenever we have a factor
both as a prefix and as a suffix, the factor is said to be a border of the word. Furthermore, every
word u = yzx ∈ Σ+ is a conjugate of w. Note that, if w is primitive, so is every conjugate of it.
If w = vu, then v−1w = u.

Let X = {x1, x2, x3, . . .} and call every x ∈ X a variable. For a finite alphabet Σ of terminals
with Σ∩X = ∅, we define PatΣ = (X ∪Σ)+ and Pat =

⋃

Σ PatΣ. Every α ∈ Pat is a pattern and
every w ∈ Σ∗ is a (terminal) word. Given a word or a pattern v, for the smallest sets B ⊆ Σ
and Y ⊆ X with v ∈ (B ∪ Y)∗, we denote alph(v) = B and var(v) = Y . For any x ∈ Σ ∪X and
α ∈ PatΣ, |α|x denotes the number of occurrences of x in α; for the sake of convenience, we set
|α|x = 0 for every symbol x not in Σ ∪ X . For a pattern α, we say that w = α[i..i + |w|] is a
maximal terminal factor of α if α[i− 1] and α[i+ |w|+1] are either not defined, or are variables.

A substitution (for α) is a mapping h : var(α) → Σ∗. For every x ∈ var(α), we say that
x is substituted by h(x) and h(α) denotes the word obtained by substituting every occurrence
of a variable x in α by h(x) and leaving the terminals unchanged. We say that the pattern α

matches w ∈ Σ+ if h(α) = w for some substitution h : var(α) → Σ∗. Substitutions of the form
h : var(α) → Σ+, i. e., the empty word is excluded from the range of the substitution, are also
called non-erasing; in order to emphasize that the substitution by the empty word is allowed,
we also use the term erasing substitution.

Example 1. Let β = x1ax2bx2x1x2 be a pattern and let u = bacbabbbbacbb and v = abaabbababab

be terminal words. The pattern β matches both u and v, witnessed by the substitutions h with

2

h(x1) = bacb, h(x2) = b and g with g(x1) = g(x2) = ab, respectively. Moreover, β also matches
the word w = acbbcbcb by the erasing substitution h with h(x1) = ε, h(x2) = cb; it can be
easily verified that there is no non-erasing substitution that maps β to w.

The matching problem, denoted by Match, is to decide for a given pattern α and word w,
whether there exists a substitution h with h(α) = w. The variant where we are only concerned
with non-erasing substitutions is called the non-erasing case of the matching problem; we also
use the term erasing-case in order to emphasize that substitution by the empty word is allowed.
Another special variant is the terminal-free case of the matching problem, where the input
patterns are terminal-free, i. e., they do not contain any occurrences of terminal symbol. We
shall briefly discuss some particularities of these different special cases of the matching problem
in Section 3. Note that in the sections on efficient algorithms, namely Sections 5.1, 5.2, and 6,
we only consider the non-erasing case (with terminal symbols) of the matching problem. The
presented results can easily be generalised to the general setting, but we prefer the respective
framework for the ease of the presentation.

For any P ⊆ Pat, the matching problem for P (or Match for P , for short) is the matching
problem, where the input patterns are from P . In the sections of this paper we will introduce
and discuss several interesting families of patterns.

As we discuss efficient algorithms, it is important to describe the computational model we use
in this work. This is the standard unit-cost RAM with logarithmic word size. Also, all logarithms
appearing in our time complexity evaluations are in base 2. For the sake of generality, we assume
that whenever we are given as input a word w ∈ Σ∗ of length n, the symbols of w are in fact
integers from {1, 2, . . . , n} (i.e., Σ = alph(w) ⊆ {1, 2, . . . , n}), and w is seen as a sequence of
integers. This is a common assumption in the area of algorithmics on words (see, e.g., the
discussion in [52]). Clearly, our algorithmic results hold canonically for constant alphabets, as
well.

3 The Hardness of the Matching Problem

First, we recall that there are several different variants of the matching problem: the most general
case (substitution by the empty word and occurrences of terminals in the patterns are possible),
the non-erasing case (with terminal symbols), the terminal-free (erasing) case, and finally the
terminal free non-erasing case. As we shall see, these differences do not matter too much if we are
only concerned with the matching problem of patterns. However, in other contexts of patterns
with variables (e. g., other decision problems, learning theory), these differences are most crucial
and we therefore briefly provide some background.

For the class of the so-called pattern languages, i. e., the sets of all words that match a pattern,
the difference between the erasing and the non-erasing case is important, since these classes of
formal languages differ quite substantially with respect to basic decision problems. For example,
in the non-erasing case, two patterns describe the same language if and only if the patterns are
identical (up to a renaming of variables), while it is open whether the equivalence problem is
even decidable in the erasing-case (see, e. g., Section 6 in [68], or [74]). Moreover, the inclusion
problem, which is undecidable for both the erasing and the non-erasing case (see [50, 34]), can
be decided for terminal-free patterns in the erasing case, while for terminal-free non-erasing
patterns the decidability status is open (intuitively speaking, this has to do with the fact that
avoidability questions of the form “does pattern β necessarily occur in long enough words over
a k-letter alphabet?” can be expressed as inclusion for two languages given by terminal-free
non-erasing patterns). Finally, also whether patterns (or descriptive patterns) can be inferred
from positive data strongly depends on whether the erasing or non-erasing case is considered, or
whether or not terminal symbols in the patterns are allowed (see [73, 75, 36, 35]).

For the matching problem (note that this corresponds to the membership problem for pat-
tern languages), whether we consider erasing or non-erasing substitution, or whether or not we
disallow terminal symbols in the patterns, has little impact on its computational hardness. In
fact, that the matching problem for patterns with variables is NP-complete has been indepen-
dently discovered in different communities and for slightly different problem variants (see, e. g.,
the introductions of [28, 29] for some remarks on the history of the investigation of the matching
problem).

3

If we consider the most general case, i. e., erasing substitutions and terminals in the patterns,
then a hardness-reduction is rather simple. For example, the Boolean formula

((v1, v2, v3), (v2, v4, v5), (v3, v1, v3), (v4, v1, v2))

in 3-CNF (without negated variables) is 1-in-3 satisfiable (i. e., satisfiable with exactly one literal
per clause set to true) if and only if the following word w is matched by the pattern α:

w = a b a b a b a

α = x1x2x3 b x2x4x5 b x3x1x3 b x4x1x2

We can further observe that this simple reduction also shows that the matching problem is
hard even for binary terminal alphabets and under the restriction that variables are substituted
by single symbols (or the empty word) only. This directly raises the questions under which
restrictions the matching problem remains hard. For example, a problem instance has a large
number of natural parameters (length of the pattern, length of the word, number of variables,
number of occurrences per variable, alphabet size, length of words substituted for variables) and
in addition to that, it comes in four natural variants resulting from whether we consider the
erasing or non-erasing case, and whether or not we allow terminals in the pattern. In the above
reduction, the number of variables, the number of occurrences per each variable and the word
length are unbounded.

All these numerous restricted problem variants have been thoroughly investigated in [28] and
it turns out that the matching problem remains NP-hard under rather strong restrictions. We
cite the following result as an example and refer to [28] for further details.

Theorem 2 ([28]). The erasing case of the matching problem for patterns with variables is NP-
complete, even if Σ = {a, b}, every variable has at most 2 occurrences and every variable can
only be substituted by a single symbol or the empty word.

This result also holds as stated for terminal-free patterns. In the non-erasing case, however,
it holds when the bound on the substitution words is 3 instead of 1, and in the non-erasing and
terminal-free case the result holds when additionally the bounds on the occurrences per variable
and alphabet size are 3 and 4, respectively.

The only polynomial-time solvable cases of the matching problem obtained by restricting the
numerical parameters mentioned above are trivial ones. More precisely, the matching problem
can be easily solved for unary alphabets (in this case, we only have to solve an equation in the
integers and with integer coefficients, which are given in unary encoding), or if every variable has
only one occurrence (the patterns are then regular, see Section 4), or if the number of variables
or the length of the input word is bounded by a constant (the former is obvious, while the latter,
in the erasing case, requires a slightly more careful argument [43]).

In particular, this also points out that Theorem 2 describes some kind of dichotomy, i. e., if
we would further restrict the alphabet size, or the maximum number of occurrences per variable
to 1, then we would obtain a polynomial-time solvable variant (even if all other parameters are
unrestricted); similarly, if we allow variables to be substituted by single symbols only, but not
the empty word, then the matching problem becomes efficiently solvable as well (regardless of
the alphabet size).

Generally, by brute-force algorithms, the matching problem can be solved in time |α|O(|w|) or
|w|O(|α|), making it polynomial-time solvable provided that there is a constant upper bound on
|w| or |α| (in fact, a bound on | var(α)| is sufficient). However, this constant upper bound occurs
in the exponent, which means that even for rather low such bounds, say 7, the corresponding
polynomial-time algorithms are most likely impractical for larger problem instances. This leads
to the question whether exponential-time algorithms are possible whose running-times are such
that the exponential part exclusively depends on, say | var(α)|, but not on |w|, i. e., running-times
of the form f(| var(α)|)× g(|α|, |w|), where g is a polynomial and f is some computable function
(exponential, or even double-exponential etc.). Such a running-time is polynomial for upper
bounded | var(α)|, but the degree of the polynomial is always the same independent from the
actual upper bound. If a problem has an algorithm with such a running-time, then it is called
fixed-parameter tractable (with respect to the bounded parameter); see the textbooks [23, 30]
for more information on parameterised complexity. Whether the matching problem for patterns

4

Figure 1: The standard graph representationGpat
α for α = x1x2x3bbx2x1ax2x3x2cx1; the dashed,

straight and dotted equality edges correspond to occurrences of x1, x2 and x3, respectively; the
grey vertices correspond to occurrences of terminal symbols.

with variables allows fixed-parameter tractability for some parameters has been thoroughly inves-
tigated in [29]. Although there are some more or less trivial cases of fixed-parameter tractability,
the main insight provided by [29] is of a negative nature and can be summarised in the following
way.

Theorem 3 ([29]). All variants of the matching problem parameterised by |α| are W[1]-hard.
The erasing case of the matching problem parameterised by |w| is W[1]-hard.1

Note that since |α| and |w| are rather general parameters, this result covers other parameters
as well, e. g., |Σ| or | var(α)|. In the non-erasing case, |w| is an upper bound for | var(α)|; thus,
treating |w| as a parameter means that | var(α)| is also a parameter and therefore the matching
problem is fixed-parameter tractable by the obvious brute-force algorithm. We refer to [29] for
further such simple fixed-parameter tractable case.

Consequently, even strong restrictions of the obvious numerical parameters of instances of
the matching problem, i. e., number of variables, alphabet size, occurrences per variable etc.,
does not yield interesting efficiently matchable subclasses of patterns with variables. However,
as discussed in the next section, looking deeper into the structure of patterns will help.

4 Structural Restrictions for Patterns

From an intuitive point of view it is clear that not only the mere length of a pattern or the
number of its variables should have an impact on the matching complexity, but also the actual
order of the variables. For example, it has been observed rather early in [79] that if the variable
occurrences in the patterns are sorted, e. g., as in x1ax1x2x2abx2x2ax3x4cx4, then they can be
matched efficiently “from-left-to-right” (more precisely, it is observed in [79] that matching such
patterns can be done in logarithmic space).

A systematic investigation of such structural restrictions has been done in the last decade
and numerous efficiently matchable subclasses of patterns have been found. In the following, we
first present a unifying approach based on graph morphisms and the concept of treewidth. Then,
we define and summarise several structural parameters for patterns and respective subclasses of
patterns.

4.1 Pattern Matching by Graph Morphisms

The following general framework for matching patterns with variables has been developed in [76].
For a pattern α ∈ (X∪Σ∗), the standard graph representation of α is the undirected graph Gpat

α =
(Vα, Eα), where Vα = {1, 2, . . . , |α|} and Eα = Eequ

α ∪Enei
α with Eequ

α = {{i, i+1} | 1 ≤ i ≤ |α−1|}
being the set of neighbour edges and Eequ

α = {{i, j} | α[i..j] = xβx, x ∈ X, |β|x = 0} being the
set of equality edges (see Figure 1 for an illustration).

In a similar way, we can also encode words w ∈ Σ∗ as graph structures Gwo
w , where every

factor w[i..j] of w is represented by a vertex (i, j), equality edges are drawn between (i, j) and
(i′, j′) if w[i..j] = w[i′..j′], and neighbour edges if j + 1 = i′. It has been shown in [76] that α

matches w if and only if there is a graph morphism from Gpat
α to Gwo

w . Moreover, the concept of the

1Problems that are hard for the parameterised complexity class W[1] are strongly believed to be not fixed-
parameter tractable.

5

α1 = x1 x2 x1 x3 x2 x3 x1 x2 x3

α2 = x1 x2 x1 x1 x2 x3 x2 x3 x3

Figure 2: Two pattern α1 and α2 with scd(α1) = 3 and scd(α2) = 2. The scopes of variable x1

(dashed line), x2 (straight line) and x3 (dotted line) are highlighted.

treewidth for graphs now also applies to patterns (i. e., the treewidth of a pattern is the treewidth
of its standard graph representation), which is of relevance since the graph morphism problem
can be solved in polynomial-time provided that the source graphs have bounded treewidth.2

Consequently, we can conclude the following algorithmic meta-theorem.

Theorem 4 ([76]). If a class P of patterns has bounded treewidth, then the matching problem
for P can be solved in polynomial-time.

Due to the generality of the statement of Theorem 4, the polynomial-time matching algorithm
that it implies is of little practical value, even for rather simple classes of patterns. On the other
hand, its theoretical relevance is demonstrated by the fact that it covers almost all known
classes of patterns with a polynomial-time matching problem.3 After an additional remark
regarding [76], we shall briefly define and compare those efficiently matchable classes of patterns
in the next subsection.

Remark 5. Technically, the matching problem reduces to the morphism problem for (simple)
relational structures instead of undirected graphs. However, since we are here only interested
in the treewidth of these structures, we can as well only talk about the underlying undirected
graphs.

Moreover, the actual meta-theorem of [76] is stronger in the sense that there the treewidth
of patterns is not defined with respect to the standard graph representation, but with respect
to a slightly more general graph representations (i. e., we allow any way of drawing the equality
edges as long as all vertices corresponding to the same variable form a connected component).

4.2 Efficiently Matchable Classes of Patterns

The most obvious way to restrict patterns is to limit their number of (repeated) variables or the
number of occurrences per variable. In this regard, let vark and repvk be the class of patterns
with at most k variables and with at most k repeated variables, respectively. Due to Theorem 2,
we already know that bounding the number of occurrences per variable does not in general yield
polynomial-time matchable classes. The only exception are patterns with at most one occurrence
per variable, which are called regular patterns and are denoted by reg, e. g., x1ax2bacx3a is a
regular pattern. Regular patterns have been first considered in [79] and their name is motivated
by the fact that the corresponding pattern languages are regular languages.

Next, we define the so-called scope coincidence degree (see [76]). For every y ∈ var(α),
the scope of y in α is defined by scα(y) = {i, i + 1, . . . , j}, where i is the leftmost and j the
rightmost occurrence of y in α. The scopes of some variables y1, y2, . . . , yk ∈ var(α) coincide in
α if

⋂

1≤i≤k scα(yi) 6= ∅. By scd(α), we denote the scope coincidence degree of α, which is the
maximum number of variables in α such that their scopes coincide, and by scdk, we denote the
class of patterns with scope coincidence degree of at most k. See Figure 2 for an example of the
scope coincidence degree. An important special class is scd1, which has been first introduced
in [79] as the class of non-cross patterns (denoted by nc). Intuitively speaking, the variables in
non-cross patterns are sorted, e. g., x1ax1x2bax2cx3ax3x3.

Next, we define the locality number, which is a general string-parameter, and which has been
first introduced in [15]. A word is k-local if there exists an order of its symbols such that, if we

2See [23, 30] for a formal definition of the treewidth.
3See Section 6 for the respective exceptions.

6

Figure 3: The standard graph representation Gpat
α for α = x1x3x4x3x1x2x3x5bx5x2x5x6ax6x2.

By definition, α is mildly entwined. Furthermore, since no vertex is completely “surrounded” by
edges, the shown embedding is outer-planar.

mark the symbols in the respective order (which is called a marking sequence), at each stage there
are at most k contiguous blocks of marked symbols in the word. This k is called the marking
number of that marking sequence. The locality number of a word is the smallest k for which that
word is k-local, or, in other words, the minimum marking number over all marking sequences.
For example, the marking sequence σ = (a, g, c) marks w = agagcac as follows (marked blocks
are illustrated by overlines): agagcac, agagcac, agagcac, agagcac; thus, the marking number
of σ is 3. In fact, all marking sequences for w have a marking number of 3, except (g, a, c), for
which it is 2: agagcac, agagcac, agagcac. Thus, the locality number of w, denoted by loc(w),
is 2. When we measure the locality number for patterns, we simply ignore all terminal symbols,
e. g., loc(abx1x2ax1x2cx3x1ax3) = loc(x1x2x1x2x3x1x3) = 2. The class of patterns with locality
number at most k is denoted by lock.

The next classes have been first considered in [76] and are based on possible nesting structures
of variables. For a pattern α, we call two variables x, y ∈ var(α) entwined if α contains xyxy or
yxyx as a subsequence. A pattern α is nested, if no two variables in α are entwined; the class of
nested patterns is denoted by nest. A proper subclass of nest, considered in [15], are the so-called
strongly nested patterns (denoted by snest), which are inductively defined as follows: any pattern
α ∈ var1 is strongly nested; if α1 and α2 are strongly nested and variable-disjoint patterns, x is
a variable not in var(α1) ∪ var(α2) and β1, β2 ∈ ({x} ∪ Σ)∗, then α1α2 and β1α1β2 are strongly
nested patterns. For example, the pattern α = x1x2ax2x1bx3x4ax3 is strongly nested, whereas
αx1 is nested, but not strongly nested anymore.

If, for every x, y ∈ var(α), α = βxγ1yγ2xγ3yδ implies γ2 = ε, then α is called closely entwined,
and a pattern α ismildly entwined if it is closely entwined and, for every x ∈ var(α), if α = βxγxδ

with |γ|x = 0, then γ is nested. We denote the class of mildly entwined patterns by ment. The
main motivation for the somewhat peculiar class of mildly entwined patterns is that mildly
entwined patterns are exactly those patterns that have a standard graph representation that is
outer-planar (see [76]).4 It is known that outer-planar graphs have a rather low treewidth of at
most 2. Since the concept of outer-planarity generalises to k-outer-planarity and k-outer-planar
graphs have a treewidth of at most 3k− 1, we can also define the classes outpk of k-outer-planar
patterns (i. e., their standard graph representation is k-outer-planar). In this regard note that
outp1 = ment. See Figure 3 for an example of a mildly-entwined pattern.

It can be easily verified that all of the pattern classes defined above have bounded treewidth;
thus, by application of Theorem 4, they can be matched efficiently. For some of them this upper
bound on the treewidth is rather low (e. g., reg, nc, ment), while for those classes obtained by
bounding a structural parameter, e. g., repvk, scdk, lock, the bound on the treewidth also grows
with this parameter. Figure 4 shows how these pattern classes relate to each other and how they
form infinite hierarchies within the class of all patterns (denoted by Pat).

In a sense, Figure 4 is a “tractability map” for the matching problem of patterns with
variables. For the classes that have low treewidth, we can expect matching algorithms that
are rather efficient. On the other hand, these classes are quite restricted (compared to the full
class of patterns) and are most likely only applicable for very special pattern matching tasks.
An obvious approach to matching general patterns would be to first perform a preprocessing
that identifies a “low class” of the tractability map that contains the input pattern and then
uses the most efficient algorithm for matching it. In this regard, it is even an asset that most
of the different efficiently matchable classes and hierarchies of classes are incomparable: it is
possible that an input pattern has a very large locality number of 100, but can nevertheless
be matched efficiently, because its standard graph representation is 2-outerplanar; on the other
hand, a pattern could have a large scope coincidence degree and a large number of variables,

4A graph is outer-planar if it has a planar embedding with all vertices lying on the outer face.

7

ncreg

var1 var2 var3 var4 . . .

repv1 repv2 repv3 repv4 . . .

scd2 scd3 scd4 . . .

loc1 loc2 loc3 loc4 . . .

snest nest ment outp2 outp3 . . .

Pat

Figure 4: An overview of efficiently matchable classes of patterns. By A → B, we denote A ⊂ B;
pairs without arrow are incomparable. Note that nc = scd1 and ment = outp1.

but at the same time a very low locality number. It might even be a worthwhile research task
to experimentally analyse a large corpus of (random) patterns with respect to the classes of the
tractability map in which they are contained.

Remark 6. Bounding the structural parameters defined above yields polynomial-time match-
able classes of patterns; thus, the question arises whether the matching problem is also fixed-
parameter tractable with respect to those parameters. However, Theorem 3 already states that
this is most likely not the case for parameter | var(α)|, and since | var(α)| is an upper bound
for the number of repeated variables, the scope coincidence degree, the outer-planarity and the
locality number of α, it is also highly unlikely that we can achieve fixed-parameter tractability
with respect to those parameters.

4.3 Computing Structural Parameters for Patterns

Since the structural restrictions of patterns surveyed above are all meant to be exploited algo-
rithmically, the task of checking them (or computing the respective parameters) is an important
issue. In this regard, note that in general computing the treewidth of a graph is an NP-hard
problem and it is also not known whether it can be computed efficiently for standard graph rep-
resentations of patterns. This also emphasises the importance of easily computable parameters
that are bounding the treewidth of a pattern and also points out why the value of Theorem 4 is
of a theoretical nature that provides guidance in finding such restrictions with higher practical
relevance. Restrictions like the regularity, the non-cross condition, number of (repeated) vari-
ables and the different nesting properties can be easily checked for. Moreover, also the scopes of
a pattern and therefore its scope coincidence degree can be efficiently computed, and the small-
est k for which a graph is k-outerplanar can also be computed in polynomial time (for more
details see [77]). On the other hand, computing the locality number seems more difficult and it
was left open in [15] whether or not is is hard to compute. This gap was closed in [13] where
it was shown that computing the locality number is NP-hard, but fixed-parameter tractable (if
the locality number or |Σ| is considered a parameter); in addition, approximation of the locality
number has also been investigated in [13] (note that these result will be discussed in more detail
in Section 7).

5 Faster Pattern Matching

In this section we will overview some efficient matching algorithms developed for various classes
of patterns, some defined already in the previous sections, and some defined via some other
natural structural restrictions. Most of the result of this paper were shown in [26, 15, 16].

8

5.1 Patterns with Low Scope Coincidence Degree

We start with several definitions. The one-variable blocks in a pattern are maximal contiguous
blocks of occurrences of the same variable. A pattern α with m one-variable blocks can be
written as α = w0Πi=1,m(zki

i wi) with zi ∈ var(α) for i ∈ {1, 2, . . . ,m} and zi 6= zi+1, whenever
wi = ε for i ∈ {1, 2, . . . ,m − 1}. The number of one-variable blocks is a natural complexity
measure that we will consider.

Example 7. The pattern α = x1x2x2ax2x2x2x3ax3x2x2x3x3 has the following 7 one-variable
blocks: x1, x2x2, x2x2x2, x3, x3, x2x2, x3x3.

As discussed in the previous sections, prominent subclasses of patterns for which Match can
be solved in polynomial time are the classes of patterns with a bounded number of (repeated)
variables (vark and repvk), of regular patterns (reg), of non-cross patterns (nc), and of patterns
with a bounded scope coincidence degree (scdk). However, the known respective algorithms are
rather poor considering their running times. For example, for vark, the matching problem can be

solved in O(mnk−1

(k−1)!), where m and n are the lengths of the pattern and the word (see [45]). For

patterns with a scope coincidence degree of at most k, an O(mn2(k+3)(k + 2)2) time algorithm
can be derived using the general matching technique described by Theorem 4, where m and
n are the lengths of the pattern and the word, respectively, and the proof that the matching
problem for non-cross patterns is in P (see [79]) leads to an O(n4)-time algorithm. Hence, for all
these classes, we consider the following refinement of the problem of showing that the matching
problem for a class of patterns is in P.

Problem 8. Let K be a class of patterns for which the matching problem can be solved in
polynomial time. Find an efficient algorithm that solves the matching problem for K.

The main class of patters considered in the following is that of patterns with bounded scope
coincidence degree, and its subclasses.

If the scope coincidence degree is bounded by 1, i. e., non-cross patterns, we can decide
whether a pattern α having m one-variable blocks matches a word w of length n in O(mn logn)
time. This result can be achieved via a general dynamic programming approach, which tries to
match prefixes of the pattern α to the prefixes of the word w. This general approach is rather
standard but the big gain is that it can be implemented efficiently by a a detailed combinatorial
analysis of the possible matches between the one-variable blocks occurring in α and factors of w.
For instance, if the shortest factor of α containing all occurrences of a variable x starts with a
one-variable block containing at least two occurrences the variable x, we can efficiently find the
matches of this factor by exploiting a major result from [14], which states that the primitively
rooted squares contained in a word of length n can be listed optimally in O(n logn). As each
match for a factor starting with two occurrences of a variable starts with a primitively rooted
square, the respective matches can be found efficiently. The result regarding primitively rooted
squares can be extended to show that, given a word w of length n and a word v with length
shorter than n, the word w contains O(n logn) factors of the form uvu with uv primitive, and
all these factors can be found optimally in O(n logn) time. This allows us to find efficiently the
matches for one-variable that the shortest factor of α which contains all occurrences of x and
starts with xvx, for all choices of a variable x such that v is a non-empty terminal string.

Theorem 9 ([26]). The matching problem for nc is solvable in O(mn logn) time, where w is
the input word of length n and m is the number of one-variable blocks occurring in the pattern.

Two particular subclasses of non-cross patterns are of interest: the regular patterns reg and
the one-variable patterns var1 (see also Figure 4). It is not hard to show that regular patterns can
be matched in linear time O(|α| + |w|), by iteratively using the Knuth-Morris-Pratt algorithm
to identify greedily the terminal factors occurring in the pattern, in their orders of occurrences.
All factors of a word w that match a given regular pattern α can be detected in linear time too.

More interesting is the case of one-variable patterns. The simplest example of one-variable
patterns are the repetitions, i.e., patterns of the form xk. Checking whether a word is a match
for a pattern xk can be done in linear time. Moreover, a compact representation of all periodic
factors of a word w can be also obtained in linear time by identifying the (at most |w|) so-called
runs inside w [4]. With this, a compact representation of occurrences of xk in w can also be

9

obtained in linear time. More complex one-variable patterns are the pseudo-repetitions (see
[42, 39, 41] and the references therein). These are patterns from {x, xR}∗, where xR is a variable
that is always substituted by the reverse image of the string substituting x. Checking whether a
string matches a given pseudo-repetition can be done in linear time [42]. The following general
result can be shown for one-variable patterns, see [57]. Given a pattern α = v1xv2x · · · vr−1xvr
such that x is a variable and v1, v2, . . . , vr are terminal strings, a compact representation of all
P instances of α in the input string w of length n can be computed in O(rn) time, so that one
can report those occurrences in O(P) time. The same result holds also for the case when some
of the occurrences of x in such a pattern are replaced by xR. It is worth noting that using this
algorithm to find the factors of a given word that match the shortest factor of α containing all
occurrences of a variable x inside a non-cross pattern in our approach for matching nc does not
lead to a faster matching algorithm in that case.

When considering general patterns with bounded scope coincidence degree, one can show,
using a similar dynamic programming approach as in the case of non-cross patterns, that the

matching problem for scdk is solvable in O(mn2k

((k−1)!)2) time, where n is the length of the input

word and m is, again, the number of one-variable blocks occurring in the pattern. One should
note that in this case it seems hard to use the combinatorial insights used for non-cross patterns
(thus, the log n factor is replaced by an n factor in the evaluation of the time complexity), but,
still, this algorithm is significantly faster than the previously known solution.

Theorem 10 ([26]). The matching problem for scdk is solvable in O
(

mn2k

((k−1)!)2

)

time, where w

is the input word of length n and m is the number of one-variable blocks occurring in the pattern.

Next we consider the classes repvk. For the basic case of k = 1, the matching problem can
be solved in O(n2) time, where n is the length of the input word. The idea of this algorithm
is to guess the length ℓ of the repeated variable x, and then to partition the suffix array of the
input word into clusters, such that all suffixes in a cluster start with the same factor of length
ℓ. Essentially, in a match between the pattern and the word, where x is mapped to a factor of
length ℓ, the positions where the factors matching x occur in the input word belong to the same
cluster. Using this idea, the desired complexity is then reached, again via dynamic programming.

Theorem 11 ([26]). The matching problem for repvk is solvable in quadratic time.

Further, one can use this result to show that the matching problem for the general class of

patterns repvk is solvable in O(n2k

((k−1)!)2) time. This algorithm is better than the one that could

have been obtained by using the fact that patterns with at most k repeated variables have the
scope coincidence degree bounded by k + 1, and then directly applying our previous algorithm
solving the matching problem for scdk+1.

Theorem 12 ([26]). The matching problem for repvk is solvable in O
(

n2k

((k−1)!)2

)

time, where n

is the length of the input word.

Note that the classes of non-cross patterns and of patterns with a bounded scope coincidence
degree or with a bounded number of repeated variables are of special interest, since for them
we can compute so-called descriptive patterns (see [2, 79]) in polynomial time. A pattern α is
descriptive (with respect to, say, non-cross patterns) for a finite set S of words if it can generate
all words in S and there exists no other non-cross pattern that describes the elements of S

in a better way. Computing a descriptive pattern, which is NP-complete in general, means to
infer a pattern common to a finite set of words, with applications for inductive inference of
pattern languages (see [69]). For example, our algorithm for computing non-cross patterns can
be used in order to obtain an algorithm that computes a descriptive non-cross pattern in time
O(

∑

w∈S(m
2|w| log |w|)), where m is the length of a shortest word of S (see [27] for details).

The algorithms, except the ones for the basic cases of regular and non-cross patterns and
patterns with only one repeated variable, still have an exponential dependency on the number
of repeated variables or the scope coincidence degree. Therefore, only for very low constant
bounds on these parameters can these algorithms be considered efficient. Naturally, finding
a polynomial time algorithm for which the degree of the polynomial does not depend on the

10

number of repeated variables or on the scope coincidence degree would be desirable. However,
by Remark 6 such algorithms are very unlikely.

Finally we recall a result regarding gapped repeats and palindromes. A gapped repeat (palin-
drome) is an instance of a terminal-free pattern xyx (respectively, xyxR). For α ≥ 1, an α-gapped
repeat in a word w is a factor uvu of w such that |uv| ≤ α|u|; the two factors u in such a repeat
are called arms, while the factor v is called gap. Such a repeat is called maximal if its arms
cannot be extended simultaneously with the same symbol to the right or, respectively, to the
left. In a sense, α-gapped repeats are instances of the pattern xyx where length constraints
are imposed on the strings that substitute x and y. In [40] it was shown that the number of
maximal α-gapped repeats that may occur in a word is upper bounded by 18αn. Using this, an
algorithm finding all the maximal α-gapped repeats of a word in O(αn) was defined; this result
is optimal, in the worst case, as there are words that have Θ(αn) maximal α-gapped repeats.
Comparable results were developed for the case of α-gapped palindromes, i.e., factors uvuR with
|uv| ≤ α|u|. On the one hand, these results were relevant as they provided optimal algorithms
for the identification of α-gapped repeats and palindromes, and closed an open problem from
[55, 56] (see also [40] and the references therein for more on gapped repeats and palindromes).
On the other hand, they point towards the study of Match for patterns with (linear) length
constraints on the images of the variables.

5.2 Patterns with Low Locality Number

Intuitively, the notion of k-locality (already introduced in Section 4.2) involves marking the
variables in the pattern in some arbitrary order until all the variables are marked. The pattern
is k-local if this marking can be done while never creating more than k marked blocks. Variables
which only occur adjacent to those which are already marked can be marked “for free” – without
creating any new blocks, and thus a valid marking sequence allows a sort-of parsing of the pattern
whilst maintaining a degree of closeness (locality) to the parts already parsed. The notion of
k-locality was introduced and further analysed in [15]. With respect to pattern matching, the
main result proven in that paper is the following:

Theorem 13 ([15]). Match for lock can be decided in O(mknmax (3k−1,2k+1)) time, where m

is the length of the input pattern and n is the length of the input word.

To solve the matching problem for lock we use the following idea. Using a simple dynamic
programming approach we can show that, given a pattern β ∈ (X ∪ Σ)∗ of length m, we can
decide in O(m2kk) time whether β ∈ lock, and if the answer is positive, we can produce in the
same time a marking sequence witnessing that β is k-local. As such we can keep track of the
marked factors in the pattern, while executing the marking according to the computed marking
sequence. We also need now to keep track to which factors of the input word the marked factors
correspond. Then we try to assign every new variable so that it fits nicely around the already
matched factors. This is done efficiently using a data structure from [57], mentioned also above:
given a word w and a one-variable pattern γ (so, | var(γ)| = 1), one can produce a compact
representation of all the g factors of w matching γ in O(|γ||w|) time; moreover, we can obtain all
the g factors of w matching γ in O(|g|) time. This allows us to test efficiently which factors of w
match any of the one-variable blocks of β, and, ultimately, to assign a value to each variable. In
comparison to the algorithm from [76] for patterns of bounded treewidth, which firstly constructs
relational structures from α and w, and solves the homomorphism problem on these relational
structures (see Section 4.1), the above algorithm exploits directly the locality structure present
in the patterns. The advantage of this more focussed approach is that it allows for a considerable
improvement in the required time, reducing the exponent of n from 4k + 4 to 3k − 1.

6 Efficient Pattern Matching Beyond Bounded Treewidth

In [16] the authors tried to identify classes of patterns that do not have bounded treewidth but
can still be matched in polynomial time. The idea behind defining such classes was relatively
simple: consider generalised repetitions of patterns.

11

One simple observation is that, if we can match patterns from a class C in polynomial time,
then we can also match repetitions of these patterns in polynomial time: if we wish to check
whether αk matches a word w, where α is chosen from the class C for which we can solve Match

efficiently, then we can firstly check whether w = vk for some word v, and then check whether α
matches v, so we can also match αk efficiently. Moreover, it can be observed that most parameters
that lead to efficiently matchable classes, e. g., the scope coincidence degree or locality, are defined
independently from the terminal symbols, i. e., via the word obtained after removing all terminals,
which shall be called skeleton in the following (e. g., the skeleton of x1ax2bax1x2b is x1x2x1x2).
As a result, it is possible that a pattern, that is not a repetition of any α ∈ C, has nevertheless a
skeleton that is a repetition of a skeleton from C. For example, ax1(x2)

3x3bx3x1(x2)
2bx2a(x3)

2

is not a repetition of a non-cross pattern, but its skeleton (x1(x2)
3(x3)

2)2 is. In [16] it is shown
that, for some important classes C of patterns, including lock and scdk, for constant k, the
polynomial time solvability of Match does not only extend from C to exact repetitions, but also
to such skeleton-repetitions, called C-repetitions.

Theorem 14 ([16]). For C ∈ {nc, reg, lock, scdk}, solving the matching problem for the class of
C-repetitions can be done in polynomial time.

It is interesting to note that the general treewidth-based framework of polynomial time
matching of patterns does not seem to cover a very simple and natural aspect: repetitions of the
same pattern. More precisely, if C is one of the known efficiently matchable classes of patterns,
then a repetition αk for some α ∈ C is usually not in C anymore. In fact, it can be shown that
even for patterns α with bounded and very low treewidth, the treewidth of repetitions αk can
be unbounded.

Theorem 15 ([16]). Let C be a class of patterns that contains reg. Then the class of C-repetitions
contains patterns with arbitrarily large treewidth.

In particular, the previous theorem holds for the class reg of regular patterns, arguably the
simplest class allowing an unbounded number of variables (note that patterns with a constant
number of variables can trivially be matched in polynomial-time). In the same paper it is shown
that if the notion of repetition is relaxed further, by considering a setting where the order in
which the variables appear is no longer constrained at all (i.e., considering abelian repetitions
instead of repetitions), then the matching problem is NP-complete. This holds even in the
minimal case when the number of repetitions is restricted to two, and that the pattern which is
repeated is regular.

7 From Locality to Graph Parameters

Following the ideas of Section 3 we explore further the connection between string and graph
parameters. The main idea behind such a connection is to reach it by “flattening” a graph into a
sequential form, or by “inflating” a string into a graph, so that algorithmic techniques available
for each one of these become applicable for the other one as well. In this section, following [13],
we are concerned with certain structural parameters (and the problems of computing them) for
graphs and strings: the cutwidth cw(G) of a graph G (i. e., the maximum number of “stacked”
edges if the vertices of a graph are drawn on a straight line), the pathwidth pw(G) of a graph
G (i. e., the minimum width of a tree decomposition the tree structure of which is a path),
and the locality number loc(α) of a string α (explained in more detail in Section 4.2). By
Cutwidth, Pathwidth and Loc, we denote the corresponding natural decision problems (i. e.,
decide whether a given graph has a pathwidth/cutwidth, or a given string has a locality number
of at most k, for given k) and with the prefix Min, we refer to the minimisation variants. The
two former graph-parameters are very classical. Pathwidth is a simple (yet still hard to compute)
subvariant of treewidth, which measures how much a graph resembles a path. The problems
Pathwidth and MinPathwidth are intensively studied (in terms of exact, parameterised and
approximation algorithms) and have numerous applications (see the surveys and textbook [9, 54,
7]). Cutwidth is the best known example of a whole class of so-called graph layout problems
(see the survey [20, 71] for detailed information), which are studied since the 1970s and were
originally motivated by questions of circuit layouts.

12

In comparison, the locality number seems a rather simple parameter directly defined on
strings, but, however, it bounds the treewidth of the string (in the sense defined in Section 4.1),
and the corresponding marking sequences can be seen as instructions for a dynamic programming
algorithm for matching the pattern. In this way, it resembles a bit to the way the pathwidth and
treewidth of graphs are used in algorithmic settings. Moreover, compared to other “tractability-
parameters” of strings, it seems to cover best the treewidth of a string, but it also cannot be
efficiently computed compared to the other simpler parameters.

Going more into detail, for Loc, exact exponential-time algorithms are not hard to be de-
vised [15] but whether it can be solved in polynomial-time, or whether it is at least fixed-
parameter tractable was left open in the paper where this measure was introduced. On the other
hand, Pathwidth and Cutwidth are known NP-complete problems, fixed-parameter tractable
with respect to parameter pw(G) or cw(G), respectively (even with “linear” fpt-algorithms with
running-time g(k)O(n) [8, 10, 80]). With respect to approximation, their minimisation variants
have received a lot of attention, mainly because they yield (like many other graph parameters)
general algorithmic approaches for numerous graph problems, i. e., a good linear arrangement
or path-decomposition can often be used to design a dynamic programming (or even divide and
conquer) algorithm for other problems. The best known approximation algorithms for the prob-
lems MinPathwidth and MinCutwidth (with approximations ratios of O(

√

log(opt) log(n))

and O(log2(n)), respectively) follow from approximations of vertex separators (see [25]) and edge
separators (see [58]), respectively.

There are two natural approaches to represent a word α over alphabet Σ as a graph Gα =
(Vα, Eα): (1) Vα = {1, 2, . . . , |α|} and the edges are somehow used to represent the actual
symbols (note that this is the case for the standard graph representation of patterns defined in
Section 4.1), or (2) Vα = Σ and the edges are somehow used to represent the positions of α.
A reduction of type (2) can be defined such that |Eα| = O(|α|) and cw(Gα) = 2 loc(α), and a
reduction of type (1) can be defined such that |Eα| = O(|α|2) and loc(α) ≤ pw(Gα) ≤ 2 loc(α).
Since these reductions are parameterised reductions and also allow to transfer approximation
results, one may conclude that Loc is fixed-parameter tractable if parameterised by |Σ| (note
that for parameter |Σ| a simple, but less efficient fpt-algorithm is trivially obtained by simply
enumerating all marking sequences) or by the locality number, and also that there is a polynomial-
time O(

√

log(opt) log(n))-approximation algorithm for MinLoc.
In addition, one can represent an arbitrary multi-graph G = (V,E) by a word αG over

alphabet V with |αG| = |E| and cw(G) = loc(α). This describes a Turing-reduction from
Cutwidth to Loc which also allows to transfer approximation results between the minimisa-
tion variants. As a result, Loc is NP-complete. Finally, by plugging together the reductions
from MinCutwidth to MinLoc and from MinLoc to MinPathwidth, one obtains a re-
duction which transfers approximation results from MinPathwidth to MinCutwidth, which
yields an O(

√

log(opt) log(n))-approximation algorithm for MinCutwidth. This result from
[13] improved, for the first time since 1999, the best approximation for Cutwidth from [58].
Interestingly, this improvement appeared as a side-product of relating string-parameters with
graph-parameters.

Theorem 16 ([13]). There is an O(
√

log(opt) log(h))-approximation algorithm (running in poly-
nomial time) for MinCutwidth on multigraphs with h edges. In particular, this yields an
O(

√

log(opt) log(n))-approximation algorithm for MinCutwidth for graphs.

Moreover, this approach allows also for establishing a direct connection between cutwidth
and pathwidth, which preserves the good algorithmic properties, and has not yet been reported
in the literature so far. This is rather surprising, since Cutwidth and Pathwidth have been
jointly investigated in the context of exact and approximation algorithms, especially in terms
of balanced vertex and edge separators. We think that a reason for overlooking this connection
might be that it is less obvious on the graph level and becomes more apparent if linked via the
string parameter of locality, emphasising, as such, the value of such mixed approaches.

13

8 Extensions

8.1 Injectivity

In our setting, the substitutions that map variables to words are not required to be injective, i. e.,
different variables can be mapped to the same word. However, the requirement of injectivity is
natural in some contexts. For example, in the pattern matching community, the first mentioning
of pattern matching with variables concerns the case where variables have to be substituted
by single symbols and in an injective way. More precisely, this parameterised pattern matching
was introduced in [3] to formalise the problem of detecting code clones (i. e., we want to find
code segments that are created by copying some code blocks and renaming program variables
(this renaming will be injective, since otherwise the semantic of the code might change)). More
generally speaking, the injectivity condition is appropriate whenever we know a priori that
different variables should always refer to different words (e. g., when matching the pattern

x1 name: y ; address: z ; x2 name: y ; address: z x3

in order to check whether there is a repetition of some name-address data tuple, then it is likely
that we can assume injectivity).

Depending on the actual variant, the injectivity condition can make the matching problem
harder or easier. In [26], it is shown that it is NP-hard to decide for a given word w and an
integer k whether w can be factorised into at least k pairwise different factors. This immediately
implies that the injectivity condition makes the matching problem NP-hard even for the “trivial”
pattern class {x1x2 . . . xn | n ≥ 1} (note that this is even a subset of the class reg of regular
patterns). On the other hand, if we have an upper bound on |Σ| and max{|h(x)| | x ∈ X}
(recall that this case is still NP-hard even for bounds 2 and 1, respectively; see Theorem 2) then
also the total number of possible substitution words is bounded; thus, the injectivity condition
bounds the total number of variables and therefore the matching problem becomes tractable
(see [28]). A similar observation can be made with respect to fixed-parameter tractability if we
parameterise by |Σ| and max{|h(x)| | x ∈ X} (see [29]).

8.2 Word Equations

A word equation is an equality α = β, where α and β are patterns with variables, e. g., α = x1abx2

and β = ax1x2b define the equation x1abx2 = ax1x2b. A solution to an equation α = β

is a substitution h : (var(α) ∪ var(β)) → Σ∗ (in the sense defined in Section 2) that satisfies
h(α) = h(β). For the example equation from above, the solutions are the substitutions h with
h(x1) = ak, for k ≥ 0, and h(x2) = bℓ, for ℓ ≥ 0.

The study of word equations (or the existential theory of equations over free monoids) is
an important topic found at the intersection of algebra and computer science, with significant
connections to, e.g., combinatorial group or monoid theory [64, 63, 21], unification [78, 46, 47]),
and, more recently, data base theory [33, 32].

The central computational problem for word equations is the satisfiability problem, i. e.,
the problem of deciding whether a given word equation α = β has a solution or not. In this
regard, the matching problem for patterns with variables describes just the special case of the
satisfiability problem for word equations where one side of the equation is a terminal word, e. g.,
x1abx1x2cx2x1 = babbacab is an instance of the matching problem already mentioned in the
introduction, phrased as a word equation. Consequently, the satisfiability problem is intractable,
even for very strongly restricted cases (see Theorems 2 and 3). Also note that it has been
shown in [22] that the solvability problem remains NP-hard if every variable has at most two
occurrences in αβ (called quadratic equations), but the proof of [22] actually talks about the
matching problem for patterns with at most two occurrences per variable.

While the matching problem for patterns with variables is trivially decidable, it is not at all
obvious how to solve the satisfiability problem for word equations. In fact, the question whether it
is decidable was initially approached with the expectation that it will be answered in the negative.
It was, however, shown to be decidable by Makanin [65] (see Chapter 12 of [62] for a survey).
Later it was shown that the satisfiability problem is in PSPACE by Plandowski [72]; a new proof
of this result was obtained in [49], based on a new simple technique called recompression. There

14

are also cases when the satisfiability problem is tractable. For instance, word equations with
only one variable can be solved in linear time in the size of the equation, see [48]; equations with
two variables can be solved in time O(|αβ|5), see [19].

Given the fact that there are many structural restrictions of patterns that yield tractability
(with respect to the matching problem, see Section 4), the question naturally arises how the
complexity of the satisfiability problem for word equations (which are essentially equations of
patterns) behaves if these restrictions are applied to word equations. More precisely, while each
class of patterns with NP-hard matching problem yields a class of word equations with NP-hard
satisfiability problem, the hardness of the satisfiability problem for equations with sides in some
efficiently matchable class of patterns is no longer immediate. An investigation of that question
was initiated in [66], where the following results were obtained. Firstly, the satisfiability problem
for non-cross word equations (i. e., word equations for which both sides are non-cross) remains
NP-hard. In particular, solving non-cross equations α = β where each variable occurs at most
three times, at most twice in α and exactly once in β, is NP-hard (note that this constitutes the
first NP-hardness result for word equations that is not a direct conclusion from a hardness result
for the matching problem). Secondly, the satisfiability of one-repeated variable equations (i. e.,
at most one variable occurs more than once in αβ, but arbitrarily many other variables occur
only once) having at least one non-repeated variable on each side, was shown to be trivially in P.

In [18], it is shown that it is (still) NP-hard to solve regular ordered word equations. More
precisely, these are word equations where each side is a regular pattern and the order of the
variables in both sides is the same (it is, however, possible that some variables only occur on
one side of the equation), e. g., x1ax2bax3x4 = bx1x3aax4 is a regular ordered word equation.
They are particular cases of both quadratic equations and non-cross equations, so the reductions
showing the hardness of solving these more general equations do not carry over. In particular,
note that the class of regular patterns is arguably the most simple class of patterns in terms of
their matching complexity (see Section 5.1).

The respective hardness reduction relied on some deep word-combinatorics ideas. As a first
step, a reachability problem for a certain type of (regulated) string rewriting systems was in-
troduced, and showed it is NP-complete. This was achieved via a reduction from the problem
3-Partition [38], which is strongly NP-complete. Then it was shown that this reachability
problem can be reduced to the satisfiability of regular-ordered word equations; in this reduction
the applications of the rewriting rules of the system were encoded into the periods of the words
assigned to the variables in a solution to the equation. The main technicality was to make sure
to only use one occurrence of each variable per side, and moreover to even have the variables
in the same order in both sides. This result exhibits the arguably structurally-simplest class of
word equations for which the satisfiability problem is NP-hard.

The main open problem in the area of word equations remains, even for simple subclasses
such as regular equations or quadratic equations, to show that the satisfiability problem of word
equations of the respective types is in NP (note that this was already explicitly posed as an open
question for the class of quadratic word equations in [22]).

9 Conclusions

In this work we tried to survey several results related to the problem of matching patterns with
variables, that seem important to us. While this work is clearly not exhaustive, it is aimed to
offer a basic understanding of the problems and state of the art in this area.

From an algorithmic point of view, the results we covered provide a wide variety of classes
of patterns with variables, for which Match can be efficiently solved. Moreover, as explained
in Section 4.3, it is usually easy to check whether a pattern belongs to one of these classes. So,
putting it all together, one could use the following approach when trying to match a pattern,
rather than just using an exponential time algorithm (based, e.g., on general SMT-solvers, or on
the theory of string solving [6, 81]). First, check if the pattern belongs to one of the classes for
which efficient matching algorithms are known and, then, use this algorithm; only use a general
algorithm when no customised one can be applied. Identifying more natural pattern classes
for which Match can be solved efficiently appears, as such, as a rather useful task. Following
the practically motivated challenges that arise from the area of string solving, one could also

15

try to find efficient matching algorithms for various classes of patterns, enhanced with various
constraints: regular constraints, length constraints, etc.

As an important part of this survey deals with polynomial time algorithms, it is natural to
also ask whether they are optimal or not. This kind of questions are the focus of the area of fine-
grained complexity (see, e.g., the survey [11] and the citations therein). It would be interesting
to see, using tools from this area, whether one can show lower bounds for the Match problems
for different classes of patterns.

In the light of the results from [13], it seems that exploring the connections between string
parameters and parameters for other classes of objects could lead to some interesting results
in both worlds. So, it also seems like an interesting challenge to explore what the structural
parameters of strings that we explored here (and maybe some other new ones) mean when various
other types of data are represented as strings, and what consequences can be derived from such
a representation.

Finally, the area of word equations abounds with open problems. As mentioned, it is not
even clear whether the satisfiability of regular or quadratic equations is in NP. So even if we
restrict to equations with structurally simple left and right hand sides, the complexity of solving
equations is not known. Such problems become even more involved when we consider equations
with various types of constraints (e.g., length or regular). For instance, the decidability of general
word equations with length constraints is a long standing open problem, but it is already an
interesting open question for simpler cases (once again: regular or quadratic equations); see, e.g.,
[44, 17, 59], and the references therein. It seems interesting to us whether some of the ideas used
in matching patterns can be transferred to solving (simplified) word equations, with or without
constraints.

References

[1] Amihood Amir and Igor Nor. Generalized function matching. Journal of Discrete Algo-
rithms, 5:514–523, 2007.

[2] Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21:46–62, 1980.

[3] Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal
of Computer and System Sciences, 52:28–42, 1996.

[4] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The ”runs” theorem. SIAM J. Comput., 46(5):1501–1514, 2017.

[5] Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Transactions on Database Systems, 37,
2012.

[6] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In International Conference on
Computer Aided Verification, pages 171–177. Springer, 2011.

[7] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.

[8] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(5):1305–1317, 1996. doi:10.1137/s0097539793251219.

[9] Hans L. Bodlaender. A partial k -arboretum of graphs with bounded treewidth. Theor.
Comput. Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

[10] Hans L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond, volume 7370 of LNCS, pages 196–227, 2012.

16

http://dx.doi.org/10.1137/s0097539793251219
http://dx.doi.org/10.1016/S0304-3975(97)00228-4

[11] Karl Bringmann. Fine-Grained Complexity Theory (Tutorial). In Rolf Niedermeier and
Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2019), volume 126 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 4:1–4:7, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2019/10243,
doi:10.4230/LIPIcs.STACS.2019.4.

[12] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007–1018, 2003.

[13] Katrin Casel, Joel D. Day, Pamela Fleischmann, Tomasz Kociumaka, Florin Manea, and
Markus L. Schmid. Graph and string parameters: Connections between pathwidth, cutwidth
and the locality number. CoRR, to appear in Proc. ICALP 2019,, abs/1902.10983, 2019.
URL: http://arxiv.org/abs/1902.10983, arXiv:1902.10983.

[14] Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. In-
formation Processing Letters, 12(5):244–250, 1981.

[15] Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. Local patterns. In
37th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, pages 24:1–24:14, 2017.

[16] Joel D. Day, Pamela Fleischmann, Florin Manea, Dirk Nowotka, and Markus L. Schmid.
On matching generalised repetitive patterns. In Proc. Developments in Language Theory
- 22nd International Conference, DLT 2018, volume 11088 of Lecture Notes in Computer
Science, pages 269–281. Springer, 2018.

[17] Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka. The satisfiability of
word equations: Decidable and undecidable theories. In Proc. 12th International Conference
Reachability Problems, RP 2018, volume 11123 of Lecture Notes in Computer Science, pages
15–29. Springer, 2018.

[18] Joel D. Day, Florin Manea, and Dirk Nowotka. The hardness of solving simple word equa-
tions. In Proc. MFCS 2017, volume 83 of LIPIcs, pages 18:1–18:14, 2017.

[19] R. Da̧browski and W. Plandowski. Solving two-variable word equations. In Proc. 31th
International Colloquium on Automata, Languages and Programming, ICALP 2004, volume
3142 of Lecture Notes in Computer Science, pages 408–419, 2004.

[20] Josep Dı́az, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM Comput.
Surv., 34(3):313–356, September 2002. doi:10.1145/568522.568523.

[21] V. Diekert, A. Jez, and M. Kufleitner. Solutions of word equations over partially commu-
tative structures. In Proc. 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 127:1–127:14, 2016.

[22] V. Diekert and J. M. Robson. On quadratic word equations. In Proc. 16th Annual Sym-
posium on Theoretical Aspects of Computer Science, STACS 1999, volume 1563 of Lecture
Notes in Computer Science, pages 217–226, 1999.

[23] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

[24] Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, and Thomas Zeug-
mann. Learning one-variable pattern languages very efficiently on average, in parallel, and
by asking queries. Theoretical Computer Science, 261:119–156, 2001.

[25] Uriel Feige, MohammadTaghi HajiAghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.
doi:10.1137/05064299x.

17

http://drops.dagstuhl.de/opus/volltexte/2019/10243
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.4
http://arxiv.org/abs/1902.10983
http://arxiv.org/abs/1902.10983
http://dx.doi.org/10.1145/568522.568523
http://dx.doi.org/10.1137/05064299x

[26] Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching
with variables: Fast algorithms and new hardness results. In 32nd International Symposium
on Theoretical Aspects of Computer Science, STACS 2015, pages 302–315, 2015.

[27] Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Revisiting shino-
hara’s algorithm for computing descriptive patterns. Theoretical Computer Science, 733:44–
54, 2018.

[28] Henning Fernau and Markus L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. Inf. Comput., 242:287–305, 2015.

[29] Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised complexity
of string morphism problems. Theory Comput. Syst., 59(1):24–51, 2016.

[30] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[31] Dominik D. Freydenberger. Extended regular expressions: Succinctness and decidability.
Theory of Computing Systems, 53:159–193, 2013.

[32] Dominik D. Freydenberger. A logic for document spanners. Theory of Computing Systems,
Sep 2018. URL: https://doi.org/10.1007/s00224-018-9874-1.

[33] Dominik D. Freydenberger and Mario Holldack. Document spanners: From expressive power
to decision problems. Theory of Computing Systems, 62(4):854–898, 2018.

[34] Dominik D. Freydenberger and Daniel Reidenbach. Bad news on decision problems for
patterns. Inf. Comput., 208(1):83–96, 2010.

[35] Dominik D. Freydenberger and Daniel Reidenbach. Existence and nonexistence of descrip-
tive patterns. Theor. Comput. Sci., 411(34-36):3274–3286, 2010.

[36] Dominik D. Freydenberger and Daniel Reidenbach. Inferring descriptive generalisations of
formal languages. J. Comput. Syst. Sci., 79(5):622–639, 2013.

[37] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, third edition,
2006.

[38] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[39] P. Gawrychowski, F. Manea, and D. Nowotka. Testing generalised freeness of words. In
STACS 2014, volume 25 of LIPIcs, pages 337–349. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014.

[40] Pawel Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl, and Florin Manea.
Tighter bounds and optimal algorithms for all maximal α-gapped repeats and palindromes -
finding all maximal α-gapped repeats and palindromes in optimal worst case time on integer
alphabets. Theory Comput. Syst., 62(1):162–191, 2018.

[41] Pawel Gawrychowski, Florin Manea, Robert Mercas, and Dirk Nowotka. Hide
and seek with repetitions. J. Comput. Syst. Sci., 101:42–67, 2019. URL:
https://doi.org/10.1016/j.jcss.2018.10.004, doi:10.1016/j.jcss.2018.10.004.

[42] Pawel Gawrychowski, Florin Manea, Robert Mercas, Dirk Nowotka, and Catalin Tiseanu.
Finding pseudo-repetitions. In 30th International Symposium on Theoretical Aspects of
Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel, Germany, volume 20
of LIPIcs, pages 257–268, 2013.

[43] M. Geilke and S. Zilles. Learning relational patterns. In Proc. 22nd International Conference
on Algorithmic Learning Theory, ALT 2011, volume 6925 of Lecture Notes in Computer
Science, pages 84–98, 2011.

18

https://doi.org/10.1007/s00224-018-9874-1
https://doi.org/10.1016/j.jcss.2018.10.004
http://dx.doi.org/10.1016/j.jcss.2018.10.004

[44] Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and ex-
pressiveness of first-order logic over the subword ordering. In Proc. 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, pages 1–12. IEEE Computer Society,
2017.

[45] Oscar H. Ibarra, Ting-Chuen Pong, and Stephen M. Sohn. A note on parsing pattern
languages. Pattern Recognition Letters, 16:179–182, 1995.

[46] J. Jaffar. Minimal and complete word unification. Journal of the ACM, 37(1):47–85, 1990.

[47] A. Jez. Context unification is in PSPACE. In Proc. 41st International Colloquium on
Automata, Languages, and Programming, ICALP 2014, volume 8573 of Lecture Notes in
Computer Science, pages 244–255. Springer, 2014.

[48] A. Jeż. One-variable word equations in linear time. Algorithmica, 74:1–48, 2016.

[49] A. Jeż. Recompression: A simple and powerful technique for word equations. Journal of
the ACM, 63, 2016.

[50] Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu. Decision problems for patterns. J.
Comput. Syst. Sci., 50(1):53–63, 1995.

[51] Juhani Karhumäki, Wojciech Plandowski, and Filippo Mignosi. The expressibility of lan-
guages and relations by word equations. Journal of the ACM, 47:483–505, 2000.

[52] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. Journal of the ACM, 53:918–936, 2006.

[53] Michael J. Kearns and Leonard Pitt. A polynomial-time algorithm for learning k-variable
pattern languages from examples. In Proceedings of the Second Annual Workshop on Com-
putational Learning Theory, COLT 1989, Santa Cruz, CA, USA, July 31 - August 2, 1989.,
pages 57–71, 1989.

[54] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994. doi:10.1007/BFb0045375.

[55] Roman Kolpakov and Gregory Kucherov. Searching for gapped palindromes. Theor. Com-
put. Sci., 410(51):5365–5373, 2009.

[56] Roman Kolpakov, Mikhail Podolskiy, Mikhail Posypkin, and Nickolay Khrapov. Searching
of gapped repeats and subrepetitions in a word. In Proc. 25th Annual Symposium Combi-
natorial Pattern Matching, CPM 2014, volume 8486 of Lecture Notes in Computer Science,
pages 212–221. Springer, 2014.

[57] Dmitry Kosolobov, Florin Manea, and Dirk Nowotka. Detecting one-variable patterns. In
String Processing and Information Retrieval - 24th International Symposium, SPIRE 2017,
Palermo, Italy, September 26-29, 2017, Proceedings, pages 254–270, 2017.

[58] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. J. ACM, 46(6):787–832, November 1999.
doi:10.1145/331524.331526.

[59] Anthony W. Lin and Rupak Majumdar. Quadratic word equations with length constraints,
counter systems, and presburger arithmetic with divisibility. In Proc. 16th International
Symposium Automated Technology for Verification and Analysis, ATVA 2018, volume 11138
of Lecture Notes in Computer Science, pages 352–369. Springer, 2018.

[60] M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.

[61] M. Lothaire. Algebraic Combinatorics on Words, chapter 3. Cambridge University Press,
Cambridge, New York, 2002.

[62] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, Cambridge,
New York, 2002.

19

http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1145/331524.331526

[63] R. C. Lyndon. Equations in free groups. Transactions of the American Mathematical Society,
96:445–457, 1960.

[64] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer, 1977.

[65] G. S. Makanin. The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik, 103:147–236, 1977.

[66] F. Manea, D. Nowotka, and M. L. Schmid. On the solvability problem for restricted classes
of word equations. In Proc. 20th International Conference on Developments in Language
Theory, DLT 2016, volume 9840 of Lecture Notes in Computer Science, pages 306–318.
Springer, 2016.

[67] Alexandru Mateescu and Arto Salomaa. Finite degrees of ambiguity in pattern languages.
RAIRO Informatique Théoretique et Applications, 28:233–253, 1994.

[68] Alexandru Mateescu and Arto Salomaa. Aspects of classical language theory. In Handbook
of Formal Languages (1), pages 175–251. 1997.

[69] Yen K. Ng and Takeshi Shinohara. Developments from enquiries into the learnability of the
pattern languages from positive data. Theoretical Computer Science, 397:150–165, 2008.

[70] Sebastian Ordyniak and Alexandru Popa. A parameterized study of maximum generalized
pattern matching problems. Algorithmica, 75:1–26, 2016.

[71] Jordi Petit. Addenda to the survey of layout problems. Bulletin of the EATCS, 105:177–201,
2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/98.

[72] W. Plandowski. An efficient algorithm for solving word equations. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, STOC 2006, pages 467–476, 2006.

[73] Daniel Reidenbach. A non-learnable class of e-pattern languages. Theor. Comput. Sci.,
350(1):91–102, 2006.

[74] Daniel Reidenbach. An examination of ohlebusch and ukkonen’s conjecture on the equiva-
lence problem for e-pattern languages. Journal of Automata, Languages and Combinatorics,
12(3):407–426, 2007.

[75] Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397:166–193, 2008.

[76] Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth. Information
and Computation, 239:87–99, 2014.

[77] Markus L. Schmid. A note on the complexity of matching patterns with variables. Inf.
Process. Lett., 113(19-21):729–733, 2013.

[78] K. U. Schulz. Word unification and transformation of generalized equations. Journal of
Automated Reasoning, 11:149–184, 1995.

[79] Takeshi Shinohara. Polynomial time inference of pattern languages and its application.
In Proceedings of 7th IBM Symposium on Mathematical Foundations of Computer Science,
MFCS, pages 191–209, 1982.

[80] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth
I: A linear time fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.
doi:10.1016/j.jalgor.2004.12.001.

[81] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy Berzish, Julian
Dolby, and Xiangyu Zhang. Z3str2: an efficient solver for strings, regular expressions, and
length constraints. Formal Methods in System Design, 50(2-3):249–288, 2017.

20

http://eatcs.org/beatcs/index.php/beatcs/article/view/98
http://dx.doi.org/10.1016/j.jalgor.2004.12.001

	1 Introduction
	2 Basic Definitions
	3 The Hardness of the Matching Problem
	4 Structural Restrictions for Patterns
	4.1 Pattern Matching by Graph Morphisms
	4.2 Efficiently Matchable Classes of Patterns
	4.3 Computing Structural Parameters for Patterns

	5 Faster Pattern Matching
	5.1 Patterns with Low Scope Coincidence Degree
	5.2 Patterns with Low Locality Number

	6 Efficient Pattern Matching Beyond Bounded Treewidth
	7 From Locality to Graph Parameters
	8 Extensions
	8.1 Injectivity
	8.2 Word Equations

	9 Conclusions

