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Abstract

Using a new approach based on automatic sequences, logic, and a decision proce-
dure, we reprove some old theorems about circularly squarefree words and unbordered
conjugates in a new and simpler way. Furthermore, we prove three new results about
unbordered conjugates: we complete the classification, due to Harju and Nowotka, of
binary words with the maximum number of unbordered conjugates; we prove that for
every possible number, up to the maximum, there exists a word having that number of
unbordered conjugates, and finally, we determine the expected number of unbordered
conjugates in a random word.

1 Introduction

Throughout this paper, ¥ denotes the alphabet {0,1,... k — 1}.

Two words are said to be conjugate if one is a cyclic shift of the other, as in the English
words enlist and listen.

A word w has a border x if © € {€,w} and z is both a prefix and suffix of w; the two
occurrences of x are allowed to overlap each other. For example, alfa is a border of alfalfa.
A word w is said to be bordered if it has a border, and otherwise, it is unbordered. It follows
immediately from the Lyndon-Schiitzenberger theorem [8] that a word w if bordered iff it
has a border of length < |w|/2; then the two shorter borders cannot overlap each other. For
example, alfalfa is also bordered by a.
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A word w is said to be a square if w = zx for some nonempty word x. An example in
French is the word couscous. A word is squarefree if no nonempty factor is a square. Let u
be the Thue-Morse morphism, defined by 1(0) = 01 and p(1) = 10. The Thue-Morse word
t = 01101001 - - - is the fixed point, starting with 0, of u. Thue [12, 13, 3] proved that there
exist infinite squarefree words over a three-letter alphabet; also see [1]. A famous example
of such a word can be obtained from the Thue-Morse word as follows: count the number of
1’s between two consecutive 0’s in t. This gives the so-called ternary Thue-Morse word

c=210201"--,

and is squarefree. An alternative description of c is as follows: it is the image, under 7 of
the fixed point of the morphism ¢ defined below:

©(0) = 01 7(0) = 2
(1) =20 (1) =1
0(2) =23 7(2)=0
p(3) =02 7(3) =1

A word w is circularly squarefree if every one of its conjugates is squarefree. For example,
outshout is squarefree, but not circularly squarefree. Clearly we have

Proposition 1. A word is circularly squarefree iff all its conjugates are unbordered.

We now turn to a description of what we do in this paper. Using a complicated case-
based argument, Currie [5] proved that there exist circularly squarefree ternary words of
every length n, except for {5,7,9,10,14,17}. The first of our main results is a new proof of
Currie’s theorem, based on the following result:

Theorem 2. For all natural numbers n > 3, except 5,7,9,10,14,17,21, and 28, there exists
a factor x = x(n) of the ternary Thue-Morse word c that is either

(a) of length n — 3, and x021 is circularly squarefree;
(b) of length n — 4, and x2120 is circularly squarefree.
We now turn to unbordered conjugates. In two fundamental papers, Harju and Nowotka
[6, 7] studied the unbordered conjugates of a word. In particular, letting nuc(w) denote

the number of unbordered conjugates of w, and mnucg(n) denote the maximum number of
unbordered conjugates of a length-n word over a k-letter alphabet, they proved that

(a) for binary words w of length n > 4 we have nuc(w) < n/2;

(b) for n > 2 even, there exists a binary word of length n having n/2 unbordered conjugates
iff n = 2F or n =3 - 2* for some k > 1.



In other words, they explicitly computed mnucy(n) for all even n and bounded it above
for odd n. We complete the understanding of mnucy(n) by proving that mnucy(n) = [n/2]
for all odd n > 3. Our strategy is to show that the maximum of nuc(w), over all words of
length n, is actually achieved by a factor of the Thue-Morse word.

More precisely, we prove

Theorem 3. For all n > 1, there exists a length-n factor w of the Thue-Morse word t with
nuc(w) = mnucy(n). Furthermore, such a factor is guaranteed to occur starting at a position
<nint.

2 Circularly squarefree ternary words via Walnut

Since the ternary Thue-Morse word c is squarefree, it is reasonable to hope its factors
might be a good source of circularly squarefree words. Unfortunately, ¢ contains circularly
squarefree words of length n for only about 1/8 of all natural numbers n, as the following
result shows.

Theorem 4. There is a length-n factor of ¢ that is circularly squarefree iff (n)s is accepted
by the automaton in Figure 1.

Figure 1: Automaton accepting lengths (n)s of circularly squarefree words occurring in ¢

To prove this result, we make use of the fact that many first-order statements concerning
claims about k-automatic sequences are decidable [4]. Furthermore, there is free software
called Walnut available to decide these claims [9].

Let (n); denote the canonical base-k representation of n, starting with the most significant
digit, having no leading zeroes. A sequence (ay,)n,>0 is k-automatic if there is a deterministic
finite automaton with output (DFAO) taking (n), as input, and reaching a state with a,, as
output. For example, Figure 2 illustrates the DFAO generating the sequence c. The notation
¢/a in a state means the name of the state is ¢ and the output is a.
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Figure 2: DFAO computing the sequence ¢

For more about automatic sequences, see [2].

Proof. We can use the ideas in [11], adapted for our case. We create first-order logical
predicates crep, facge2, and circsf as follows:

e crep(i,m,p,n,s) evaluates to true iff in the length-n word (considered circularly) start-
ing at position s of the word c, there is a factor w of length m and (not necessarily
least) period p > 1 starting at position i;

o facge2(n, s) evaluates to true iff in the length-n word (considered circularly) starting
at position s of the word c there is a square or higher power;

e circsf(n) evaluates to true iff some length-n factor (considered circularly) of the word
¢ has no squares.

crep(i,m,n,p,s) =3 (G 2 ) NG +p<s+n)A([G+p<it+m)) = Clj]=Clj+p)A
Vi(G=zD)ANG<s+m)AG+pZs+tn)A([G+p<it+tm)) = Cl]=Clj+p—n)A
Vi((GzD)AnGzs+n)A([+p<itm)) = Clj—n]=Clj+p—n])
facge2(n,s) :==3i,m,p (p>1)A(Mm<n)A (@ >s)A(i<s+n)A(m>2p)Acrep(i,m,n,p,s)
circsf(n) := 3s —facge2(n, s)

) A
) A

When we evaluate these predicates in Walnut, we get the automaton depicted in Figure 1.
It accepts those (n)s for which circsf evaluates to true. O

Remark 5. All the Walnut code for the theorems in this paper is available at
https://cs.uwaterloo.ca/~shallit/papers.html .
The reader can therefore verify our results.

Corollary 6. The number of lengths £, with 2™ < £ < 2"*! and n > 4, such that ¢ contains
a circularly squarefree factor of length {, is 23 — F,,_s + 2, where F), is the n’th Fibonacci
number.

Proof. By standard techniques, by determining the roots of the characteristic polynomial of
the 15 x 15 matrix encoding transitions of the automaton in Fig. 1. O

4


https://cs.uwaterloo.ca/~shallit/papers.html

So while the factors of the ternary Thue-Morse word alone do not suffice for our purpose,
it turns out that a small modification of them do. We now give the proof of our first main
result, Theorem 2.

Proof. (of Theorem 2) Let n > 4 and w € {2021, y2120}, where z, y are factors of the ternary
Thue-Morse word c of lengths n — 3 and n — 4, respectively.

First, we create a predicate sq021(i,n,p,s) which evaluates to true if w' := 2021202
contains a square of order p with p > 1 and 2p < n beginning at index ¢ — s, where
x = cl[s..s + n — 4]. We do this by defining w(j] for all j such that ¢ < j < i+ p as follows:

clj], if j <s+mn-—3;

0, ifje{s+n—3, s+2n—3}
wlj] = <2, ifje{s+n—2, s+2n—2}

1, ifj=s+n—1;

(clj—n], ifs+n<j<s+2n-3.

The goal is that sq021 should represent the implication
Vi((i <j) NG <i+p) = wlj] =w[j+p].
It is formed by constructing the conjunction of the predicates
Vi(i <)NG <it+p) Awljl=a)A(wj+p]=p) = a=p

for each possible combination j and j + p, and simplifying.
Next, we create a second predicate sqfree021(n, s), which evaluates to true if there exists
x where w = x021 is circularly squarefree, for the given values of n and s:

sqfree021(i,n,p,s) := (n > 3) A Vi, p(L<p)A2p<n)A(s<i)A(i<s+n))
— —(sq021(i,n, p, s))).

Similarly, we create the analogous predicates sq2120(i,n, p, s) and sqfree2120(n, s) for the
word w' 1= y2120y212.
Finally, the predicates

test021(n) := Is sqfree021(n, )
test2120(n) := Js sqfree2120(n, s)

return true if there exists a length-n squarefree word formed by concatenating some factor
of ¢ with 021 (respectively, 2120). The automaton for test021(n) is depicted in Figure 3 and
the automaton for test2120(n) is depicted in Figure 4.



Figure 4: DFA computing Js sqfree2120(n, s)

When we now evaluate the predicate
currie(n) := test021(n) V test2120(n)

with Walnut, we get the automaton depicted in Figure 5.



Figure 5: DFA computing acceptable n

By inspection we easily see that the automaton in Figure 5 accepts the base-2 represen-
tation of all n except 0,1,2,3,5,7,9,10,14,17, 21, 28. n

As a consequence we now get Currie’s theorem:

Corollary 7. There exist circularly squarefree ternary words of every length n, except for
n € {5,7,9,10,14,17}.

Proof. Theorem 2 gives the result for all but finitely many n. It is easy to verify by a short
computation that there are cyclically squarefree words of lengths 0, 1,2, 3, 21,28, and none
for lengths 5,7,9, 10, 14, 17. O

Remark 8. These calculations were done in Walnut on a Linux machine (2 CPU — Intel E5-
2697 v3 Xeon, 256 GB of RAM). Computing the automaton for sq021 took 115.505 seconds,
and the automaton for sq2120 took 124.908 seconds.

3 Unbordered conjugates

Let o : ¥; — Xf denote the cyclic shift function, where o(€) = €, o(cw) = wc for w € X}
and ¢ € . Let 0%(w) = w and o' (w) = 0" (o (w)) for i > 1.

Suppose w is a binary word of length n. Let 5 : X7 — X} be the border correlation
function of a word (introduced by Harju and Nowotka [6]), and defined as follows: f(w) =



aodq - -+ Ap_1, Where
u, if o*(w) is unbordered;
a; = .
b, if o'(w) is bordered.

For example, £(0001) = wbbu since 0001 is unbordered, while 0010, and 0100 are both
bordered, and 1000 is unbordered. Let u,v € ¥;. We say u is the i’th cyclic shift of v if
o'(v) = u.

A result from Harju and Nowotka [6] shows that a binary word has no two consecutive
cyclic shifts that are unbordered. This result immediately tells us that a binary word of
length n can have at most [n/2] unbordered conjugates. For a binary word w of even length
to achieve this bound, every other cyclic shift must be unbordered, or, in other words either
Bw) = (ub)!®”? or B(w) = (bu)™V/2. Harju and Nowotka [6] showed that the only words of
even length that achieve this bound are the circularly overlap-free words, which are of length
3.2 and 2¢ for i > 1.

Let w be a binary word. Suppose w is of even length and is not circularly overlap-free.
Clearly w cannot have |w|/2 unbordered conjugates, but it could potentially have |w|/2 — 1
unbordered conjugates. Then B(w) = (ub)b(ub)*/>=i=1p for some i > 0, up to conjugation.
Now suppose w is of odd length. No circularly overlap-free words exist of odd length, so it
makes sense to think that w could contain a maximum of ||w|/2| unbordered conjugates.
Then [(w) = (ub)™/2lp, up to conjugation.

Let w be a bordered binary word. Then w = wvu for some words u and v. We say
wll..|ul] is the first border of w, and w[|w| — |u| 4+ 1..|w|] is the second border of w.

Now we prove Theorem 3.

Proof. When n = 1,2, 3 the maxmium number of unbordered conjugates mnucy(n) is achieved
by the words 0, 01, and 011 respectively. Specifically we have that mnucy(1) = 1, mnucy(2) =
2, and mnucy(3) = 2. It is readily verified that each of these words occur as a factor of the
Thue-Morse word at position < n.

Let w be a length-n word at position m of the Thue-Morse word. The first step is to
create a first-order predicate isBorder(l,m,n) that asserts that a cyclic shift of w has a
border of a certain length. More specifically, we want to know whether the [’th cyclic shift
of w has a border of length k. There are three cases to consider.

1. When a prefix of the second border is a suffix of w and a suffix of the second border is
a prefix of w. In other words, w = yuvz for words u, v, z,y where zy = u, |y| = [, and
|u| = k. This predicate is denoted by isBorderC1(k, 1, m,n).

2. When both borders are completely contained inside of w. In other words, w =
yuuzx for words y,u,x where |yu| = [, and |u| = k. This predicate is denoted by
isBorderC2(k, 1, m,n).

3. When a prefix of the first border is a suffix of w and a suffix of the first border is a
prefix of w. In other words, w = yvux for words u, v, z,y where xy = u, |yvu| = [, and
|u| = k. This predicate is denoted by isBorderC3(k, 1, m,n).



isBorderC1(k,l,m,n) := ((k+1>n)= (Vii<n—-0)=Tm+1+i=Tm+1—k+1)
ANVi(i<k+l—n)=Tm+i=Tm+n—k+il])))
isBorderC2(k,l,m,n) = ((k+1<n)A(>k))= Vi(i<k)=
Tim+1l+i=Tm+1—k+i)))
isBorderC3(k,l,m,n) := ((k+1<n)A(l<k))=(Vii<k—=0)=Tm+n—k+1+i
=Tm+1+i)ANM@GE<])=Tm+i=Tm+k+1i])))
isBorder(k, 1, m,n) := isBorderC1(k, [, m,n) A isBorderC2(k,l,m,n) A isBorderC3(k,l,m,n).
We define the predicate isBordered(l, m, n) that asserts that the {’th cyclic shift of a length

n word at position m in the Thue-Morse word is bordered. We can create this predicate by
checking whether this word has a border of size < n/2.

isBordered(l, m,n) := 3i(2i < n Ai>1AisBorder(i,l,m,n)).

Recall that when |w| is odd and w has a maximum number of unbordered conjugates,
we have that B(w) = (ub)!*I/2lb, up to conjugation. So we have exactly one pair of adjacent
bordered cyclic shifts, and the rest of the cyclic shifts of w alternate between bordered and
unbordered. The predicate isAlternating0(l,m, n) asserts that all of the cyclic shifts of a
length n word at position m in the Thue-Morse word alternate between unbordered and
bordered, except for the [’th and [ + 1’th cyclic shifts, which are both bordered.

isAlternating0(l, m,n) :=
Vi(((1 #1Ni<n—1)= (isBordered(i,m,n) = =isBordered(i + 1,m,n))))A
(((t A1) AN (i=n—1)) = (isBordered(n — 1,m,n) = —isBordered(0,m, n))).

Now we create a predicate hasMNUCO(m, n) that asserts that a length n word at position
m in the Thue-Morse word achieves the maximum number of unbordered conjugates.

hasMNUCO(m, n) := Ji(((: < n — 1 AisBordered(i, m,n) A isBordered(i + 1,m,n))V
(¢ =n — 1 AisBordered(n — 1,m,n) A isBordered(0, m,n))) A isAlternating0(i, m,n)).

Similarly, recall that when |w| is even and w has a maximum number of unbordered
conjugates, we have that B(w) = (ub)'b(ub)*/>=i=1b for some i > 0 or B(w) = (ub)*/?
up to conjugation. So we have that either all of the cyclic shifts of w alternate between
bordered and unbordered, or there are exactly two pairs of adjacent bordered cyclic shifts,
and the rest of the cyclic shifts of w alternate between bordered and unbordered. The
predicate isAlternatingE(e,l,m,n) asserts that all of the cyclic shifts of a length n word
at position m in the Thue-Morse word alternate between unbordered and bordered, except
for the [’th, [ + 1'th, e’th, and e + 1'th cyclic shifts, which are all bordered. Note that
isAlternatingE(n, n, m,n) asserts that all of the cyclic shifts of a length n word at position
m in the Thue-Morse word alternate between unbordered and bordered.

isAlternatingE(e,l,m,n) := (Vi (i #IANi # e Ni <n—1) = (isBordered(i,m,n) <
—isBordered(i + 1,m,n)))A (G # DA (i #e)A(i=n—1)) =
(isBordered(n — 1,m, n) < —isBordered(0, m,n))))



Now we create a predicate hasMNUCE(m, n) that asserts that a length n word at position
m in the Thue-Morse word achieves the maximum number of unbordered conjugates.

hasMNUCE(m,n) := (3i,75 ((i < j) A (i <n — 1 AisBordered(i, m,n) A isBordered(i + 1,m,n))A
(( =n — 1 AisBordered(n — 1,m, n) A isBordered(0,m,n)) V ((j <n —1)A
isBordered(j, m,n) A isBordered(j + 1,m,n))) A isAlternatingE(i, j, m,n)))V

isAlternatingE(n, n,m, n).

With these predicates we can write a predicate asserting that the Thue-Morse word
contains factors of every length n > 3 that are maximally unbordered and occur at position
< n. We split the computation into cases, one for even length words, and one for odd:

Vn ((n >2) = (3i hasMNUCE(é,2n)) A i < 2n)

Vn ((n >2) = (FihasMNUCO(i,2n+ 1)) Ai < 2n+ 1),

and Walnut evaluates these predicates to be true. O

Thus we have that

1, ifn =1
2, ifn=2orn=23;
mnuce(n) = 4§ n/2, ifne{2,3-2":i>1};

n/2—1, ifn>3evenand n ¢ {2°,3-2":i>1};
[n/2], ifn>3odd

Theorem 9. Let f(n) = mnuce(n) — [n/2]. Then f is a 2-automatic sequence.

4 More about unbordered conjugates

In this section we show that there exist binary words of length n that have exactly ¢ unbor-
dered conjugates where 1 < i < mnucy(n).

The general idea behind the proof is to pick some ¢ > 1 and then pick a word w of odd
length such that nuc(w) = 7 and mnucy(|w|) = i. Furthermore we only consider such words
w such that one of w’s conjugates contain 000 as a factor. Then we keep adding 0’s to w
precisely where 000 first occurs. This keeps the number of unbordered conjugates the same.
Then we can keep increasing the size of w in this way until we hit the length we want.

Lemma 10. Forn > 4 odd, there exists a word w € X3 such that nuc(w) = [n/2| and 000
1s a factor of some conjugate of w.

Proof. By Theorem 3, such a word w exists as a factor of the Thue-Morse word. It is well
known that the Thue-Morse word is overlap-free. So 000 cannot be a factor of such a word
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w. But it is possible that w = 0u00, or w = 00u0 for some word u. We can check whether
this is the case for all odd n > 4 by modifying our predicate from the proof of Theorem 3:

Vn((n >2) = (3 hasMNUCO(i,2n + 1)) A (T[)) =0AT[i +1] =0AT[2n +i] = 0)
V(T[] =0AT2n —1+1i] = 0AT[2n+i] = 0))),

which evaluates to true. O

Lemma 11. Let n > 4 be odd and w be a binary word of length n such that a conjugate of
w has 000 as a factor and nuc(w) = |n/2|. Then every conjugate of w contains at most one
distinct occurrence of 000 as a factor.

Proof. Suppose, contrary to what we want to prove that a conjugate of w contains at least
two distinct occurrences of 000 as a factor. Call this conjugate w’.

If the two occurrences of 000 overlap, then we can write w’ = s0000¢ for some words
s,t. Then the cyclic shifts 0ts000, 00ts00, and 0ts000 are bordered. This means that only
||ts|/2] 41 of the remaining cyclic shifts of w can be unbordered since any unbordered cyclic
shift must be followed by a bordered one. But [|ts|/2] +1 = [(n—4)/2] + 1 < [n/2], so
the two occurrences of 000 cannot overlap.

If the two occurrences of 000 do not overlap, then we can write w’ = s000t000 for some
words s,t where s, and ¢ are non-empty. Then the conjugates 00£000s0, 0000500, 0050000,
and 0s000¢00 are bordered. By the same argument as above, of the remaining cyclic shifts,
a maximum of | |st|/2] 42 of them can be unbordered. But ||st|/2] +2=[(n—6)/2)]| +2 <
|n/2], a contradiction. O

Lemma 12. Let n > 4 be odd and w be a binary word of length n such that a conjugate w'
of w has 000 as a prefir and nuc(w) = |n/2|. Then nuc(w) = nuc(w’) = nuc(0w’) for all
i >0.

Proof. Let i > 0 be an integer. We can write w’ = 000u for some word u. It is clear that
0/u0"37 is bordered for all 1 < j < i + 2. Therefore, it suffices to prove that s000¢ is
bordered if and only if s0°*3¢ is bordered where u = ts.

First we prove the forward direction. Suppose s000¢ is bordered. By Lemma 11 we have
that s000¢ contains only one occurrence of 000 as a factor. So 000 is neither a prefix of s00
nor a suffix of 00¢. Thus, any border of s000¢ must of length < min{|s|, |¢|} + 2. But such a
border would also be a border of s0?"3¢.

A similar argument works for the reverse direction. Therefore nuc(w) = nuc(w’) =
nuc(0'w’) for all i > 0. O

Theorem 13. For all 1 < i < mnucg(n) there exists w € ¥} such that nuc(w) = i.

Proof. Let C' = {5,7,9,10,14,17}. For k > 4, Harju and Nowotka [7] showed that for all
integers i with 1 < ¢ < n there exists a word w € 37 such that nuc(w) = i. For k = 3, Harju
and Nowotka [7] showed that if n ¢ C then for all integers i with 1 < ¢ < n there exists a
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word w € X} such that nuc(w) = i, and if n € C then for all integers ¢ with 1 < i < n there
exists a word w € X} such that nuc(w) = 1.

To the best of the authors’ knowledge, there is no known proof of the existence of such
words for k = 2. Suppose &k = 2. By Theorem 3 there exists a w € X% such that w is
a factor of the Thue-Morse word and mnucy(n) = nuc(w). So assume i < mnucs(n). By
Lemma 10 there exists a binary word u of odd length m such that nuc(u) = i = |m/2]
and 000 is a factor of some conjugate of u. Let u’ be the conjugate of u such that 000 is
a prefix of v/. Lemma 12 tells us nuc(u) = nuc(u’) = nuc(0" ™). Since nuc(0"™u') =i
and |0"™u/| = n, we have that for all 1 < ¢ < mnucy(n), there exists a w € X such that
nuc(w) = 1. O

5 Expected number of unbordered conjugates

What is the expected number of unbordered conjugates of a randomly-chosen word of length
n?

Let ug(n) denote the number of unbordered binary words of length n. It is known that
limy, o0 ug(n)/k™ = cu,, where oy, is a certain real number. We have ay = 0.2677; see [10].

Theorem 14. The expected number of unbordered conjugates of a randomly-chosen word of
length n over a k-letter alphabet is (ur(n)/k™)n, which is asymptotically equal to cyn.

Proof. To see this, let © be a word of length n. There are two cases: x is not primitive, and
x is primitive.

If x is not primitive, it equals y© for some e > 2. Then by a well-known result, every
conjugate of z is bordered. So x has 0 unbordered conjugates.

If = is primitive, then all its cyclic shifts are distinct. (For otherwise x = wv = vu, and
then by Lyndon-Schiitzenberger we know x is a power.) There are n of these cyclic shifts.
So if we consider all conjugates of all primitive words, each primitive word appears exactly
n times.

Putting this all together, we get

Zz’ -Pr[X =1i] = % Z nuc(x)

S TEO™

1
=1 Z nuc(x)

zexn
x primitive

- Z Z [0"(z) is unbordered ]

zex™  0<i<n
x primitive

1

=—-n- Z [z is unbordered ]
K ZEX™

= ug(n),
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as claimed. Here nuc(z) is the number of unbordered conjugates of z, and ¢‘(x) denotes the
left shift by ¢ locations of x, and [p| is 1 if p is true and 0 otherwise. ]

6

Conclusions

We want to emphasize that our experience shows that rephrasing problems in combinatorics
on words using the first-order logical theory of automatic sequences can be a useful tool in
solving these problems. We encourage others to adopt this approach.
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