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Return words and bifix codes in eventually

dendric sets

Francesco Dolce1 and Dominique Perrin2

1 IRIF, Université Paris Diderot, France
2 LIGM, Université Paris-Est Marne-la-Vallée, France

Abstract. A shift space (or its set of factors) is eventually dendric if the
possible extensions of all long enough factors are described by a graph
which is a tree. We prove two results on eventually dendric shifts. First,
all sets of return words to long enough words have the same cardinality.
Next, this class of shifts is closed under complete bifix decoding.
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1 Introduction

A shift spaceX can be defined as the set of two-sided infinite words with all their
factors in a given extendable factorial set, called the language of the shift, and
denoted L(X). Thus shift spaces and extendable factorial sets are two aspects of
the same notion. The traditional hierarchy of classes of languages translates into
a hierarchy of shift spaces. In particular, a shift space X is called sofic when its
language L(X) is a regular language. It is called of finite type when its language
is the complement of a finitely generated ideal.

The complexity of a shift space is the function n 7→ p(n) where p(n) is the
number of factors of length n of the shift. In this paper, we are interested in shift
spaces of at most linear complexity. This class is important for many reasons and
includes the class of Sturmian shifts which are by definition those of complexity
n + 1, which play a role as binary codings of discrete lines. Such shifts arise
in many other contexts(see, e.g., [?] or [?]). A shift space X is recurrent if for
every u, v ∈ L(X) there exists some w such that uwv ∈ L(X). It is uniformly
recurrent if for every element w ∈ L(X) there is an integer nw such that w
occurs as a factor in each elements of L(X) longer than nw. Thus, the notion
of recurrence expresses the property that every factor has a second occurrence.
Uniform recurrence correspond to the appearance of the second occurrence after
bounded time. Is is known that all uniformly recurrent factorial extendable sets
of at most linear complexity have a finite S-adic representation (i.e., a gener-
alization to several morphisms of a fixed point of a morphism). Conversely, it
is an open problem, known as the S-adic conjecture, to characterise the S-adic
representations of uniformly recurrent sets of at most linear complexity. Note
that all substitutive shifts defined by a primitive morphism are both uniformly
recurrent and of at most linear complexity.
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In this contribution we study a class of shift spaces of at most linear complex-
ity, called eventually dendric, recently introduced in [?]. We also call eventually
dendric the language of an eventually dendric shift. This class extends the class
of dendric sets introduced in [?] (under the name of tree sets) which themselves
extend naturally episturmian sets (also called Arnoux-Rauzy sets) and interval
exchange sets. It is known that the class of eventually dendric shifts is closed
under the natural equivalence on shifts called conjugacy (see [?]). We prove here
that it is closed under a second transformation, namely complete bifix decoding,
which is important because it includes coding by non overlapping blocks of fixed
length. These two results show the robustness of the class of eventually dendric
sets, giving a strong motivation for its introduction.

A dendric set S is defined by introducing the extension graph of a word
and by requiring that this graph is a tree for every word in S. It has many
interesting properties which involve free groups. In particular, in a dendric set S
on an alphabet A, the group generated by the set of return words (see Section 4)
to some word in S is the free group on the alphabet and, in particular, has
CardA free generators. This generalizes a property known for Sturmian sets
whose link with automorphisms of the free group was noted by Arnoux and
Rauzy. The class of eventually dendric sets, studied in this paper, is defined by
the property that the extension graph of every long enough word in the set is a
tree (for short words the graphs may be arbitrary). These sets are contained in
the class of eventually neutral sets, where a weaker hypothesis on the extensions
is required (see Section 3) Our main results are that: all sets of return words
to a (long enough) word in a recurrent eventually neutral set S have the same
cardinality (Theorem 1); the class of eventually dendric sets is closed under
complete bifix decoding (Theorem 4). An interesting consequence of Theorem 1 is
the equivalence of the notions of recurrence and uniform recurrence for eventually
neutral (and thus eventually dendric) sets (Theorem 2)

The paper is organized as follows. In Section 2, we introduce the definition
of extension graphs and of eventually dendric sets. In Section 3, we recall some
known properties on the complexity of a factorial extendable set of words and of
special words. In Section 4 we focus on (uniformly) recurrent eventually neutral
sets and on return words in such sets. In particular we prove that for every word
w the set of return words on w is finite and that when w is long enough, all these
sets have the same cardinality (Theorem 1). In the same section, and actually
as a consequence of Theorem 1, we also prove that an eventually neutral set is
recurrent if and only if it is uniformly recurrent (Theorem 2), a property already
known for neutral sets ([?,?]). In Section 5 we introduce generalized extension
graphs in which extension by words over particular sets replaces extension by
letters. We prove that one obtains an equivalent definition of eventually dendric
shifts using these generalized extension graphs (Theorem 3). In Section 6, we
use generalized extesion graphs to prove that the class of recurrent eventually
dendric sets is closed under complete bifix decoding (Theorem 4), a result already
known for dendric sets. We conclude with some open questions.
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2 Eventually dendric sets

Let A be a finite alphabet. We denote by A∗ the set of all words on A and
by An the set of words of n letters, with n ≥ 0. We denote by ε the empty
word. A factor of a word x is a word v such that x = uvw. If u (resp. w) is the
empty word, we say that v is a suffix (resp. prefix ) of x. These definitions can
be extended in a natural way to infinite words. A set of words S on the alphabet
A is factorial if it contains the factors of its elements as well as the alphabet
A. It is called extendable if for any w ∈ S there are letters a, b ∈ A such that
awb ∈ S. An example of factorial and extendable set is given by the language of
an infinite word w, i.e., the set L(w) containing all finite factors of w.

Given a factorial set S and an integer n ≥ 0 we denote Sn = S ∩ An and
S≥n =

⋃
m≥n Sm. For w ∈ S and n ≥ 1, we denote Ln(w, S) = {u ∈ Sn |

uw ∈ S}, Rn(w, S) = {v ∈ Sn | wv ∈ S} and En(w, S) = {(u, v) ∈ Ln(w, S) ×
Rn(w, S) | uwv ∈ S}. The extension graph of order n of w, denoted En(w, S),
is the undirected bipartite graph whose set of vertices the disjoint union of
Ln(w, S) and Rn(w, S) and with edges the elements of En(w, S). When the
context is clear, we denote Ln(w), Rn(w), En(w) and En(w) instead of Ln(w, S),
Rn(w, S), En(w, S) and En(w, S). A path in an undirected graph is reduced if
it does not contain successive equal edges. For any w ∈ S, since any vertex of
Ln(w) is connected to at least one vertex of Rn(w), the bipartite graph En(w)
is a tree if and only if there is a unique reduced path in En(w) between every
pair of vertices of Ln(w) (resp. Rn(w)). A factorial and extendable set S is said
to be eventually dendric with threshold m ≥ 0 if E1(w) is a tree for every word
w ∈ S≥m. It is said to be (purely) dendric if we can choose m = 0. Dendric
sets were introduced in [?] under the name of tree sets. An important example
of dendric sets is formed by episturmian sets (also called Arnoux-Rauzy sets),
which are by definition factorial extendable sets closed by reversal and such that
for every n there exists a unique wn ∈ Sn(X) such that Card(R1(wn)) = Card(A)
and such that for every w ∈ Sn \ {wn} one has Card(R1(w)) = 1 (see [?,?]).

Example 1. Let F be the Fibonacci set, which is the set of factors of the words
ϕn(a), where ϕ is the morphism a 7→ ab, b 7→ a. It is also the set of factors of the
one-sided infinite word x having all ϕn(a) as prefixes, called a fixed point of ϕ,
since ϕ(x) = x. It is well known that F is a Sturmian set (see [?]). The graph
E1(a) is shown in Figure 1 on the left. The graph E3(a) is shown on the right.

The tree sets of characteristic c ≥ 1 introduced in [?,?] give an example of
eventually dendric sets of threshold 1 (while E1(ε) is a forest of c trees).

Example 2. Let S be the language of the infinite word obtained as fixed point
of the morphism ψ : a 7→ ab, b 7→ cda, c 7→ cd, d 7→ abc. Its language is a tree
set of characteristic 2 and it is actually a specular set ([?, Example 4.2]). The
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Fig. 1. The graphs E1(a) and E3(a).

extension graph E1(ε) is shown in Figure 2. Since the extension graphs of all
nonempty words are trees, the set is eventually dendric with threshold 1.

a

b

b

c

c

d

d

a

Fig. 2. The extension graph E1(ε).

Example 3. Let S be the Tribonacci set, which is the set of factors of the fixed
point of the morphism ψ : a 7→ ab, b 7→ ac, c 7→ a. S is an Arnoux-Rauzy set and
a dendric set (see [?]). Let α be the morphism α : a 7→ a, b 7→ a, c 7→ c. The set
α(S) is eventually dendric with threshold 4 (see [?]).

3 Complexity of eventually dendric sets

Let S be a factorial extendable set. For a word w ∈ S, we denote ℓk(w) =
CardLk(w), ek(w) = CardEk(w), and rk(w) = CardRk(w). For any w ∈ S,
we have 1 ≤ ℓk(w), rk(w) ≤ ek(w). The word w is left-k-special if ℓk(w) > 1,
right-k-special if rk(w) > 1 and k-bispecial if it is both left-k-special and right-
k-special. For k = 1, we use ℓ, r, e and we simply say special instead of k-special.
We define the multiplicity of w as m(w) = e(w)− ℓ(w)− r(w) + 1. We say that
w is strong if m(w) ≥ 0, weak if m(w) ≤ 0 and neutral if m(w) = 0 (see [?]). It
is clear that if E1(w) is acyclic (resp., connected, a tree), then w is weak (resp.,
strong, neutral). The following proposition is easily verified.

Proposition 1. Let S be a factorial extendable set and let w ∈ S. If w is
neutral, then

ℓ(w)− 1 =
∑

b∈R1(w)

(ℓ(wb)− 1) (1)

A factorial and extendable set S is said to be eventually neutral with threshold
m ≥ 0 if w is neutral for every word w ∈ S≥m. It is said to be (purely) neutral
if we can choose m = 0. Set further pn(S) = CardSn, sn(S) = pn+1(S)− pn(S)
and bn(S) = sn+1(S)− sn(S). The sequence pn(S) is called the complexity of S.

The following result is from [?] (see also [?] and [?, Theorem 4.5.4]).
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Proposition 2. We have for all n ≥ 0,

sn(S) =
∑

w∈Sn

(ℓ(w) − 1) =
∑

w∈Sn

(r(w) − 1) and bn(S) =
∑

w∈Sn

m(w).

In particular, the number of left-special (resp. right-special) words of length n is
bounded by sn(S).

We will use the following easy consequence of Proposition 2.

Proposition 3. Let S be a factorial extendable set. If S is eventually dendric,
then the sequence sn(S) is eventually constant.

The previous result implies that eventually dendric sets have eventual linear
complexity. The converse of Proposition 3 is not true.

Example 4. Let C be the Chacon ternary set, which is the set of factors of the
fixed point of the morphism ϕ : a 7→ aabc, b 7→ bc, c 7→ abc. It is well known
that the complexity of C is pn(C) = 2n + 1 and thus that sn(C) = 2 for all
n ≥ 0 (see [?, Section 5.5.2]). The extension graphs of abc and bca are shown
in Figure 3. Thus m(abc) = 1 and m(bca) = −1. Let now α be the map on
words defined by α(x) = abcϕ(x). Let us verify that if the extension graph of x
is the graph of Figure 3 on the left, the same holds for the extension graph of
y = α(x). Indeed, since axa ∈ C, the word ϕ(axa) = aabcϕ(x)aabc = ayaabc is
also in C and thus (a, a) ∈ E1(y). Since cxa ∈ C and since a letter c is always
preceded by a letter b, we have bcxa ∈ C. Thus ϕ(bcxa) = bcyaabc ∈ C and thus
(c, a) ∈ E1(y). The proof of the other cases is similar. The same property holds
for a word x with the extension graph on the right of Figure 3. This shows that
there is an infinity of words whose extension graph is not a tree and thus the
Chacon set is not eventually dendric.

a

c

a

b

a

c

a

b

Fig. 3. The extension graphs of abc and bca.

4 Recurrent eventually dendric sets

A factorial set S is recurrent if for any u, v ∈ S there is a word w such that
uwv ∈ S. A set is uniformly recurrent whenever for all w ∈ S there exists an
n ≥ 0 such that w is a factor of any word in Sn. This last property is called
minimality in the context of dynamical systems. If S is uniformly recurrent and
infinite, then either there exists for every w ∈ S an integer n ≥ 1 such that
wn /∈ S or S is equal to the set of factors of ane infinite periodic word uuu · · · . A
recurrent set is uniformly recurrent but the converse is false, since for example
the A∗ is recurrent but not uniformly recurrent as soon as A has at least two
elements.
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Let S be a factorial extendable set. The set of complete return words to a
word w ∈ S is the set CRS(w) of words having exactly two factors equal to w,
one as a proper prefix and the other one as a proper suffix. It is clear that S
is uniformly recurrent if and only if it is recurrent and if for every word w the
set of complete return words to w is finite. If wu is a complete return word to
w, then u is called a (right) return word to w. We denote by RS(w) the set of
return words to w. Clearly Card(CRS(w)) = Card(RS(w)).

Example 5. Let S be the Tribonacci set (see Example 3). ThenRS(a) = {a, ba, ca}
and RS(c) = {abac, ababac, abaabac}.

By a result of [?], if S is uniformly recurrent and neutral (a fortiori, if S is
dendric) the set RS(w) has Card(A) elements for every w ∈ S. This is not true
anymore for eventually dendric sets, as shown in the following example.

Example 6. Let S be the Tribonacci set and let Y = α(X) be, as in Example 3
the image of X under the morphism α : a, b→ a, c→ c. Then, using Example 5,
we find RY (a) = {a, ca} while RY (c) = {aaac, aaaaac, aaaaaac}.

We will prove that for eventually dendric sets, a weaker property is true. It
implies that the cardinality of sets of return words is eventually constant. For
w ∈ S, set ρS(w) = r1(w)− 1 and for a set W ⊂ S, set ρS(W ) =

∑
w∈W ρS(w).

By the symmetric of Proposition 1, for every neutral word w ∈ S, we have

ρS(w) =
∑

a∈L1(w)

ρS(aw). (2)

Theorem 1. Let S be a uniformly recurrent set which is eventually neutral with
threshold m. For every w ∈ S, the set RS(w) is finite. Moreover, for every
w ∈ S≥m, we have

Card(RS(w)) = 1 + ρ(Sm). (3)

Note that form = 0 we have Card(RS(w)) = Card(A) since ρS(ε) = Card(A)−1.
A prefix code (resp. a suffix code) is a set X of words such that none of them

is a prefix (resp. a suffix) of another one. A prefix code (resp. a suffix code)
U ⊂ S is called S-maximal if it is not properly contained in a prefix code (resp.
suffix code) Y ⊂ S (see, for instance, [?]).

Proposition 4. Let S be an eventually neutral set with threshold m. Then
ρS(U) is finite for every suffix code U ⊂ S. If U is a finite S-maximal suffix
code with U ⊂ S≥m, then

ρS(U) = ρS(Sm). (4)

Proof. For any suffix code U ⊂ S, let us set Um = (U ∩ S<m) ∪ (V ∩ Sm(X)),
where V is the set of words which are suffixes of some words of U . Note that Um

is a finite suffix code. It is equal to Sm(X) if U is S-maximal and contained in
S≥m(X). Assume first that U ⊂ S is a finite suffix code. We prove the result by
induction on the sum ℓ(U) of the lengths of the words of U that

ρS(U) ≤ ρS(Um) with equality if U is S-maximal and U ⊂ S≥m(X). (5)
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If all words of U are of length at most m, then U ⊂ Um with equality if U is
S-maximal and U ⊂ S≥m, since in this case Um = U = Sm. Thus Equation (5)
holds. Otherwise, let u ∈ U be of maximal length. Set u = av with a ∈ A. Then
Av∩S ⊂ U . Set U ′ = (U \Av)∪{v}. Thus U ′ is a suffix code with ℓ(U ′) < ℓ(U)
which is S-maximal if U is S-maximal.We have the inclusion U ⊂ (U ′\v)∪L1(v)v
with equality if U is S-maximal. Since v is neutral (its extension graph is a tree),
we have, by Equation (2), ρS(U) ≤ ρS(U

′)− ρS(v)+
∑

a∈L1(v)
ρS(av) = ρS(U

′),

with equality if U is S-maximal. By induction hypothesis, Equation (5) holds
for U ′. Thus ρS(U) ≤ ρS(Um). If U is X-maximal and U ⊂ S≥m, then ρS(U) =
ρS(Sm(X)) since U ′

m = Um = Sm(X). Thus Equation (5) is proved.
If U is infinite, then ρS(U) is the supremum of the values of ρS(W ) on the

finite subsets W of U and thus it is bounded by Equation (5).

Proof (of Theorem 1). Consider a word w ∈ S and let P be the set of proper
prefixes of CRS(w). For p ∈ P , denote α(p) = Card{a ∈ A | pa ∈ P ∪CRS(w)}−
1. Then CRS(w) is finite if and only if P is finite. Moreover in this case, since
CRS(w) is a prefix code, we have by a well known property of trees (one can see
CRS(w) as set of leaves and P as set of internal nodes)

Card(CRS(w)) = α(P ) + 1, (6)

where α(P ) =
∑

p∈P α(p). Let U be the set of words in P which are not proper
prefixes of w. We claim that U is an S-maximal suffix code. Indeed, if u, vu ∈ U ,
then w is a proper prefix of u and thus is an internal factor of vu, a contradiction
unless v = ε. Thus U is suffix. Consider r ∈ S. Either r has a suffix in U or r is
a suffix of a word in u. Indeed, let us suppose that r has no suffixes in U . Then,
since S is recurrent, there is some s ∈ S such that wsr ∈ S. Let u be the shortest
prefix of wsr which has a proper suffix equal to w . Then u ∈ U . This shows that
U is an S-maximal suffix code. We have α(p) = 0 for any proper prefix p of w
since any word in CRS(w) has w as a proper prefix. Next we have α(p) = ρS(p)
for any p ∈ U . Indeed, if ua ∈ S for u ∈ P and a ∈ A, then ua ∈ CRS(w) ∪ P
since S is recurrent. Thus we have α(P ) = ρS(U). By Proposition 4, ρS(U) is
finite. Therefore, Equation 6 shows that Card(CRS(w)) = Card(RS(w)) is finite.

Assume finally that |w| ≥ m. Then U ⊂ S≥m(X) and thus, by Proposition 4,
we have ρS(U) = ρS(Sm). Thus we have α(P ) = ρS(Sm). By Equation (6), this
implies Equation (3).

It is known that for neutral set recurrence is enough to guarantee uniform
recurrence [?]. We obtain as a direct corollary of Theorem 1 the following:

Theorem 2. An eventually neutral set is recurrent if and only if it is uniformly
recurrent.

Proof. Let S be a recurrent eventually neutral set. By Theorem 1, the set RS(w)
is finite for every w ∈ S. Thus S is uniformly recurrent.

TTheorem 2 shows also that in a recurrent eventually neutral set the cardi-
nality of complete return words is bounded. There exist (uniformly) recurrent
sets which do not have this property (see [?, Example 3.17]).
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5 Generalized extension graphs

We will now see how the conditions on extension graphs can be generalized to
graphs expressing the extension by words having different length.

Proposition 5. For every n ≥ 1 and m ≥ 0, the graph En(w) is a tree for all
w ∈ S≥m if and only if En+1(w) is a tree for all words w ∈ S≥m.

To prove Proposition 5 we need some preliminary result as well as the follow-
ing notions. Let S be a factorial extendable set of words over an alphabet A. It
is not difficult to show that given an S-maximal prefix code (resp. a S-maximal
suffix code) U ⊂ S, every word of S either has a prefix in U or is a prefix of a
word of U .

For U, V ⊂ A∗ and w ∈ S, let LU (w) = {u ∈ U | uw ∈ S} and RV (w) =
{v ∈ V | wv ∈ S}.

Let U ⊂ A∗ (resp. V ⊂ A∗) be a suffix code (resp. prefix code) and w ∈ S
be such that LU (w) is an S-maximal suffix code (resp. RV (w) is an S-maximal
prefix code). The generalized extension graph of w relative to U, V is the following
undirected bipartite graph EU,V (w). The ices is the disjoint union of LU (w) and
RV (w). The edges are the pairs (u, v) ∈ LU (w)×RV (w) such that uwv ∈ S. In
particular En(w) = ESn,Sn

(w). The only if part is [?, Lemmas 3.8 and 3.10].

Lemma 1. Let S be a factorial extendable set and let w ∈ S. Let U ⊂ S be
a finite S-maximal suffix code and let V ⊂ S be finite S-maximal prefix code.
Let ℓ ∈ S be such that Aℓ ∩ S ⊂ U and such that EA,V (ℓw) is a tree. Set
U ′ = (U \ Aℓ) ∪ {ℓ}. The graph EU ′,V (w) is a tree if and only if the graph
EU,V (w) is a tree.

Proof. We need only to prove the if part. First, note that the hypothesis that
EA,V (ℓw) is a tree guarantees that the left vertices Aℓ in EU,V (w) are clusterized:
for any pair of vertices aℓ, bℓ there exists a unique reduced path from aℓ to bℓ in
EU,V (w) using as left vertices only elements of Aℓ. Indeed, such a path exists since
the subgraph EAℓ,V (w) of EU,V (w) is isomorphic to EA,V (ℓw) that is connected.
Since EU,V (w) is a tree, this path is unique. Let v, v′ ∈ RV (w) be two distinct
vertices and let π be the unique reduced path from v to v′ in EU,V (w). We show
that we can find a unique reduced path π′ from v to v′ in EU ′,V (w). If π does not
pass by Aℓ, we can simply define by π′ a path passing by the same vertices than
π. Otherwise, we can decompose π in a unique way as a concatenation of a path
π1 from v to a vertex in Aℓ not passing by Aℓ before, followed by a path from
Aℓ to Aℓ (using on the left only vertices from Aℓ) and a path π2 from Aℓ to v′

without passing in Aℓ again. We consider in EU ′,V (w) the unique path π′
1 from

v to ℓ obtained by replacing the last vertex of π1 by ℓ and the unique reduced
path π′

2 from ℓ to v′ obtained by replacing the first vertex of π2 by ℓ. In this case
we define π′ as the concatenation of π′

1 and π′
2. The reduced path π′ is unique.

Indeed, let us suppose that we have a different path π∗ from v to v′ in EU ′,V (w).
If π∗ does not pass (on the left) by ℓ, we would find a path having the same
vertices in EU,V (w) which is impossible since the graph is acyclic. Let us suppose
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that both π′ and π∗ pass by ℓ. Without loss of generality let us suppose that we
have a cycle in EU ′,V (w) passing by ℓ and v (the case with v′ being symmetric).
Let us define by π′

0 and π∗
0 the two distinct subpaths of π′ and π∗ respectively

going from v to ℓ. Since S is extendable, we can find aℓ, bℓ ∈ U , with a, b ∈ A
not necessarily distinct, and two reduced paths π1 from v to aℓ and and π2 from
v to bℓ in EU,V (w) obtained from π′

0 and π∗
0 by replacing the vertex ℓ by aℓ and

bℓ respectively. From the remark at the beginning of the proof we know that we
can find a reduced path in EU,V (w) from aℓ to bℓ. Thus we can find a nontrivial
cycle in EU,V (w), which contradicts the acyclicity of the graph.

A symmetric statement holds for r ∈ S such that rA ∩ S ⊂ V and EU,A(wr)
is a tree, with V ′ = (V \ rA) ∪ {r}: the graph EU,V (w) is a tree if and only if
EU,V ′(w) is a tree.

Lemma 2. Let n ≥ 1, let m ≥ 0 and let V be a finite S-maximal prefix code.
If ESn,V (w) is a tree for every w ∈ S≥m then for each word u ∈ S≥n+m−1, the
graph EA,V (u) is a tree.

Proof. The graph EA,V (u) is obtained from ESn,V (u) by identifying the vertices
of Ln(u) ending with the same letter. Since ESn,V (u) is connected, EA,V (u) is
also connected. Set u = ℓu′ with |ℓ| = n − 1. The graph EA,V (u) is isomorphic
to EAℓ,V (u

′) which is a subgraph of En(u
′) and thus it is acyclic.

A symmetric statement holds for n ≥ 1 and U a finite S-maximal suffix code:
EU,Sn

(w) is a tree for every w ∈ S≥m if and only if EU,A(wr) is a tree for every
r ∈ S≥n−1 and w ∈ S≥m.

Proof (of Proposition 5). Assume first that En(w) is tree for every word w ∈
S≥m. We fix some w ∈ S≥m. We claim that for any finite S-maximal suffix code
U formed of words of length n or n+ 1, the graph EU,Sn

(w) is a tree. The proof
is done by induction on γn+1(U) = Card(LU (w) ∩ A

n+1). The property is true
for γn+1(U) = 0, since then EU,Sn

(w) = En(w). Assume now that γn+1(U) > 0.
Let aℓ with a ∈ A be a word of length n+1 in LU (w). Since U is an S-maximal
suffix code with words of length n or n+1, we have Aℓ∩S ⊂ U . Let us consider
U ′ = (U \ Aℓ) ∪ {ℓ}. Since γn+1(U

′) < γn+1(U), by induction hypothesis the
graph EU ′,Sn

(w) is a tree. Moreover, by Lemma 2, the graph EA,Sn
(ℓw) is a tree.

Thus, by assertion 1 of Lemma 1, the graph EU,Sn
(w) is a tree. This proves

the claim. We now claim that for any finite X-maximal prefix code V formed
of words of length n or n + 1, the graph ESn+1,V (w) is a tree by induction
on δn+1(V ) = Card(RV (w) ∩ An+1). The property is true for δn+1(V ) = 0,
since the graph ESn+1,V (w) = ESn+1,Sn

(w), is a tree by Step 1.1. Assume now
that δn+1(V ) > 0. Let ra with a ∈ A be a word of length n + 1 in RV (w).
Since V is an X-maximal prefix code with words of length n or n+ 1, we have
rA∩S ⊂ U . Let us consider V ′ = (V \ rA)∪ {r}. Since δn+1(V

′) < δn+1(V ), by
induction hypothesis the graph ESn+1,V ′(w) is a tree. Moreover, by the symmetric
version of Lemma 2, the graph ESn+1,A(wr) is a tree. This proves the claim. Since
En+1(w) = ESn+1,Sn+1

(w), we conclude that En+1(w) is a tree.
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Assume now that En+1(w) is a tree for every w ∈ S≥m. Fix some w ∈ S≥m.
We first claim that EU,Sn+1

(w) is a tree for everyX-maximal suffix code U formed
of words of length n or n+ 1 by induction on γn(U) = Card(LU (w) ∩ A

n). The
property is true if γn(U) = 0, since then EU,Sn+1

(w) = En+1(w). Assume next
that γn(U) > 0. Let ℓ ∈ LU (w) ∩ A

n. Set W = (U \ {ℓ}) ∪ Aℓ or equivalently
U = (W \Aℓ)∪{ℓ}. Then δn(W ) < δn(U) and consequently EW,Sn+1

(w) is a tree
by induction hypothesis. On the other hand, by Lemma 2, the graph EA,Sn+1

(ℓw)
is also a tree. By Assertion 2 of Lemma 1, the graph EU,Sn+1

(w) is a tree and
thus the claim is proved. We now claim that ESn,V (w) is a tree for every S-
maximal prefix code V formed of words of length n or n + 1 by induction on
δn(V ) = Card(RV (w) ∩ An). The property is true if δn(V ) = 0 by Step 2.1.
Assume now that δn(V ) > 0. Let r ∈ RV (w) ∩ A

n and let T = (V \ {r}) ∪ rA
or equivalently V = (T \ rA) ∪ {r}. Then δn(T ) < δn(V ) and thus ESn,T (w) is
a tree by induction hypothesis. On the other hand, by the symmetric version of
Lemma 2, the graph ESn,A(wr) is also a tree. By Assertion 2 of Lemma 1, the
graph ESn,T (w) is a tree and thus the claim is proved. Since En(w) = EU,V (w)
for U = V = Sn, it follows from the claim that En(w) is a tree.

The following result shows that in the definition of eventually dendric sets,
one can replace the graphs E1(w) by En(w) with the same threshold.

Theorem 3. Let S be a factorial extendable set. For every m ≥ 1, the following
conditions are equivalent.

(i) S is eventually dendric with threshold m,
(ii) the graph En(w) is a tree for every n ≥ 1 and every word w ∈ S≥m,
(iii) there is an integer n ≥ 1 such that En(w) is a tree for every word w ∈ S≥m.

Proof. (i) ⇒ (ii) and (iii) ⇒ (i) follows from Proposition 5 using respectively
ascending and descending induction on n. Finally, (ii) clearly implies ⇒ (iii).

6 Complete bifix decoding

Let S be a factorial extendable set of words over an alphabet A. A set U ⊂ S is
said to be right S-complete (resp. left S-complete) if any long enough word of S
has a prefix (resp. suffix) in U . It is two-sided S-complete if it is both left and
right S-complete. A bifix code is a set of words that is both a prefix code and a
suffix code. Similary to what seen in Section 5, we say that a bifix code U ⊂ S
is S-maximal if it is not properly contained in a bifix code V ⊂ S. If a bifix code
U ⊂ S is right S-complete (resp. left S-complete), it is an S-maximal bifix code
since it is already an S-maximal prefix code (resp. suffix code). It can be proved
conversely that if S is recurrent, a finite bifix code is S-maximal if and only if it
is two-sided S-complete (see [?, Theorem 4.2.2]). This is not true in general, as
shown by the following example.

Example 7. Let S = a∗b∗. The set U = {aa, b} is an S-maximal bifix code.
Indeed, it is a bifix code and it is left S-complete as one may verify. However it
is not right S-complete since no word in ab∗ has a prefix in U .
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Let S ⊂ A∗ be a factorial extendable set and let U be a two-sided S-complete
finite bifix code. Let ϕ : B → U be a coding morphism for U , that is, a bijection
from an alphabet B onto U extended to a morphism from B∗ into A∗. Then
ϕ−1(S) is factorial and, since U is two-sided complete, it is extendable. ϕ−1(S)
is called the complete bifix decoding of S with respect to U . For example, for
any n ≥ 1, the set Sn is a two-sided complete bifix code and the corresponding
complete bifix decoding is the decoding of S by n-blocks. In [?, Theorem 3.13] it
is proved that the maximal bifix decoding of a recurrent dendric set is a dendric
set. Actually, the hypothesis that S is recurrent is only used to guarantee that the
S-maximal bifix code used for the decoding is also an S-maximal prefix code and
an S-maximal suffix code. In the definition used here of complete bifix decoding,
we do not need this hypothesis. Note, however, that when S is recurrent, the
two notions of complete and maximal bifix decoding coincide.

Theorem 4. Any complete bifix decoding of an eventually dendric set is an
eventually dendric set having the same threshold.

Note that any S-maximal suffix code U one has Card(U) ≥ Card(S ∩ A).
Indeed, every a ∈ A appears as a suffix of (at least) an element of S.

Lemma 3. A set S is an eventually dendric set with threshold n if and only if
for any w ∈ S≥n, for any S-maximal suffix code U and for any S-maximal prefix
code V , the graph EU,V (w) is a tree.

Proof. The “if” part is trivial. To prove the other direction, we use an induction
on the sum of the lengths of the words in U, V . The property is true if the
sum is equal to 2Card(X ∩ A). Indeed, for every w ∈ S≥n one has U = L(w)
and V = R(w) and thus EU,V (w) = E1(w) is a tree. Otherwise, assume that U
contains words of length at least 2 (the case with V being symmetrical). Let
u ∈ U be of maximal length. Set u = aℓ with a ∈ A. Since U is an S-maximal
suffix code, we have Aℓ∩S ⊂ U . Set U ′ = (U \Aℓ)∪{ℓ}. By induction hypothesis,
both EU ′,V (w) and EA,V (ℓw) are trees. Thus, by Lemma 1, EU,V (w) is also a tree.

Proof (of Theorem 4). Assume that S is eventually dendric with threshold n.
Let ϕ : B → U be a coding morphism for U and let T be the decoding of S
corresponding to U . Consider a word w of T of length at least n. By Lemma 3,
and since |ϕ(w)| ≥ n, the graph EU,U (ϕ(w)) is a tree. But for b, c ∈ B, one has
bwc ∈ T if and only if ϕ(bwc) ∈ S, that is, if and only if (ϕ(b), ϕ(c)) ∈ E1(ϕ(w)).
Thus E1(w) is isomorphic to EU,U (ϕ(w)) and thus E1(w) is a tree. This shows
that T is eventually dendric with threshold n.

Example 8. Let S be the Fibonacci set. Then U = {aa, aba, b} is an S-maximal
bifix code. Let ϕ : {u, v, w} → U be the coding morphism for U defined by
ϕ : u 7→ aa, v 7→ aba, w 7→ b. The complete bifix decoding T of S with respect to
U is a purely dendric set. It is actually the natural coding of an interval exchange
transformation on three intervals (see [?]). The extension graphs E1(ε, T ) and
E1(v, T ) are shown in Figure 4.
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Fig. 4. The graphs E1(ε, T ) and E1(w, T ).

A particular case of complete bifix decoding is related to a notion which is
well-known in topological dynamics, namely the skew product of two dynamical
systems (see [?]). Indeed, assume that when we start with a sfhit X , a permu-
tation group G on a set Q and a morphism f : A∗ → G. We denote q 7→ q · w
the result of the action of the permutation f(w) on the point q ∈ Q. Fix a point
i ∈ Q. The set of words w such that i ·w = i is a submonoid generated by a bifix
code U which is two-sided complete (this follows from [?, Theorem 4.2.11]). The
corresponding decoding is a shift space which is related to the skew product of S
and (G,Q). It is the shift space Y on the alphabet A×Q formed by the labels of
the two-sided infinite paths on the graph with vertices Q and edges (p, q) labeled
(a, p) for a ∈ A such that p · f(a) = q. The decoding of X corresponding to U
is the dynamical system induced by Y on the set of y ∈ Y such that y0 = (a, i)
for some a ∈ A.

Example 9. Let X be the Fibonacci shift, i.e., the shift whose language is the
Fibonacci set. Let Q = {1, 2}, G = Z/2Z and f : A∗ → G defined by a 7→
(12), b 7→ (1). Choosing i = 1, the bifix code U built as above is U = {aa, aba, b}
as in Example 8.

7 Conclusion

We have seen that the class of eventually dendric shifts is closed under complete
bifix decoding. It is also known to be closed under conjugacy (see [?]), and thus
it has strong closure properties. It would be interesting to know how properties
which are known to hold for dendric sets (or language of dendric shifts) extend
to this more general class. For instance, to which extent the properties of return
words proved for recurrent dendric sets extend to eventually dendric ones? More
precisely, what can we say about the subgroup of the free group generated by
return words to a given word? In [?] it is proved that for recurrent dendric sets,
every set of return words to a fixed word is a basis of the free group, while in
the case of specular sets, the set of return words to a fixed word is a basis of
a particular subgroup called the even subgroup (see [?]). Also, is there a finite
S-adic representation for all recurrent eventually dendric sets? There is one for
recurrent dendric sets [?].
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