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Explainable AI – Preface

Shortly after the emergence of the first computers, researchers have been interested in
developing ‘intelligent’ systems that can make decisions and perform autonomously
[6]. Until then, some of these tasks were carried out by humans. Transferring the
decision process to an AI system might in principle lead to faster and more consistent
decisions, additionally freeing human resources for more creative tasks. AI techniques,
such as machine learning, have made tremendous progress over the past decades and
many prototypes have been considered for use in areas as diverse as personal assistants,
logistics, surveillance systems, high-frequency trading, health care, and scientific
research. While some AI systems have already been deployed, what remains a truly
limiting factor for a broader adoption of AI technology is the inherent and undoubtable
risks that come with giving up human control and oversight to ‘intelligent’ machines
[1]. Clearly, for sensitive tasks involving critical infrastructures and affecting human
well-being or health, it is crucial to limit the possibility of improper, non-robust, and
unsafe decisions and actions [4]. Before deploying an AI system, we see a strong need
to validate its behavior, and thus establish guarantees that it will continue to perform as
expected when deployed in a real-world environment.

In pursuit of that objective, ways for humans to verify the agreement between the AI
decision structure and their own ground-truth knowledge [7] have been explored.
Simple models such as shallow decision trees or response curves are readily inter-
pretable, but their predicting capability is limited. More recent deep learning based
neural networks provide far superior predictive power, but at the price of behaving as a
‘black-box’ where the underlying reasoning is much more difficult to extract.
Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex
AI models to humans in a systematic and interpretable manner.

A number of XAI techniques [2, 3, 5, 8] have been proposed. Some of them have
already proven useful by revealing to the user unsuspected flaws or strategies in
commonly used ML models. However, many questions remain on whether these
explanations are robust, reliable, and sufficiently comprehensive to fully assess the
quality of the AI system. A series of workshops have taken place at major machine
learning conferences on the topic of interpretable and explainable AI. The present book
has emerged from our NIPS 2017 workshop “Interpreting, Explaining and Visualizing
Deep Learning … now what?”. The goal of the workshop was to assess the current
state of the research on XAI, and to discuss ways to mature this young field.

Therefore, in essence, this book does not provide final answers to the problem of
interpretable AI. It is a snapshot of interpretable AI techniques that have been proposed
recently, reflecting the current discourse in this field and providing directions of future
development.

Our goal was to organize these contributions into a coherent structure, and to
explain how each of them may contribute in the ‘big picture’ of interpretable and



explainable AI. A number of chapters in this book are extensions of the workshop
contributions. Other papers are contributions from non-participants that have been
added to obtain a more comprehensive coverage of the current research flavors. Each
chapter has received at least two peer-reviews and the revised contributions have
greatly profited from this process.

The book is organized in six parts:

Part 1: Towards AI Transparency
Part 2: Methods for Interpreting AI Systems
Part 3: Explaining the Decisions of AI Systems
Part 4: Evaluating Interpretability and Explanations
Part 5: Applications of Explainable AI
Part 6: Software for Explainable AI

Although not being able to cover the full breadth of topics, the 22 chapters in this
book provide a timely snapshot of algorithms, theory, and applications of interpretable
and explainable AI. Many challenges still exist both on the methods and theory side, as
well as regarding the way explanations are used in practice. We consider the book an
excellent starting point that will hopefully enable future work resolving open chal-
lenges of this active field of research.

July 2019 Wojciech Samek
Grégoire Montavon

Andrea Vedaldi
Lars Kai Hansen

Klaus-Robert Müller
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