Skip to main content

Gradient-Based Vs. Propagation-Based Explanations: An Axiomatic Comparison

  • Chapter
  • First Online:
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

Deep neural networks, once considered to be inscrutable black-boxes, are now supplemented with techniques that can explain how these models decide. This raises the question whether the produced explanations are reliable. In this chapter, we consider two popular explanation techniques, one based on gradient computation and one based on a propagation mechanism. We evaluate them using three “axiomatic” properties: conservation, continuity, and implementation invariance. These properties are tested on the overall explanation, but also at intermediate layers, where our analysis brings further insights on how the explanation is being formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ancona, M., Ceolini, E., Öztireli, A.C., Gross, M.H.: A unified view of gradient-based attribution methods for deep neural networks. CoRR abs/1711.06104 (2017)

    Google Scholar 

  2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  3. Balduzzi, D., Frean, M., Leary, L., Lewis, J.P., Ma, K.W., McWilliams, B.: The shattered gradients problem: if resnets are the answer, then what is the question? In: International Conference on Machine Learning, pp. 342–350 (2017)

    Google Scholar 

  4. Bazen, S., Joutard, X.: The Taylor decomposition: a unified generalization of the Oaxaca method to nonlinear models. Technical report 2013–32, Aix-Marseille University (2013)

    Google Scholar 

  5. Bengio, Y., Simard, P.Y., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  6. Kindermans, P., et al.: The (un)reliability of saliency methods. CoRR abs/1711.00867 (2017)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems, pp. 1106–1114 (2012)

    Google Scholar 

  8. Landecker, W., Thomure, M.D., Bettencourt, L.M.A., Mitchell, M., Kenyon, G.T., Brumby, S.P.: Interpreting individual classifications of hierarchical networks. In: IEEE Symposium on Computational Intelligence, pp. 32–38 (2013)

    Google Scholar 

  9. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Neural Information Processing Systems, pp. 4768–4777 (2017)

    Google Scholar 

  10. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  11. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 193–209. Springer, Cham (2019)

    Google Scholar 

  12. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  13. Montavon, G., Samek, W., Müller, K.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  14. Montúfar, G.F., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions of deep neural networks. In: Neural Information Processing Systems, pp. 2924–2932 (2014)

    Google Scholar 

  15. Poulin, B., et al.: Visual explanation of evidence with additive classifiers. In: National Conference on Artificial Intelligence and Innovative Applications of Artificial Intelligence, pp. 1822–1829 (2006)

    Google Scholar 

  16. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  17. Rieger, L., Chormai, P., Montavon, G., Hansen, L.K., Müller, K.-R.: Structuring neural networks for more explainable predictions. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_5

    Chapter  Google Scholar 

  18. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  19. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  20. Shapley, L.S.: 17. A value for n-person games. In: Contributions to the Theory of Games (AM-28), Volume II. Princeton University Press (1953)

    Google Scholar 

  21. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: International Conference on Machine Learning, pp. 3145–3153 (2017)

    Google Scholar 

  22. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important features through propagating activation differences. CoRR abs/1605.01713 (2016)

    Google Scholar 

  23. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: 2nd International Conference on Learning Representations (2014)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  25. Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: SmoothGrad: removing noise by adding noise. CoRR abs/1706.03825 (2017)

    Google Scholar 

  26. Sun, Y., Sundararajan, M.: Axiomatic attribution for multilinear functions. In: ACM Conference on Electronic Commerce, pp. 177–178 (2011)

    Google Scholar 

  27. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328 (2017)

    Google Scholar 

  28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  30. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. Int. J. Comput. Vision 126(10), 1084–1102 (2018)

    Article  Google Scholar 

  31. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  32. Zurada, J.M., Malinowski, A., Cloete, I.: Sensitivity analysis for minimization of input data dimension for feedforward neural network. In: IEEE International Symposium on Circuits and Systems, pp. 447–450 (1994)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Ministry for Education and Research as Berlin Center for Machine Learning (01IS18037I). Partial funding by DFG is acknowledged (EXC 2046/1, project-ID: 390685689). The author is grateful to Klaus-Robert Müller for the valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Montavon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montavon, G. (2019). Gradient-Based Vs. Propagation-Based Explanations: An Axiomatic Comparison. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics