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Abstract. Deep neural networks successfully pervaded many applica-
tions domains and are increasingly used in critical decision processes.
Understanding their workings is desirable or even required to further
foster their potential as well as to access sensitive domains like medical
applications or autonomous driving. One key to this broader usage of ex-
plaining frameworks is the accessibility and understanding of respective
software. In this work we introduce software and application patterns for
explanation techniques that aim to explain individual predictions of neu-
ral networks. We discuss how to code well-known algorithms efficiently
within deep learning software frameworks and describe how to embed
algorithms in downstream implementations. Building on this we show
how explanation methods can be used in applications to understand pre-
dictions for miss-classified samples, to compare algorithms or networks,
and to examine the focus of networks. Furthermore, we review available
open-source packages and discuss challenges posed by complex and evolv-
ing neural network structures to explanation algorithm development and
implementations.
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Interpretability · Software

1 Introduction

Recent developments showed that neural networks can be applied successfully
in many technical applications like computer vision [27,18,32], speech synthe-
sis [58] and translation [59,56,8]. Inspired by such successes many more domains
use machine learning and specifically deep neural networks for, e.g., material
science and quantum physics [39,47,46,11,10], cancer research [9,25], strategic
games [50,51], knowledge embeddings [37,42,3], and even for automatic machine
learning [64,2]. With this broader application focus the requirements beyond
predictive power alone rise. One key requirement in this context is the ability
to understand and interpret predictions made by a neural network or generally
by a learning machine. In at least two areas this ability plays an important role:
domains that require an understanding because they are intrinsically critical or
because it is mandatory by law, and domains that strive to extract knowledge
beyond the predictions of learned models. As exemplary domains can be named:
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health care [9,25,16], applications affected by the GDPR [60], and natural sci-
ences [39,47,46,11].

The advancement of deep neural networks is due to their potential to lever-
age complex and structured data by learning complicated inference processes.
This makes a better understanding of such models challenging, yet a reward-
ing target. Various approaches to tackle this problem have been developed,
e.g., [5,43,40,36,48]. While the nature and objectives of explanation algorithms
can be ambiguous [35], in practice gaining specific insights can already enable
practitioners and researchers to create knowledge as first promising results show,
e.g., [28,30,31,9,63,55].

To facilitate the transition of explanation methods from research into wide-
spread application domains the existence and understanding of standard usage
patterns and software is of particular importance. This, on one hand, lowers the
application barrier and effort for non-experts and, on the other hand, it allows
experts to focus on algorithm customization and research. With this in mind, this
chapter is dedicated to the software and application patterns for implementing
and using explanation methods with deep neural networks. In particular we focus
on the explanation techniques that have in common to highlight features in the
input space of a targeted neural network [38].

In the next section we address this by a step-by-step showcasing on how
explanation methods can be realized efficiently and highlight important design
patterns. The final part of the section shows how to tune the algorithms and how
to visualize obtained results. In Section 3 we extend this by integrating expla-
nation methods in several generic application cases with the aim to understand
predictions for miss-classified samples, to compare algorithms or networks, and
to examine the focus of networks. The remainder, Section 4, 5 and 6, addresses
available open-source packages, further challenges and gives a conclusion.

2 Implementing explanation algorithms

Implementing a neural network efficiently can be a complicated and error-prone
process and additionally implementing an explanation algorithm makes things
even trickier. We will now introduce the key patterns of explanation algorithms
that allow for an efficient and structured implementation. Subsequently we com-
plete the section by explaining how to approach interface design, parameter
tuning, and visualization of the results.

To make the code examples as useful as possible we will not rely on pseudo-
code, but rather use Keras [12], TensorFlow [1] and iNNvestigate [4] to imple-
ment our examples for the example network VGG16 [52]. The results are illus-
trated in Figure 1 and will be created step-by-step. The code listings contain
the most important code fragments and we provide corresponding executable
code as Jupyter notebook at https://github.com/albermax/interpretable_
ai_book__sw_chapter.

Let us recall that the algorithms we explore have a common functional form,
namely they map from the input to a equal-dimensional saliency map, e.g., the

https://github.com/albermax/interpretable_ai_book__sw_chapter
https://github.com/albermax/interpretable_ai_book__sw_chapter
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Image A1: I∗G A2: IG A3: Occlusion

A4: LIME B1: GB B2: DeepTaylor

B3: LRP B4: PatternNet B5: PatternAtt.

Fig. 1. Exemplary application of the implemented algorithms: This figure
shows the results of the implemented explanation methods applied on the image in
the upper-left corner using a VGG16 network [52]. The prediction- or gradient-based
methods (group A) are Input * Gradient [24,49, A1], Integrated Gradients [55, A2],
Occlusion [61, A3], and LIME [44, A4]. The propagation-based methods (group B) are
Guided Backprop [54, B1], Deep Taylor [38, B2], LRP [30, B3], PatternNet & Pat-
ternAttribution [23, B4 and B5]. On how the explanations are visualized we refer to
Section 2.3. Best viewed in digital and color.

output saliency map has the same tensor shape as the input tensor. More formal:
given a neural network model that maps some input to a single output neuron
f : Rn 7→ R, the considered algorithms have the following form e : Rn 7→ Rn. We
will select as output neuron the neuron with the largest activation in the final
layer. Any other neuron could also be used. We assume that the target neural
network is given as Keras model and the corresponding input and output tensor
are given as follows:
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1 # Create model without trailing softmax
2 model = make_a_keras_model ()
3
4 # Get TF tensors
5 input , output = model.inputs [0], model.outputs [0]
6 # Reduce output to response of neuron with largest activation
7 max_output = tf.reduce_max(output , axis=1)
8
9 # Select a sample image

10 x_not_pp = select_a_sample_image ()
11 # and preprocess it for the network
12 x = preprocess(x_not_pp)

The explanation algorithms of interest can be divided into two major groups
depending on how they treat the given model. The first group of algorithms uses
only the model function or gradient to extract information about the model’s
prediction process by repetitively calling them with altered inputs. The second
group performs a custom backpropagation along the model graph, i.e., requires
the ability to introspect the model and adapt to its composition. Methods of the
latter are typically more complex to implement, but aim to gain insights more
efficiently and/or of different quality. The next two subsections will describe
implementations for each group respectively.

2.1 Prediction- and gradient-based explanations

Algorithms that only rely on function or on gradient evaluations can be of very
simple, yet effective nature [24,49,53,55,61,54,63,44]. A downside can be the their
runtime, which is often a multiple of a single function call.

Input * gradient As a first example we consider input * gradient [24,49]. The
name already says it: the algorithm consists of an element-wise multiplication of
the input times the gradient. The corresponding formula is:

e(x) = x�∇xf(x). (1)

The method can be implemented as follows and the result is marked as A1 in
Figure 1:

1 # Take gradient of output neuron w.r.t. to the input
2 gradient = tf.gradients(max_output , input )[0]
3 # and multiply it with the input
4 input_t_gradient = input * gradient
5 # Run the code with TF
6 A1 = sess.run(input_t_gradient , {input: x})
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Integrated Gradients A more evolved example is the method Integrated Gradi-
ents [55] which tries to capture the effect of non-linearities better by computing
the gradient along a line between input image and a given reference image x′.
The corresponding formula for i-th input dimension is:

e(xi) = (xi − x′i)�
∫ 1

α=0

δf(x)

δxi

∣∣∣
x=x′+α(x−x′)

dα. (2)

To implement the method the integral is approximated with a finite sum and,
building on the previous code snippet, the code looks as follows (result is tagged
with A2 in Figure 1):

1 # Nr. of steps along path
2 steps = 32
3 # Take as reference a black image ,
4 # i.e., lowest number of the networks input value range.
5 x_ref = np.ones_like(x) * net[’input_range ’][0]
6 # Take gradient of output neuron w.r.t. to input
7 gradient = tf.gradients(max_output , input )[0]
8
9 # Sum gradients along the path from x to x_ref

10 gradient_sum = np.zeros_like(x)
11 for step in range(steps):
12 # Create intermediate input
13 x_step = x_ref + (x - x_ref) * step / steps
14 # Compute and add the gradient for intermediate input
15 gradient_sum += sess.run(gradient , {input: x_step })
16
17 # Integrated Gradients formula
18 A2 = gradient_sum * (x - x_ref)

Occlusion In contrast to the two presented methods occlusion-based methods
rely on the function value instead of its gradient, e.g., [61,34,63]. The basic
variant [61] divides the input, typically an image, into a grid of non-overlapping
patches. Then each patch gets the function value assigned that is obtained when
the patch region in the original image is perturbed or replaced by a reference
value. Eventually all values are normalized with the default activation given
when no patch is occluded. The algorithm can be implemented as follows and
the result is denoted as A3 in Figure 1:

1 diff = np.zeros_like(x)
2 # Choose a patch size
3 psize = 8
4
5 # Occlude patch by patch and calculate activation for each patch
6 for i in range(0, net[’image_shape ’][0], psize ):
7 for j in range(0, net[’image_shape ’][0], psize ):
8
9 # Create image with the patch occluded

10 occluded_x = x.copy()
11 occluded_x [:, i:i+psize , j:j+psize , :] = 0
12
13 # Store activation of occluded image
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14 diff[:, i:i+psize , j:j+psize , :] = sess.run(
15 max_output , {input: occluded_x })[0]
16
17 # Normalize with initial activation value
18 A3 = sess.run(max_output , {input: x})[0] - diff

LIME The last prediction-based explanation class, e.g., [44,36], decomposes the
input sample into features. Subsequently, prediction results for inputs — com-
posed of perturbed features — are collected, yet instead of using the values
directly for the explanation, they are used to learn an importance value for the
respective features.

One representative algorithm is “Local interpretable model-agnostic expla-
nations” [44, LIME] that learns a local regressor for each explanation. It works
as follows for images. First the image is divided into segments, e.g., continu-
ous color regions. Then a dataset is sampled where the features are randomly
perturbed, e.g., filled with a gray color. The target of the sample is determined
by the prediction value for the accordingly altered input. Using this dataset a
weighted, regression model is learned and the resulting weight vector’s values
indicate the importance of each segment in the neural network’s initial predic-
tion. The algorithm can be implemented as follows and the result is denoted as
A4 in Figure 1:

1 # Segment (not pre -processed) image
2 segments = skimage.segmentation.quickshift(
3 x_not_pp [0], kernel_size=4, max_dist=200, ratio=0.2)
4 nr_segments = np.max(segments )+1
5
6
7 # Create dataset
8 nr_samples = 1000
9 # Randomly switch segments on and off

10 features = np.random.randint(0, 2, size=(nr_samples , nr_segments ))
11 features[0, :] = 1
12
13 # Get labels for features
14 labels = []
15 for sample in features:
16 tmp = x.copy()
17 # Switch segments on and off
18 for segment_id , segment_on in enumerate(sample ):
19 if segment_on == 0:
20 tmp [0][ segments == segment_id] = (0, 0, 0)
21 # Get predicted value for this sample
22 labels.append(sess.run(max_output , {input: tmp })[0])
23
24
25 # Compute sample weights
26 distances = sklearn.metrics.pairwise_distances(
27 features ,
28 features [0]. reshape(1, -1),
29 metric=’cosine ’,
30 ).ravel ()
31 kernel_width = 0.25
32 sample_weights = np.sqrt(np.exp(-( distances ** 2) / kernel_width ** 2))
33
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34 # Fit L1-regressor
35 regressor = sklearn.linear_model.Ridge(alpha=1, fit_intercept=True)
36 regressor.fit(features , labels , sample_weight=sample_weights)
37 weights = regressor.coef_
38
39
40 # Map weights onto segments
41 A4 = np.zeros_like(x)
42 for segment_id , w in enumerate(weights ):
43 A4[0][ segments == segment_id] = (w, w, w)

As initially mentioned a drawback of prediction- and gradient-based methods
can be slow runtime, which is often a multiple of a single function evaluation
— as the loops in the code snippets already suggested. For instance Integrated
Gradients used 32 evaluations, the occlusion algorithm (224/4)2 = 562 = 3136
and LIME 1000 (same as in [44]). Especially for complex networks and for appli-
cations with time constraints this can be prohibitive. The next subsection is on
propagation-based explanation methods, which are more complex to implement,
but typically produce explanation results faster.

2.2 Propagation-based explanations

Algorithms using a custom back-propagation routine to create an explanation
are in stark contrast to prediction- or gradient-based explanation algorithms:
they rely on knowledge about the model’s internal functioning to create more
efficient or diverse explanations.

Consider gradient back-propagation that works by first decomposing a func-
tion and then performing an iterative backward mapping. For instance, the func-
tion f(x) = u(v(x)) = (u ◦ v)(x) is first split into the parts u and v — of which
it is composed of in the first place — and then the gradient δf

δx is computed

iteratively δf
δx = δu◦v

δv
δv
δx by backward mapping each component using the par-

tial derivatives δu◦v
δv and δv

δx . Similar to the computation of the gradient, all
propagation-based explanations have this approach in common: (1) each algo-
rithm defines, explicitly or implicitly, how a network should be decomposed into
different parts and (2) how for each component the backward mapping should
be performed. When implementing an algorithm for an arbitrary network it is
important to consider that different methods target different components of a
network, that different decompositions for the same method can lead to differ-
ent results and that certain algorithms cannot be applied to certain network
structures.

For instance consider GuidedBackprop [54] and Deep Taylor Decomposi-
tion [38, DTD]. The first targets ReLU-activations in a network and describes
a backward mapping for such non-linearities, while partial derivatives are used
for the remaining parts of the network. On the other hand, DTD and many
other algorithms expect the network to be decomposed into linear(izable) parts
— which can be done in several ways and may result in different explanations.

When developing such algorithms the emphasis is typically on how a back-
ward mapping can lead to meaningful explanations, because the remaining func-
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tionality is very similar and shared across methods. Knowing that, it is useful
to split the implementation of propagation-based methods in the following two
parts. The first part contains the algorithm details— thus defines how a network
should be decomposed and how the respective mappings should be performed.
It builds upon the next part which takes care of common functionality, namely
decomposing the network as previously specified and iteratively applying the
mappings. Both are denoted as ”Algorithm” and ”Propagation-backend” in an
exemplary software stack in Figure 8 in the appendix.

This abstraction has the big advantage that the complex and algorithm inde-
pendent graph-processing code is shared among explanation routines and allows
the developer to focus on the implementation of the explanation algorithm itself.

We will describe in Appendix A.1 how a propagation backend can be im-
plement. Eventually it should allow the developer to realize a method in the
following schematic way — using the interface to be presented in Section 2.3:

1 # A backward mapping function , e.g., for convolutional layers
2 def backward_mapping(Xs , Ys, bp_Ys , bp_state ):
3 return compute_backward_mapping_magic ()
4
5 # A class bundling all algorithm functionality
6 class ExplanationAlgorithm(Analyzer ):
7 ...
8 # Defining how to perform the algorithm
9 def _create_analysis(self):

10 # Tell the backend that this mapping
11 # should be applied , e.g., to all convolutional layers.
12 register_backward_mapping(
13 condition=lambda x: is_convolutional_layer(x),
14 backward_mapping)
15 ...
16
17 # Create and build algorithm for a model
18 analyzer = ExplanationAlgorithm(model)
19 # Perform the analysis
20 analyze = analyzer.analyze(x)

The idea is that after decomposing the graph into layers (or sub-graphs) each
layer gets assigned a mapping, where the mappings’ conditions define how they
are matched. Then the backend code will take a model and apply the explanation
method accordingly to new inputs.

Customizing the back-propagation Based on the established interface we
are now able to implement various propagation-based explanation methods in an
efficient manner. The algorithms will be implemented using the backend of the
iNNvestigate library [4]. Any other solution mentioned in Appendix A.1 could
also be used.

Guided Backprop As a first example we implement the algorithm Guided Back-
prop [54]. The back-propagation of Guided Backprop is the same as for the
gradient computation, except that whenever a ReLU is applied in the forward
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pass another ReLU is applied in the backward pass. Note that the default back-
propagation mapping in iNNvestigate is the partial derivative, thus we only need
to change the propagation for layers that contain a ReLU activation and apply
an additional ReLU in the backward mapping. The corresponding code looks like
follows and can already be applied to arbitrary networks (see B1 in Figure 1):

1 # Guidded -Backprop -Mapping
2 # X = input tensor of layer
3 # Y = ouput tensor of layer
4 # bp_Y = backpropagated value for Y
5 # bp_state = additional information on state
6 def guided_backprop_mapping(X, Y, bp_Y , bp_state ):
7 # Apply ReLU to back -propagate values
8 tmp = tf.nn.relu(bp_Y)
9 # Propagate back along the gradient of the forward pass

10 return tf.gradients(Y, X, grad_ys=tmp)
11
12 # Extending iNNvestigate base class with the Guideded Backprop code
13 class GuidedBackprop(ReverseAnalyzerBase ):
14
15 # Register the mapping for layers that contain a ReLU
16 def _create_analysis(self , *args , ** kwargs ):
17
18 self._add_conditional_reverse_mapping(
19 # Apply to all layers that contain a relu activation
20 lambda layer: kchecks.contains_activation(layer , ’relu’),
21 # and use the guided_backprop_mapping to do the backrop step.
22 tf_to_keras_mapping(guided_backprop_mapping),
23 name=’guided_backprop ’,
24 )
25
26 return super(GuidedBackprop , self). _create_analysis (*args , ** kwargs)
27
28 # Creating an instance of that analyzer
29 analyzer = GuidedBackprop(model_wo_sm)
30 # and apply it.
31 B1 = analyzer.analyze(x)

Deep Taylor Typically propagation-based methods are more evolved. Propaga-
tions are often only described for fully connected layers and one key pattern
that arises is extending this description seamlessly to convolutional and other
layers. Examples for this case are the “Layerwise relevance propagation” [7],
the “Deep Taylor Decomposition” [38] and the “Excitation Backprop” [62] al-
gorithms. Despite different motivation all algorithms yield similar propagation
rules for neural networks with ReLU-activations. The first algorithm takes the
prediction values at the output neuron and calls it relevance. Then this relevance
is re-distributed at each neuron by mapping the back-propagated relevance pro-
portionally to weights onto the inputs. We consider here the so-called Z+ rule. In
contrast, Deep Taylor is motivated by a (linear) Taylor decomposition for each
neuron and Excitation Backprop by a probabilistic “Winner-Take-All” scheme.
Ultimately, for layers with positive input and positive output values — like the
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inner layers in VGG16 — they all have the following propagation formula:

bw mapping(x, y, r := bp y) = x� (W t
+z)

with z = r � (xW+)
(3)

given a fully connected layer with W+ denoting the weight matrix where negative
values are set to 0. Using the library iNNvestigate this can be coded in this way:

1 # Deep -Taylor/LRP/EB’s Z-Rule -Mapping for conv layers
2 # Call R=bp_Y , R for relevance
3 def z_rule_mapping_conv(X, Y, R, bp_state ):
4 # Get layer and the parameters
5 layer = bp_state[’layer’]
6 W = tf.maximum(layer.kernel , 0)
7
8 Z = tf.keras.backend.conv2d(X, W, layer.strides , layer.padding) + b
9 # normalize incoming relevance

10 tmp = R / Z
11 # map back
12 tmp = tf.keras.backend.conv2d_transpose(
13 tmp , W, (1,)+ keras.backend.int_shape(X)[1:] ,
14 layer.strides , layer.padding)
15 # times input
16 return tmp * X
17
18 # Extending iNNvestigate base class with the Deep Taylor/LRP/EB’s Z+-rule
19 class DeepTaylorZ1(ReverseAnalyzerBase ):
20 # Register mappings for dense and convolutional layers.
21 # Add Bounded DeepTaylor rule for input layer.
22
23 analyzer = DeepTaylorZ1(model_wo_sm)
24 B2a = analyzer.analyze(x)

Unfortunately, this mapping implementation only covers 2D convolutional layers,
while other key layers like dense or other convolutional layers are not covered.
By creating another mapping for fully-connected layers (Appendix A.2) the code
can be applied to VGG16. The result is shown in Figure 1 denoted as B2, where
for the constrained input layer we used the bounded rule proposed by [38].

Still, this code does not cover one-dimensional, three-dimensional or any
other special type of convolutions. Conveniently unnecessary code-replication
can be avoided by using automatic differentiation. The core idea is that many
methods can be expressed as pre-/post-processing of the gradient back-propaga-
tion. Using automatic differentiation our code example can be expressed as fol-
lows and works now with any type of convolutional layer:

1 # Deep -Taylor/LRP/EB’s Z+-Rule -Mapping for all layers with a kernel
2 # Call R=bp_Y , R for relevance
3 def z_rule_mapping_all(X, Y, R, bp_state ):
4 # Get layer
5 layer = bp_state[’layer’]
6 # and create layer copy without activation part
7 W = tf.maximum(layer.kernel , 0)
8 layer_wo_act = kgraph.copy_layer_wo_activation(
9 layer , weights=[W], keep_bias=False)
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10
11 Z = layer_wo_act(X)
12 # normalize incoming relevance
13 tmp = R / Z
14 # map back
15 tmp = tf.gradients(Z, X, grad_ys=tmp )[0]
16 # times input
17 return tmp * X

LRP For some methods it can be necessary to use different propagation rules
for different layers. E.g., Deep-Taylor requires different rules depending on the
input data range [38] or for LRP it was empirically demonstrated to be useful
to apply different rules for different parts of a network. To exemplify this, we
show how to use different LRP rules for different layer types as presented in [30].
In more detail, we will apply the epsilon rule for all dense layer and the alpha-
beta rule for convolutional layers. This can be implemented in iNNvestigate by
changing the matching condition. Using provided LRP-rule mappings this looks
as follows:

1 class LRPConvNet(ReverseAnalyzerBase ):
2
3 # Register the mappings for different layer types
4 def _create_analysis(self , *args , ** kwargs ):
5
6 # Use Epsilon rule for dense layers
7 self._add_conditional_reverse_mapping(
8 lambda layer: kchecks.is_dense_layer(layer),
9 LRPRules.EpsilonRule ,

10 name=’dense’,
11 )
12 # Use Alpha1Beta0 rule for conv layers
13 self._add_conditional_reverse_mapping(
14 lambda layer: kchecks.is_conv_layer(layer),
15 LRPRules.Alpha1Beta0Rule ,
16 name=’conv’,
17 )
18
19 return super(LRPConvNet , self). _create_analysis (*args , ** kwargs)
20
21 analyzer = LRPConvNet(model_wo_sm)
22 B3 = analyzer.analyze(x)

The result can be examined in Figure 1 marked with B3.

PatternNet & PatternAttribution PatternNet & PatternAttribution [23] are two
algorithms that are inspired by the pattern-filter theory for linear models [17].
They learn for each neuron in the network a signal direction called pattern. In
PatternNet the patterns are used to propagate the signal from the output neuron
back to the input by iteratively using the pattern directions of the neurons
and the method can be realized with a gradient backward-pass where the filter
weights are exchanged with the pattern weights. PatternAttribution is based on
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the Deep Taylor Decomposition [38]. For each neuron it searches the rootpoint
in the direction of its pattern. Given the pattern a the corresponding formula is:

bw mapping(x, y, r = bp y) = (w � a)tr (4)

and it can be implemented by doing a gradient backward pass where the filter
weights are element-wise multiplied with the patterns.

So far we implemented the backward-mappings as functions and registered
them inside an analyzer class for backpropagation. In the next example we will
create a single class that takes a parameter, namely the patterns, and the map-
ping will be a class method that uses a different pattern for each layer mapping
(B4 in Figure 1). The following code sketches the implementations which can be
found in Appendix A.3:

1 # Extending iNNvestigate base class with the PatternNet algorithm
2 class PatternNet(ReverseAnalyzerBase ):
3
4 # Storing the patterns.
5 def __init__(self , model , patterns , ** kwargs ):
6 self._patterns = patterns [:]
7 super(PatternNet , self). __init__(model , ** kwargs)
8
9 def _get_pattern_for_layer(self , layer):

10 return self._patterns.pop(-1)
11
12 # Peform the mapping
13 def _patternnet_mapping(self , X, Y, bp_Y , bp_state ):
14 ...
15 # Use patterns specific to bp_state[’layer ’]
16 ...
17
18 # Register the mapping
19 def _create_analysis(self , *args , ** kwargs ):
20 ...
21
22 analyzer = PatternNet(model_wo_sm , net[’patterns ’])
23 B4 = analyzer.analyze(x)

Encapsulating the functionality in a single class allows us now to easily extend
PatternNet to PatternAttribution by changing the parameters that are used to
perform the backward pass (B5 in Figure 1):

1 # Extending PatternNet to PatternAttribution
2 class PatternAttribution(PatternNet ):
3
4 def _get_pattern_for_layer(self , layer):
5 filters = layer.get_weights ()[0]
6 patterns = self._patterns.pop(-1)
7 return filters * patterns
8
9 analyzer = PatternAttribution(model_wo_sm , net[’patterns ’])

10 B5 = analyzer.analyze(x)
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Generalizing to more complex networks For our examples we relied on the
VGG16 network [52] which is composed of linear and convolutional layers with
ReLU-or Softmax-activations as well as max-pooling layers. Recent networks
in computer vision like, e.g., InceptionV3 [57], ResNet50 [18], DenseNet [20], or
NASNet [64], are far more complex and contain a variety of new layers like batch
normalization layer [21], new types of convolutional layers, e.g., [13], and merge
layers that allow for residual connections [18].

The presented code examples either generalize to these new architectures or
can be easily adapted to them. Exemplary, Figure 7 in Section 3 shows a variety
of algorithms applied to several state-of-the-art neural networks for computer
vision. For each algorithm the same explanation code is used to analyze all
different networks. The exact way to adapt algorithms to new network families
depends on the respective algorithm and is beyond the scope of this chapter.
Typically it consists of implementing new mappings for new layers, if required.
For more details we refer to the iNNvestigate library [4].

2.3 Completing the implementation

More than the implementation of the methodological core is required to success-
fully apply and use explanation software. Depending on the hyper-parameter
selection and visualization approaches the explanation result may vary dras-
tically. Therefore it is important that software is designed to help the users to
easily select the most suitable setting for their task at hand. This can be achieved
by exposing the algorithm software via an easy and intuitive interface, allowing
the user to focus on the method application itself. Subsequently we will address
these topics and as a last contribution in this subsection we will benchmark the
implemented code.

Interface Exposing clear and easy-to-use software interfaces and routines facili-
tates that a broad range of practitioners can benefit from a software package. For
instance the popular scikit-learn [41] package offers a clear and unified interface
for a wide range of machine learning methods, which can be flexibly adjusted to
more specific use cases.

In our case one commonality of all explanation algorithms is that they op-
erate on a neural network model and therefore an interface to receive a model
description is required. There are two commonly used approaches. The first
one is chosen by several software packages, e.g., DeepLIFT [49] and the LRP-
toolbox [29], and consists of expecting the model in form of a configuration (file).
A drawback of this approach is that the model needs to be serialized before the
explanation can be executed.

An alternative way is to take the model represented as a memory object and
operate directly with that, e.g., DeepExplain [5] and iNNvestigate [4] work in this
way. Typically this memory object was build with a deep learning framework.
This approach has the advantage that an explanation can be created without
additional overhead and it is easy to use several explanation methods in the
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Image SG - abs: Low noise - - High noise

SG - sqr.: Low noise - - High noise

IG’s ref. From black - - to white

Fig. 2. Influence of hyperparamters: Row one to three show how different hyper-
parameters change the output of explanation algorithms. Row 1 and 2 depict the
Smoothgrad (SG) method where the gradient is transformed into a positive value by
taking the absolute or the square value respectively. The columns show the influence
of the noise scale parameter with low to high noise from left to right. In row 3 we show
how the explanation of the Integrated Gradients (IG) method varies when selecting as
reference an image that is completely black (left side) to completely gray (middle) to
completely white (right). Best viewed in digital and color.

same program setup — which is especially useful for comparisons and research
purposes. Furthermore, a model, stored in form of a configuration, can still be
loaded by using the respective deep learning framework’s routines and then being
passed to the explanation software.

Exemplary the interface of the iNNvestigate package mimics the one of the
popular software package scikit-learn and allows to create an explanation with
a few lines of code:

1 # Build the explanation algorithm
2 # with the hyper -parameter pattern_type set to ’relu’
3 analyzer = PatternAttribution(model_wo_sm , pattern_type=’relu’)
4 # fit the analyzer to the training data (if an analyzer requires it)
5 analyzer.fit(X_train)
6 # and apply it to an input
7 e = analyzer.analyze(x)

Hyper-parameter selection Like for many other tasks in machine learning
explanation methods can have hyper-parameters, but unlike for other algorithms,
for explanation methods no clear selection metric exists. Therefore selecting the



Software and application patterns for explanation methods 15

Graymap Heatmap Scaling Masking Blending Back-projection

Fig. 3. Different visualizations: Each column depicts a different visualization tech-
nique for the explanation of PatternAttribution or PatternNet (last column). The dif-
ferent visualization techniques are described in the text. Best viewed in digital and
color.

right hyperparameter can be a tricky task. One way is a (visual) inspection
of the explanation result by domain experts. This approach is suspected to be
prone to the human confirmation bias. As an alternative in image classification
settings [45] proposed a method called “perturbation analysis”. The algorithm
divides an image into a set of regions and sorts them in decreasing order of
the “importance” each regions gets attributed by an explanation method. Then
the algorithm measures the decay of the neural networks prediction value when
perturbing the blocks in the given order, i.e., “removing” the information of the
most important image parts first. The key ideas is that if an explanation method
highlights important regions better the performance will decay faster.

To visualize the sensitivity of explanation methods w.r.t. to their hyper-
parameter Figure 2 contains two example settings. The first example applica-
tion shows the results for Integrated Gradients in row 3 where the image baseline
varies from a black to a white image. While the black, nor the white, or the gray
image as reference contains any valuable information, the explanation varies
significantly — emphasizing the need to pay attention to hyper-parameters of
explanation methods. More on the sensitivity of explanation algorithms w.r.t. to
this specific parameter can be found in [22]. Using iNNvestigate the correspond-
ing explanation can be generated with the code in Appendix A.4.

Another example is the postprocessing of the saliency output. For instance
for SmoothGrad the sign of the output is not considered to be informative and
can be transformed to a positive value by using the absolute or the square value.
This in turn has a significant impact on the result as depicted in Figure 2 (row 1
vs. row 2). Furthermore, the second parameter of SmoothGrad is the scale of the
noise used for smoothing the gradient. This hyper-parameter varies from small
on the left hand side to large on the right hand side and, again, has a substantial
impact on the result. Which setting to prefer depends on the application. The
explanations were created with the code fragment in Appendix A.4.

Visualization The innate aim of explanation algorithms is to facilitate the
understanding for humans. To do so the output of algorithms needs to be trans-
formed into a human understandable format.
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For this purpose different visualization techniques were proposed in the do-
main of computer vision. In Figure 3 we depict different approaches and each
one emphasizes or hides different properties of a method. The five approaches
are using graymaps [53] or single color maps to show only absolute values (col-
umn 1), heatmaps [7] to show positive and negative values (column 2), scaling
the input by absolute values [55] (column 3), masking the least important parts
of the input [44] (colmun 4), blending the heatmap and the input [48] (column
5), or projecting the values back into the input value range [23] (column 6).
The last technique is used to visualize signal extraction techniques, while the
other ones are used for attribution methods [23]. To convert color images to
a two-dimensional tensor, the color channels are typically reduced to a single
value by the sum or a norm. Then the value gets projected into a suitable range
and finally the according mapping is applied. This is done for all except for the
last method, which projects each value independently. An implementation of the
visualization techniques can be found in Appendix A.5.

For other domains than image classification different visualization schemes
are imaginable.

Benchmark To show the runtime efficiency of the presented code we bench-
marked it. We used the iNNvestigate library to implemente it and as a reference
implementation we use the LRP-Caffe-Toolbox [29] because it was designed to
implement algorithms with a similar complexity, namely the LRP-variants which
are the most complex algorithms we reviewed.

We test three algorithms and run them with the VGG16 network [52]. Both
frameworks need some time to compile the computational graph and to execute
it on a batch of images, accordingly we measure both, the setup time and the
execution time, for analyzing 512 images.

The LRP-Toolbox has a sequential and a parallel implementations for the
CPU. We show the time for the faster parallel implementation. For iNNvesti-
gate we evaluate the runtime on the CPU and on GPU. The workstation for the
benchmark is equipped with an Intel Xeon CPU E5-2690-v4 2.60GHz with 24
physical cores mapped to 56 virtual cores and 256G of memory. Both implemen-
tation can use up to 32 cores. The GPU is a Nvidia P100 with 16G of memory.
We repeat each test 10 times and report the average duration.

Figure 4 shows the measured duration on a logarithmic scale. The presented
code implemented with the iNNvestigate library is up to 29 times faster when
both implementations run on the CPU. This increases up to 510 times when using
iNNvestigate with the GPU compared to the LRP-Toolbox implementation on
the CPU. This is achieved while our implementations also considerably reduce
the amount and the complexity of code to implement the explanation algorithms
compared to the LRP-Toolbox. On the other hand, when using frameworks like
iNNvestigate one needs to compile a function graph and accordingly the setup
needs up to 3 times as long as for the LRP-Toolbox — yet amortizes already
when analyzing a few images.
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Fig. 4. Runtime comparison: The figure shows the setup- and run-times for 512
analyzed images in logarithmic range for the LRP-Toolbox and the code implemented
with the iNNvestigate library. Each block contains the numbers for the setup or a differ-
ent algorithm: Deconvnet [61], LRP-Epsilon [7], and the LRP configuration from [30],
denoted as LRP-*. The numbers in black indicate the respective speedup with regard
to the LRP-Toolbox.

3 Applications

In this section we will use the implemented algorithms and examine common
application patterns for explanation methods. For convenience we will rely on
the iNNvestigate library [4] to present the following four use cases: (1) Ana-
lyzing single (miss-)prediction to gain insights on the model, and subsequently
on the data. (2) Comparing algorithms to find a suitable explanation technique
for the task at hand. (3) Comparing prediction strategies of different network
architectures. (4) Systematically evaluating the predictions of a network.

All except for the last application, which is semi-automatic, typically require
a qualitative analysis to gain insights — and we will now see how explanation
algorithms support this process. Furthermore, this section will give a limited
overview and comparison of explanation techniques. A more detailed analysis is
beyond the technical scope of this chapter.

We visualize the methods as presented in Section 2.3, i.e., use heatmaps
for all methods except for PatternNet, which tries to produce a given signal
and not an attribution. Accordingly we use a projection into the input space
for it. Deconvnet and Guided Backprop are also regarded as signal extraction
methods, but fail to reproduce color mappings and therefore we visualize them
with heatmaps. This allows to identify the location of signals more easily. For
more details we refer to [23].
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label: 3
neuron: 2

Input Occlusion 3x3 patches

Gradient
SmoothGrad

Deconvnet
Guided Backprop

Input * G
radient

Integrated Gradients

LRP-Z LRP-Epsilon
LRP-* DeepTaylor

PatternAttribution

PatternNet

logit: 9.80
prob: 0.87

label: 3
neuron: 3

logit: 2.37
prob: 0.00

label: 3
neuron: 4

logit: -14.98
prob: 0.00

label: 3
neuron: 5

logit: -4.96
prob: 0.00

label: 3
neuron: 6

logit: -11.13
prob: 0.00

Fig. 5. Analyzing a prediction: The heatmaps show different analysis for a VGG-
like network on MNIST. The network predicts the class 2, while the true label is 3.
On the left hand side the true label and for each row the respective output neuron
is indicated. Probabilities and pre-softmax activation are denoted on the right hand
side of the plot. Each columns is dedicated to a different explanation algorithm. LRP-*
denotes configuration from [30]. We note that Deep Taylor is not defined when the
output neuron is negative.

3.1 Analyzing a prediction

In our first example we focus on the explanation algorithms themselves and the
expectations posed by the user. Therefore we chose a dataset without irrelevant
features in the input space. In more detail we use a VGG-like network on the
MNIST dataset [33] with an accuracy greater than 99% on the test set.

Figure 5 shows the result for an input image of the class 3 that is incorrectly
classified as 2. The different rows show the explanations for the output neurons
for the classes 2, 3, 4, 5, 6 respectively, while each column contains the analyses
of the different explanation algorithms.

The true label of the image is 3 and also intuitively it resembles a 3, yet it
is classified as 2. Can we retrace why the network decided for a 2? Having a
closer look, on the first row — which explains the class 2 — the explanation
algorithms suggest that the network considers the top and the left stroke as very
indicative for a 2, and does not recognize the discontinuity between the center
and the right part as contradicting. On the other hand, a look on the second
row — which explains a 3 — suggests that according to the explanations the left
stroke speaks against the digit being a 3. Potential takeaways from this are that
the network does not recognize or does not give enough weight on the continuity
of lines or that the dataset does not contain enough digit 3 with such a lower
left stroke.

Taking this as an example of how such tools can help to understand a neural
network, we would like to note that all the stated points are presumptions —
based on the assumption that the explanations are meaningful. But given this
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logit: 16.08
prob: 0.91

label: Dungeness crab
pred: Dungeness crab

logit: 14.41
prob: 0.36

label: baseball
pred: baseball

logit: 17.28
prob: 0.54

label: submarine
pred: submarine

logit: 9.85
prob: 0.40

label: broom
pred: broom

logit: 17.71
prob: 0.94

label: abaya
pred: abaya

logit: 18.80
prob: 0.96

label: ice lolly
pred: pinwheel

logit: 10.22
prob: 0.24

Fig. 6. Comparing algorithms: The figure depicts the prediction analysis of a
variety of algorithms (columns) for a number of input images (rows) for the VGG16
network [52]. The true and the predicted label are denoted on the left hand side and
the softmax and pre-softmax outputs of the network are printed on the right hand side.
LRP-* denotes the configuration from [30]. Best viewed in digital and color.

leap of faith, our argumentation seems plausible and what a user would expect
an explanation algorithm to deliver.

We would also like to note that there are common indicators across different
methods, e.g., that the topmost stroke is very indicative for a 2 or that the
leftmost stroke is not for a 3. This suggest that the methods base their analysis
on similar signals in the network. Yet it is not clear which method performs
“best” and this leads us to the next example.

3.2 Comparing explanation algorithms

For explanation methods there exists no clear evaluation criteria and this makes
it inherently hard to find a method that “works” or to choose hyper-parameters
(see Section 2.3). Therefore we argue for the need of extensive comparisons to
identify a suitable method for the task at hand.

Figure 6 gives an example of such a qualitative comparison and shows the
explanation results for a variety of methods (columns) for a set of pictures.
We observe that compared to the previous example the analysis results are not
as intuitive anymore and we also observe major qualitative differences between
the methods. For instance, the algorithms Occlusion and LIME produce dis-
tinct heatmaps compared to the other gradient- and propagation-based results.
Among this latter group, the results vary in sparseness, but also in which re-
gions the attribution is located. Note despite its results we added the method
DeconvNet [61] for completeness.
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network: vgg16
pred: crayfish

Input Occlusion 8x8 patches

LIME Gradient
SmoothGrad
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logit: 9.90
prob: 0.18
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pred: baseball

logit: 7.96
prob: 0.54

network: resnet50
pred: hotdog
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logit: 9.68
prob: 0.20

network: nasnet_large
pred: baseball

logit: 10.03
prob: 0.94

Fig. 7. Comparing architectures: The figure depicts the prediction analysis of a
variety of algorithms (columns) for a number of neural networks (rows). The true label
for this input image is “baseball” and the prediction of the respective network is given
on the left hand side. The softmax and pre-softmax outputs of the network are printed
on the right hand side. LRP-* denotes the configuration from [30]. Best viewed in
digital and color.

Consider the image in the last row, which is miss-classified as pinwheel. While
one can interpret that some methods indicate the right part of the hood as
significant for this decisions, this is merely a speculation and it is hard to make
sense of the analyses — revealing the current dilemma of explanation methods
and the need for more research. Nevertheless it is important to be clear about
such problems and give the user tools to make up her own opinion.

3.3 Comparing network architectures

Another possible comparative analysis is to examine the explanations for differ-
ent architectures. This allows on one hand to assess the transferability of expla-
nation methods and on the other hand to inspect the functioning of different
networks.

Figure 7 exemplarily depicts such a comparison for an image for the class
“baseball”. We observe that the quality of the results for the same algorithm
can vary significantly between different architectures, e.g., for some algorithms
the results are very sparse for deeper architectures. Moreover, the difference
between different algorithms applied to the same network seems to increase with
the complexity of the architecture (The complexity increases from the first to
the last row).

Nevertheless, we note that explanation algorithms give an indication for the
different prediction results of the networks and can be a valuable tool for under-
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standing such networks. A similar approach can be used to monitor the learning
of a network during the training.

3.4 Systematic network evaluation

Our last example uses a promising strategy to leverage explanation methods for
analysis of networks beyond a single prediction. We evaluate explanations for a
whole dataset to search for classes where the neural network uses (correlated)
background features to identify an object. Other examples for such systematic
evaluations are, e.g., grouping predictions based on their frequencies [31]. These
approaches are distinctive in that they do not rely on the miss-classification as
signal, i.e., one can detect undesired behavior for samples which are correctly
classified by a network.

We use again a VGG16 network and create for each example of the ImageNet
2012 [15] validation set a heatmap using the LRP method with the configuration
from [30]. Then we compute the ratio of the attributions absolute values summed
inside and outside of the bounding box, and pick the class with the lowest ra-
tion, namely “basketball”. A selection of images and their heatmaps is given in
Table 1. The first four images are correctly classified, but one can observe from
the heatmaps that the network does not focus on the actual basketball inside
the bounding boxes. This suggests the suspicion that the network is not aware
of the concept “basketball” as a ball, but rather as a scene. Similarly, in the next
three images the basket ball is not identified — leading to wrong predictions.
Finally, the last image contains a basketball without any sport scenery and gets
miss-classified as ping-pong ball.

One can argue that a sport scene is a strong indicator for the class “bas-
ketball”, on the other the bounding boxes make clear that the class addresses
a ball rather than a scene and the miss-classified images show that taking the
scenery rather than a ball as indicator can be miss-leading. The use of explana-
tion methods can support developers to identify such flaws of the learning setup
caused by, e.g., biased data or networks that rely on the “wrong” features [31].

4 Software packages

In this section we would like to give an overview on software packages for expla-
nation techniques.

Accompanying the publication of algorithms many authors released also
dedicated software. For the LRP-algorithm a toolbox was published [29] that
contains explanatory code in Python and MatLab as well as a faster Caffee-
implementation for production purposes. For the algorithms DeepLIFT [49],
DeepSHAPE [36], ”prediction difference analysis” [63], and LIME [44] the au-
thors also published source code that is based on Keras/Tensorflow, Tensorflow,
Tensorflow and scikit-learn respectively. For the algorithm GradCam [48] the
authors published a Caffee-based implementation. There exist more GradCam
implementations for other frameworks, e.g., [26].
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basketball basketball

basketball basketball

volleyball volleyball

shoe shop ping-pong ball
Table 1. Bounding box analysis: The result of our bounding box analysis suggest
that the target network does not use features inside the bounding box to predict the
class “basketball”. The images have all the true label “basketball” and the label beneath
an image indicates the predicted class. We note that for none of the images the network
relies on the features of a basketball for the prediction, except for the prediction “ping-
pong ball”. The result suggest that concept “basketball” is a scenery rather than a ball
object for the network. Best viewed in digital and color.

Software packages that contain more than one algorithm family are the fol-
lowing. The software to the paper DeepExplain [5] contains implementations
for the gradient-based algorithms saliency map, gradient * input, Integrated
Gradients, one variant of DeepLIFT and LRP-Epsilon as well as for the occlu-
sion algorithm. The implementation is based on Tensorflow. The Keras-based
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software keras-vis [26] offers code to perform activation maximization, saliency
algorithms Deconvnet and GuidedBackprop as well as GradCam. Finally, the li-
brary iNNvestigate [4] is also Keras-based and contains implementations for the
algorithms saliency map, gradient * input, Integrated Gradients, Smoothgrad,
DeconvNet, GuidedBackprop, Deep Taylor Decomposition, different LRP algo-
rithms as well as PatternNet and PatternAttribution. It also offers an interface
to facilitate the implementation of propagation-based explanation methods.

5 Challenges

Neural networks come in a large variety. They can be composed of many dif-
ferent layers and be of complex structure (e.g., Figure 9 shows the sub-blocks
of the NASNetA network). Many (propagation-based) explanation methods are
designed to handle fully connected layers in the first place, yet to be univer-
sally applicable a method and its implementations must be able to scale beyond
fully-connected networks and be able to generalize to new layer types. In con-
trast, the advantage of methods that only use a model’s prediction or gradient
is their applicability independent of a network’s complexity, yet they are typi-
cally slower and cannot take advantage of high level features like propagation
methods [30,48].

To promote research on propagation methods for complex neural networks
it is necessary alleviate researchers from unnecessary implementation efforts.
Therefore it is important that tools exist that allow for fast prototyping and
let researchers focus on algorithmic developments. One example is the library
iNNvestigate, which offers an API that allows to modify the backpropagation
easily and implementations of many of state-of-the explanation methods ready
for advanced neural networks. We showed in Section 2.2 how a library like iN-
Nvestigate helps to generalize algorithms to various architectures. Such efforts
are promising to facilitate research as they make it easier to compare and de-
velop methods as well as facilitate faster adaption to (recent) developments in
deep learning.

For instance, despite first attempts [6,43] LSTMs [19,56] and attention lay-
ers [59] are still a challenge for most propagation-based explanation methods.
Another challenge are architectures discovered automatically with, e.g., neural
architecture search [64]. They often outperform competitors that were created
by human intuition, but are very complex. A successful application of and exam-
ination with explanation methods can be a promising way to shed led into their
workings. The same reasoning applies to networks like SchNet [47], WaveNet [58],
and AlphaGo [50] — which led to breakthroughs in their respective domains and
a better understanding of their predictions would reveal valuable knowledge.

Another open research question regarding propagation-based methods con-
cerns the decomposition of network into components. Methods like Deep Taylor
Decomposition, LRP, DeepLIFT, DeepSHAPE decompose the network and cre-
ate an explanation based on the linearization of the respective components. Yet
networks can be decomposed in different ways: for instance the sequence of a con-
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volutional and a batch normalization layer can be treated as two components
or be represented as one layer where both are fused. Another example is the
treatment of a single batch normalization layer which can be seen as one or as
two linear layers. Further examples can be found and it is not clear how the dif-
ferent approaches to decompose a network influence the result of the explanation
algorithms and requires research.

6 Conclusion

Explanation methods are a promising approach to leverage hidden knowledge
about the workings of neural networks, yet the complexity of many methods can
prevent practitioners from implementing and using them for research or applica-
tion purposes. To alleviate this shortcoming it is important that accessible and
efficient software exists. With this in mind we explained how such algorithms
can be implemented efficiently by using deep learning frameworks like Tensor-
Flow and Keras and showcased important algorithm and application patterns.
Moreover, we demonstrated different exemplary use cases of explanation meth-
ods such as examining miss-classifications, comparing algorithms, and detecting
if a network focuses on the background. By building such software the field will
hopefully be more accessible for non-experts and find appeal in the broader sci-
ences. We also hope that it will help researchers to tackle recent developments
in deep learning.
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Fig. 8. Exemplary software-stack: The diagram depicts exemplary the software
stack of iNNvestigate [4]. It shows how different propagation-based methods are build
on top of a common graph-backend and expose their functionality through a common
interface to the user.

A Section 2 - supplementary content

A.1 Propagation backend

Creating a propagation backend Let us reiterate the aim, which is to cre-
ate routines that capture common functionality to all propagation-based algo-
rithms and thereby facilitate their efficient implementation. Given the informa-
tion which graph-parts shall be mapped and how, the backend should decompose
the network accordingly and then process the back-propagation as specified. It
would be further desirable that the backend is able to identify if a given neural
network is not compatible with an algorithm, e.g., because the algorithm does
not cover certain network properties.

In this regard we see as major challenges for creating an efficient backend
the following:

Interface: How shall an algorithm specify the way a network should be decom-
posed and how should each backward mapping be performed?

Graph matching: Decomposing the neural network according to the algo-
rithm’s specifications and, ideally, detecting possible incompatibilities. Note
that the specifications can describe the structure of the targeted components
as well as their location in the network, e.g., DTD treats layer differently
depending where they are located in the network.

Back-propagation: Once determined which backward mapping is used for
which part of the network graph, the respective mappings should be applied
in the right order until the final explanation is produced.
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Fig. 9. NASNetA cells: The computer vision network NASNetA [64] was created
with automatic machine learning, i.e., the architecture of the two depicted building
blocks was found with an automated algorithm. The normal cell and the reduction cell
have the same purpose as convolutional or max-pooling layers in other networks, but
are far more complex. (Figure is from [64].)

The first two challenges are solved by choosing appropriate abstractions. The
abstractions should be fine-grained enough to enable the implementation of a
wide range of algorithms, while being coarse-grained enough to allow for an
efficient implementation. The last challenge is in the first place an engineering
task.

Interface & Matching The first step towards a clear interface is to regard a
neural network as a directed-acyclic-graph (DAG) of layers — instead of a stack
of layers. The notion of a graph of ”layers” might not seem intuitive in the first
place and comes from the time when neural networks were typically sequential,
thus one layer was stacked onto another. Modern networks, e.g., as NASNetA
in Figure 9, can be more complex and in such architectures each layer is rather
a node in a graph than a layer in a stack. Regardless of that, nodes in such a
DAG are still commonly called layers and we will keep this notation.

A second step is to be aware of DAG’s granularity. Different deep learning
frameworks represent neural networks in different ways and layers can be com-
posed of more basic operations like additions and dot products, which in turn
can be decomposed further. The most intuitive and useful level for implementing
explanation methods is to view each layer as node. A more fine-grained view is
in many cases not needed and would only complicate the implementation. On
the other hand, we note that it might be desired or necessary to fuse layers of
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networks into one node, e.g., adjacent convolutional and batch normalization
layers can be expressed as a single convolutional layer.

Building on this network representation, there are two interfaces to define.
One to define where a mapping shall be applied and one how it should be per-
formed.

There are two ways to realize the matching interface and they can be sketched
as follows. The first binds a custom backward mapping before or during network
building to a method of a layer class — statically by extending a layer class or by
overloading its gradient operator. The second receives the already build model
and matches the mappings dynamically to the respective layer nodes. This can
be done by evaluating a programmable condition for each layer instance or node
in order to assign a mapping. Except for the matching conditions, both tech-
niques expose the same interface and in contrast to the first approach the later is
more challenging to implement, but has several advantages: (1) It exposes a clear
interface by separation of concerns: the model building happens independently
of the explanation algorithm. (2) The forward DAG can be modified before the
explanation is applied, e.g., batch normalization layer can be fused with convolu-
tional layers. (3) When several explanation algorithms are build for one network,
they can share the forward pass. (4) The matching conditions can introspect the
whole model, because the model was already build at that point in time. (5) One
can build efficiently the gradient w.r.t. explanations by using forward-gradient
computation — in the background and for all explanation algorithms by using
automatic differentiation.

The two approaches can be sketched in Python as follows:

1 # Approach A
2 # Use mapping Y for layer type X
3 register_mapping_for_layer_type(layer_type_X , mapping_Y)
4 build_model_with_custom_mapping ()
5 execute_explanation ()
6
7 # Approach B
8 model = build_model ()
9 graph = extract_and_update_graph(model)

10 for node in graph:
11 # Match node to mapping based on conditions
12 # A node can be a layer or a sub -graph.
13 # Condition can introspect whole model for decision.
14 mapping = match_node_to_mapping(node , model.graph)
15 assign_mapping_to_node(node , mapping)

The second interface addresses the backward mapping and is a function that
takes as parameters the input and output tensors of the targeted layer, the
respective back-propagated values for the output tensors and, optionally, some
meta-information on the back-propagation process. The following code segment
shows the interface of a backward mapping function in the iNNvestigate library.
Due to same purpose other implementations have very similar interfaces.
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1 # Xs = input tensors of a layer or sub -graph
2 # Ys = ouput tensors of a layer or sub -graph
3 # bp_Ys = back -propagated values for Ys
4 # bp_state = additional information on state
5 # return back -propagated values for Xs
6 def backward_mapping(Xs , Ys, bp_Ys , bp_state ):
7 # the backward mapped tensors correspond in shape
8 # with respective the output tensors of the forward pass
9 assert len(Ys) == len(bp_Ys)

10 assert all(Y.shape == bp_Y.shape for Y, bp_Y in zip(Ys, bp_Ys))
11
12 bp_Xs = compute_backward_mapping_magic ()
13
14 # the returned tensors correspond in shape
15 # with the respective input tensors of the forward pass
16 assert len(Ys) == len(bp_Ys)
17 assert all(Y.shape == bp_Y.shape for Y, bp_Y in zip(Ys, bp_Ys))
18 return bp_Xs

Note that this signature can not only be used for the backward mapping of
layers, but for any connected sub-graph. In the remainder we will use a simplified
interface where each layer has only one input and one output tensor.

Back-propagation Having matched backward mappings with network parts the
backend still needs to create the actual backward propagation. Practically this
can be done explicitly, as we will show below, or by overloading the gradient
operator in the deep learning framework of choice. While the latter is easier to
implement it less flexible and has the dis-advantages mentioned above.

The implementations of neural networks is characterized by their layer-oriented
structure and the simplest of them are sequential neural networks where each
layer is stacked on another layer. To back-propagate through such a network
one starts with the model’s output value and propagates from top layer to the
next lower one and so on. Given mapping functions that take a tensor and back-
propagate along a layer, this can be sketched as follows:

1 current = output
2 for layer in model.layers [:: -1]:
3 current = back_propagate(layer.input , layer.output , current)
4 analysis = current

In general neural networks can be much more complex and are represented
as directed, acyclic graphs. This allows for multiple input and output tensors for
each ”layer node”. An efficient implementation is for instance the following. First
the right propagation order is established using the depth-first search algorithm
to create a topological ordering [14]. Then given this ordering, the propagation
starts at the output tensors and proceeds in direction of the input tensors. At
each step, the implementation collects the required inputs for each node, applies
the respective mapping and keeps track of the back-propagated tensors after the
mapping. Note, nodes that branch in the forward pass, i.e., have an output tensor
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that is used several times in the forward pass, receive several tensors as inputs
in the backward pass. These need to be reduced to a single tensor before being
fed to the backward mapping. This is typically like in the gradient computation,
namely by summing the tensors:

1 intermediate_tensors = {output: output}
2 execution_order = calculate_execution_order ()
3 for layer , inputs , outputs in execution_order [:: -1]:
4 # gather corresponding back -propagated tensors for each output tensor
5 back_propagated_values = [
6 # Reduce to single tensor if the forward passed branched!
7 sum(intermediate_tensors[t])
8 for t in outputs
9 ]

10
11 # backprop through layer
12 tmp = back_propagate(inputs , outputs , back_propagated_values)
13
14 # store intermediate tensors
15 for input , intermediate in zip(inputs , tmp):
16 if input in intermediate_tensors:
17 intermediate_tensors[input] = [intermediate]
18 else:
19 # The corresponding forward tensor branched!
20 intermediate_tensors[input]. append(intermediate)
21
22 # get the last output
23 analysis = intermediate_tensors[model.input]

Despite its relative simplicity, implementing and debugging such an algorithm
can be tedious. This among propagation-based methods common operation is
part of the iNNvestigate library and as a result one only needs to specify how the
back-propagation through specific layers should be performed. Even handier, as
default backward mapping the gradient-propagation is used and one only needs
to specify whenever the back-propagation should be performed differently.

A.2 Deep Taylor

The Deep Taylor mapping for dense layers:

1 # Deep -Taylor/LRP/EB’s Z+-Rule -Mapping for dense layers
2 # Call R=bp_Y , R for relevance
3 def z_rule_mapping_dense(X, Y, R, bp_state ):
4 # Get layer and the parameters
5 layer = bp_state[’layer’]
6 W = tf.maximum(layer.kernel , 0)
7
8 Z = tf.tensordot(X, W, 1) + b
9 # normalize incoming relevance

10 tmp = R / Z
11 # map back
12 tmp = tf.tensordot(tmp , tf.transpose(W), 1)
13 # times input
14 return tmp * X
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A.3 PatternNet

The exemplary implementation for PatterNet discussed in Section 2.2:

1 # Extending iNNvestigate base class with the PatternNet algorithm
2 class PatternNet(ReverseAnalyzerBase ):
3
4 # Storing the patterns.
5 def __init__(self , model , patterns , ** kwargs ):
6 self._patterns = patterns [:]
7 super(PatternNet , self). __init__(model , ** kwargs)
8
9 def _get_pattern_for_layer(self , layer):

10 return self._patterns.pop(-1)
11
12 def _patternnet_mapping(self , X, Y, bp_Y , bp_state ):
13 # Get layer ,
14 layer = bp_state[’layer’]
15 # exchange kernel weights with patterns ,
16 weights = layer.get_weights ()
17 weights [0] = self._get_pattern_for_layer(layer)
18 # and create layer copy without activation part and patterns as filters
19 layer_wo_act = kgraph.copy_layer_wo_activation(layer , weights=weights)
20
21 if kchecks.contains_activation(layer , ’relu’):
22 # Gradient of activation layer
23 tmp = tf.where(Y > 0, bp_Y , tf.zeros_like(bp_Y))
24 else:
25 # Gradient of linear layer
26 tmp = bp_Y
27
28 # map back along layer with patterns instead of weights
29 pattern_Y = layer_wo_act(X)
30 return tf.gradients(pattern_Y , X, grad_ys=tmp )[0]
31
32 # Register the mappings
33 def _create_analysis(self , *args , ** kwargs ):
34 self._add_conditional_reverse_mapping(
35 # Apply to all layers that contain a kernel
36 lambda layer: kchecks.contains_kernel(layer),
37 tf_to_keras_mapping(self._patternnet_mapping),
38 name=’pattern_mapping ’,
39 )
40 return super(PatternNet , self). _create_analysis (*args , ** kwargs)
41
42 analyzer = PatternNet(model_wo_sm , net[’patterns ’])
43 B4 = analyzer.analyze(x)

A.4 Hyper-paramter selection

The exemplary hyper-parameter selection for Integrated Gradients:

1 IG = []
2 # Take 5 samples from network ’s input value range
3 for ri in np.linspace(net[’input_range ’][0], net[’input_range ’][1], num=5):
4 # and analyze with each.
5 analyzer = innvestigate.create_analyzer(
6 ’integrated_gradients ’,
7 model_wo_sm ,
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8 reference_inputs=ri,
9 steps=32

10 )
11 IG.append(analyzer.analyze(x))

The exemplary hyper-parameter selection for SmoothGrad:

1 SG1 , SG2 = [], []
2 # Take 5 scale samples for the noise scale of smoothgrad.
3 for scale in range (5):
4 noise_scale = (net[’input_range ’][1]-net[’input_range ’][0]) * scale / 5
5 # Smoothgrad with absolute gradients
6 analyzer = innvestigate.create_analyzer(
7 ’smoothgrad ’,
8 model_wo_sm ,
9 augment_by_n=32,

10 noise_scale=noise_scale ,
11 postprocess=’abs’
12 )
13 SG1.append(analyzer.analyze(x))
14
15 # Smoothgrad with with squared gradients
16 analyzer = innvestigate.create_analyzer(
17 ’smoothgrad ’,
18 model_wo_sm ,
19 augment_by_n=32,
20 noise_scale=noise_scale ,
21 postprocess=’square ’
22 )
23 SG2.append(analyzer.analyze(x))

A.5 Visualization

The exemplary implementation of visualization approaches discussed in Sec-
tion 2.3:

1 def explanation_to_heatmap(e):
2 # Reduce color axis
3 tmp = np.sum(e, axis=color_channel_axis)
4 # To range [0, 255]
5 tmp = (tmp / np.max(np.abs(tmp ))) * 127.5 + 127.5
6
7 # Create and apply red -blue heatmap
8 colormap = matplotlib.cm.get_cmap("seismic")
9 tmp = colormap(tmp.flatten (). astype(np.int64 ))[:, :3]

10 tmp = tmp.reshape(e.shape)
11 return tmp
12
13 def explanation_to_graymap(e):
14 # Reduce color axis
15 tmp = np.sum(np.abs(e), axis=color_channel_axis)
16 # To range [0, 255]
17 tmp = (tmp / np.max(np.abs(tmp ))) * 255
18
19 # Create and apply red -blue heatmap
20 colormap = matplotlib.cm.get_cmap("gray")
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21 tmp = colormap(tmp.flatten (). astype(np.int64 ))[:, :3]
22 tmp = tmp.reshape(e.shape)
23 return tmp
24
25 def explanation_to_scale_input(e):
26 # Create scale
27 e = np.sum(np.abs(e), axis=color_channel_axis , keepdims=True)
28 scale = e / np.max(e)
29
30 # Apply to image
31 return (x_not_preprocessed / 255) * scale
32
33 def explanation_to_mask_input(e):
34 # Get highest scored segments
35 # Segments are reused from the LIME example.
36 segments_scored = [(np.max(e[0][ segments == sid]), sid) for sid in range(nr_segments )]
37 highest_ones = sorted(segments_scored , reverse=True )[:50]
38
39 # Compute mask
40 mask = np.zeros_like(segments)
41 for _, sid in highest_ones:
42 mask[segments == sid] = 1
43
44 # Apply mask
45 ret = (x_not_pp.copy() / 255)
46 ret [0][ mask == 0] = 0
47 return ret
48
49 def explanation_to_blend_w_input(e):
50 e = np.sum(np.abs(e), axis=channel_axis , keepdims=True)
51 # Add blur
52 e = skimage.filters.gaussian(x[e], 3)[ None]
53 # Normalize
54 e = (e - e.min ())/(e.max()-e.min ())
55 # Get and apply colormap
56 heatmap = plot.get_cmap("jet")(e[:, :,:,0])[:,:,:,:3]
57 # Overlap
58 ret = (1.0-e) * (x_not_pp / 255) + e * heatmap
59 return ret
60
61 def explanation_to_projection(e):
62 # To range [0, 1]
63 return (e / np.max(np.abs(e))) + 0.5
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