Skip to main content

Interpretability in Intelligent Systems – A New Concept?

  • Chapter
  • First Online:
Book cover Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

The very active community for interpretable machine learning can learn from the rich 50+ year history of explainable AI. We here give two specific examples from this legacy that could enrich current interpretability work: First, Explanation desiderata were we point to the rich set of ideas developed in the ‘explainable expert systems’ field and, second, tools for quantification of uncertainty of high-dimensional feature importance maps which have been developed in the field of computational neuroimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl. Based Syst. 8(6), 373–389 (1995)

    Article  MATH  Google Scholar 

  2. Boz, O.: Converting a trained neural network to a decision tree dectext-decision tree extractor (2000)

    Google Scholar 

  3. Breiman, L.: Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16(3), 199–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruce, G., Buchanan, B., Shortliffe, E.: Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)

    Google Scholar 

  5. Carbonell, J.R.: AI in CAI: an artificial-intelligence approach to computer-assisted instruction. IEEE Trans. Man Mach. Syst. 11(4), 190–202 (1970)

    Article  Google Scholar 

  6. Comon, P.: Independent component analysis, a new concept? Sign. Proc. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  7. Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37–45. Elsevier (1994)

    Google Scholar 

  8. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint. arXiv:1702.08608 (2017)

  9. Druzdzel, M.J., Henrion, M.: Using scenarios to explain probabilistic inference. In: Working notes of the AAAI-1990 Workshop on Explanation, pp. 133–141 (1990)

    Google Scholar 

  10. Duda, R.O., Shortliffe, E.H.: Expert systems research. Science 220(4594), 261–268 (1983)

    Article  Google Scholar 

  11. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2(4), 189–210 (1994)

    Article  Google Scholar 

  12. Gallant, S.I.: Connectionist expert systems. Commun. ACM 31(2), 152–169 (1988)

    Article  Google Scholar 

  13. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an approach to evaluating interpretability of machine learning. arXiv preprint. arXiv:1806.00069 (2018)

  14. Good, I.: Explicativity: a mathematical theory of explanation with statistical applications. Proc. R. Soc. Lond. A 354(1678), 303–330 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. arXiv preprint. arXiv:1606.08813 (2016)

  16. Hansen, L.K., Nielsen, F.Å., Strother, S.C., Lange, N.: Consensus inference in neuroimaging. NeuroImage 13(6), 1212–1218 (2001)

    Article  Google Scholar 

  17. Haufe, S., et al.: On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110 (2014)

    Article  Google Scholar 

  18. Johansson, P., Hall, L., Sikström, S., Olsson, A.: Failure to detect mismatches between intention and outcome in a simple decision task. Science 310(5745), 116–119 (2005)

    Article  Google Scholar 

  19. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2673–2682 (2018)

    Google Scholar 

  20. Kindermans, P.J., et al.: Learning how to explain neural networks: PatternNet and PatternAttribution. arXiv preprint. arXiv:1705.05598 (2017)

  21. Kjems, U., et al.: The quantitative evaluation of functional neuroimaging experiments: mutual information learning curves. NeuroImage 15(4), 772–786 (2002)

    Article  Google Scholar 

  22. LaConte, S., et al.: The evaluation of preprocessing choices in single-subject bold fMRI using NPAIRS performance metrics. NeuroImage 18(1), 10–27 (2003)

    Article  Google Scholar 

  23. Lange, N., et al.: Plurality and resemblance in fMRI data analysis. NeuroImage 10(3), 282–303 (1999)

    Article  Google Scholar 

  24. Lautrup, B., Hansen, L.K., Law, I., Mørch, N., Svarer, C., Strother, S.C.: Massive weight sharing: a cure for extremely ill-posed problems. In: Workshop on Supercomputing in Brain Research: From Tomography to Neural Networks, pp. 137–144 (1994)

    Google Scholar 

  25. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint. arXiv:1606.03490 (2016)

  26. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 30 (2018)

    MathSciNet  Google Scholar 

  27. Madigan, D., Mosurski, K., Almond, R.G.: Graphical explanation in belief networks. J. Comput. Graph. Stat. 6(2), 160–181 (1997)

    Google Scholar 

  28. Michie, D.: Machine learning in the next five years. In: Proceedings of the 3rd European Conference on European Working Session on Learning, pp. 107–122. Pitman Publishing (1988)

    Google Scholar 

  29. Minsky, M.L.: Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Mag. 12(2), 34 (1991)

    Google Scholar 

  30. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digital Sign. Proces. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  31. Mørch, N., et al.: Nonlinear versus linear models in functional neuroimaging: learning curves and generalization crossover. In: Duncan, J., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 259–270. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63046-5_20

    Chapter  Google Scholar 

  32. Mørch, N.J., et al.: Visualization of neural networks using saliency maps. In: 1995 IEEE International Conference on Neural Networks. IEEE (1995)

    Google Scholar 

  33. Narayanan, M., Chen, E., He, J., Kim, B., Gershman, S., Doshi-Velez, F.: How do humans understand explanations from machine learning systems? An evaluation of the human-interpretability of explanation. arXiv preprint. arXiv:1802.00682 (2018)

  34. Neches, R., Swartout, W.R., Moore, J.D.: Enhanced maintenance and explanation of expert systems through explicit models of their development. IEEE Trans. Softw. Eng. 11, 1337–1351 (1985)

    Article  Google Scholar 

  35. Nielsen, F.A., Hansen, L.K.: Automatic anatomical labeling of Talairach coordinates and generation of volumes of interest via the brainmap database. NeuroImage 16(2), 2–6 (2002)

    Google Scholar 

  36. Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., Strother, S.C.: Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recogn. 45(6), 2085–2100 (2012)

    Article  Google Scholar 

  37. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  38. Ridgeway, G., Madigan, D., Richardson, T., O’Kane, J.: Interpretable boosted Naïve Bayes classification. In: KDD, pp. 101–104 (1998)

    Google Scholar 

  39. Saposnik, G., Redelmeier, D., Ruff, C.C., Tobler, P.N.: Cognitive biases associated with medical decisions: a systematic review. BMC Med. Inform. Decis. Mak. 16(1), 138 (2016)

    Article  Google Scholar 

  40. Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

    Article  Google Scholar 

  41. Shortliffe, E.H., Axline, S.G., Buchanan, B.G., Merigan, T.C., Cohen, S.N.: An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comput. Biomed. Res. 6(6), 544–560 (1973)

    Article  Google Scholar 

  42. Shortliffe, E., Davis, R., Axline, S., Buchanan, B., Green, C., Cohen, S.: Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput. Biomed. Res. 8(4), 303–320 (1975)

    Article  Google Scholar 

  43. Sigurdsson, S., Philipsen, P.A., Hansen, L.K., Larsen, J., Gniadecka, M., Wulf, H.C.: Detection of skin cancer by classification of Raman spectra. IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004)

    Article  Google Scholar 

  44. Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D.: The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage 15(4), 747–771 (2002)

    Article  Google Scholar 

  45. Suermondt, H.J., Cooper, G.F.: An evaluation of explanations of probabilistic inference. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, p. 579. American Medical Informatics Association (1992)

    Google Scholar 

  46. Swartout, W.R.: XPLAIN: a system for creating and explaining expert consulting programs. University of Southern California Marina del Rey Information Sciences Institute, Technical report (1983)

    Article  Google Scholar 

  47. Swartout, W.R., Moore, J.D.: Explanation in second generation expert systems. In: David, J.M., Krivine, J.P., Simmons, R. (eds.) Second Generation Expert Systems, pp. 543–585. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-77927-5_24

    Chapter  Google Scholar 

  48. Thrun, S.: Extracting provably correct rules from artificial neural networks. Technical report IAI-TR-93-5, Institut for Informatik III Universitat Bonn, Germany (1994)

    Google Scholar 

  49. Thrun, S.: Extracting rules from artificial neural networks with distributed representations. In: Advances in Neural Information Processing Systems, pp. 505–512 (1995)

    Google Scholar 

  50. Tomsett, R., Braines, D., Harborne, D., Preece, A., Chakraborty, S.: Interpretable to whom? A role-based model for analyzing interpretable machine learning systems. arXiv preprint. arXiv:1806.07552 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kai Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hansen, L.K., Rieger, L. (2019). Interpretability in Intelligent Systems – A New Concept?. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics