Skip to main content

Explanations for Attributing Deep Neural Network Predictions

  • Chapter
  • First Online:
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Abstract

Given the recent success of deep neural networks and their applications to more high impact and high risk applications, like autonomous driving and healthcare decision-making, there is a great need for faithful and interpretable explanations of “why” an algorithm is making a certain prediction. In this chapter, we introduce 1. Meta-Predictors as Explanations, a principled framework for learning explanations for any black box algorithm, and 2. Meaningful Perturbations, an instantiation of our paradigm applied to the problem of attribution, which is concerned with attributing what features of an input (i.e., regions of an input image) are responsible for a model’s output (i.e., a CNN classifier’s object class prediction). We first introduced these contributions in [8]. We also briefly survey existing visual attribution methods and highlight how they faith to be both faithful and interpretable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(Q_1\) implicitly requires a distribution p(x) over possible images \(\mathcal {X}\).

  2. 2.

    For rotation invariance we condition on \(x \sim _\theta x'\) because the probability of independently sampling rotated x and \(x'\) is zero, so that, without conditioning, \(Q_2\) would be true with probability 1.

  3. 3.

    Naively, strict invariance for any \(\theta >0\) implies invariance to arbitrary rotations as small rotations compose into larger ones. However, the formulation can still be used to describe rotation insensitivity (when f varies slowly with rotation), or \(\sim _\theta \)’s meaning can be changed to indicate rotation w.r.t. a canonical “upright” direction for a certain object classes, etc.

  4. 4.

    \(\odot \) is the Hadamard or element-wise product of vectors.

  5. 5.

    Our source code is available at https://github.com/ruthcfong/perturb_explanations.

  6. 6.

    [24]’s method visualized the gradient’s maximum magnitude across color channels at each pixel location, i.e., \(\max _{c \in \mathcal {C}} ||\frac{dy_k}{dx_{i,j}} ||\), where \(\mathcal {C}\) is the set of color channels.

  7. 7.

    These experiments were conducted on AlexNet using PyTorch implementations of our method (https://github.com/ruthcfong/pytorch-explain-black-box) and Grad-CAM (https://github.com/ruthcfong/pytorch-grad-cam) respectively.

  8. 8.

    \(p'=\dfrac{p-p_0}{p_0-p_b}\), where \(p,p_0,p_b\) are the masked, original, and fully blurred images’ scores.

  9. 9.

    For completeness, we tested our method on these metrics; our results can be found in [8].

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: NeurIPS, pp. 9525–9536 (2018)

    Google Scholar 

  2. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: ICLR (2018)

    Google Scholar 

  3. Arras, L., Horn, F., Montavon, G., Müller, K.R., Samek, W.: “What is relevant in a text document?”: an interpretable machine learning approach. PLoS ONE 12(8), e0181142 (2017)

    Article  Google Scholar 

  4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  5. Cao, C., et al.: Look and think twice: capturing top-down visual attention with feedback convolutional neural networks. In: ICCV, pp. 2956–2964 (2015)

    Google Scholar 

  6. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In: NIPS, pp. 6967–6976 (2017)

    Google Scholar 

  7. Fong, R., Vedaldi, A.: Net2vec: quantifying and explaining how concepts are encoded by filters in deep neural networks. In: CVPR, pp. 8730–8738 (2018)

    Google Scholar 

  8. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: ICCV, pp. 3429–3437 (2017)

    Google Scholar 

  9. Greydanus, S., Koul, A., Dodge, J., Fern, A.: Visualizing and understanding atari agents. arXiv preprint arXiv:1711.00138 (2017)

  10. Jia, Y., et al.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  11. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  13. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  14. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their equivariance and equivalence. In: CVPR, pp. 991–999 (2015)

    Google Scholar 

  15. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR, pp. 5188–5196 (2015)

    Google Scholar 

  16. Mahendran, A., Vedaldi, A.: Salient deconvolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 120–135. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_8

    Chapter  Google Scholar 

  17. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digital Sig. Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: CVPR, pp. 427–436 (2015)

    Google Scholar 

  19. Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. In: BMVC (2018)

    Google Scholar 

  20. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  21. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  22. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. arXiv preprint arXiv:1610.02391 (2016)

  23. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. arXiv preprint arXiv:1704.02685 (2017)

  24. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR (2014)

    Google Scholar 

  25. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: removing noise by adding noise. arXiv preprint arxiv:1706.03825 (2017)

  26. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  27. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML, pp. 3319–3328 (2017)

    Google Scholar 

  28. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  29. Turner, R.: A model explanation system. In: IEEE MLSP, pp. 1–6 (2016)

    Google Scholar 

  30. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  31. Zhang, J., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 543–559. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_33

    Chapter  Google Scholar 

  32. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. arXiv preprint arXiv:1412.6856 (2014)

  33. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Fong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, R., Vedaldi, A. (2019). Explanations for Attributing Deep Neural Network Predictions. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics