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Abstract. We present Legodroid, a Java library for Android that allows
cross-programming LEGO Mindstorms through an Android device to
exploit its extra computational capabilities in a seamless way. From a
programmer’s perspective, the paradigm it suggests for programming the
EV3 is straightforward and resembles a standard main function in the
likes of 1eJ0S, which natively runs on the EV3 side though. Moreover, the
library imposes type-driven coding patterns for interacting with motors
and sensors, which guide developers in writing correct code with less
runtime errors thanks to a rigid discipline over types. This is particularly
effective in Android, whose component-based pattern complicates coding
of traditional long-running algorithms for robots. Compared to 1eJOS,
Legodroid users reported shorter bugfixing times and a more accessible
paradigm for programming the robot, which had a positive impact on
how much resources could be put in writing smarter algorithms and
sophisticate interactions.
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1 Introduction

LEGO Mindstorms is an educational platform including an SDK for program-
ming the main control unit - namely the EV3 brick - by using RoboLab, a visual
language meant to learn coding and problem solving [38]. Alternative ways of
programming the brick in a more traditional way exist as well:

(a) Using 1eJ0S: a Java-based SDK ported from the LEGO NXT Kit [35] offer-
ing classes and methods for accessing EV3 motors and sensor in an object-
oriented fashion; programs run directly on the EV3 device.

(b) Sending commands from a remote device: the EV3 brick runs an interpreter
of instructions, constantly listening to incoming wifi’ or bluetooth connec-
tions and processing requests; requests are structured streams of bytes, for-
matted according to the EV3 Communication Developer Kit specification
[36].

1 At the time of writing, Legodroid does not support wifi connections, as the bluetooth
counterpart is preferable in most cases. A WifiConnection class is expected by design
though and will be added in a future update.



(¢) Flashing the brick ROM with a new custom firmware is an option for those
willing to take over the system and reprogram it from scratch.

While option (a) produces programs running on the EV3 brick, with its
limited performance?, option (b) unleashes the computational power of external
connected devices hosting and running the program. Legodroid facilitates the
latter approach: it consists in a Java library for Android with a strongly-typed
API for programming the EV3 brick from a remote device in a type-driven
disciplined way. Application business logic can be implemented on the Android
side: interaction with the brick is seamless, allowing the programmer to design
complex algorithms that apparently run on the robot but actually don’t. Benefits
of this Android-based approach include:

— computing power: Android devices, from mobile phones to tablets, have a
much more powerful CPU than the EV3;

— development environment: Android Studio [19] is an advanced IDE, offering
debugger, code analyzers and other powerful tools for developing apps in a
comfortable way;

— third party technologies: the whole Android SDK is at your fingertips, in-
cluding a powerful Ul, background services and components; plus, many
third party libraries are available for Android.

Legodroid introduces a new way for programming LEGO Mindstorms com-
pared to other APIs, by making the application Android-centric but not only:
it imposes a sound style, where error-prone coding habits are discouraged by a
disciplined use of types. Additionally, it offers a straightforward paradigm for
programming the robot: regular Java code packed into one callback represent-
ing the robot main function; within its scope users are allowed to access to the
sensors and motors connected to the brick.

The library is mainly addressed to two kinds of audience:

(1) juniors willing to learn coding: we argue that type-driven programming,
despite being a methodology mostly explored by a niche of advanced pro-
grammers, effectively aids in teaching coding and problem solving even at
the basic level, thanks to the educational power of a strict discipline over
types;

(2) experienced developers willing to explore new ways of programming Android
and improve their programming skills through a sophisticate use of types in
Java.

We put the library to the test by developing 17 different apps controlling
LEGO Mindstorms robots for different purposes. In section 4 of this paper we
show the outcome of this experiment, confirming that type-driven programming
reduces bug fixing time and favours quick deployment of stable applications,
allowing programmers to focus on the business logic of the application and on
the algorithms.

2 The EV3 CPU is a 300 MHz TT Sitara AM1808 (ARM926EJ-S Core) with 64 MB
of RAM.



1.1 Type-driven Development

Type-driven programming wants to bring the type-sound coding discipline com-
ing from the world of functional languages to the world of mainstream applica-
tion development, where traditionally less care is put on types and static safety.
Literature on the matter is scarce and mostly of industry origin, type-driven
programming being more of a programming methodology than an actual sci-
entific achievement; still, we believe its teachings and benefits are particularly
meaningful in an era where dynamic languages have become mainstream and
widely used for writing small as well as big software, training generations of
coders against a disciplined use of types.

Also known as typeful programming, its principles have been foreseen decades
ago by a handful of knowledgeable computer scientists [7], albeit it has quite
never broken through despite the advancements of technology, arguably because
of its difficulty [29]. Type-driven development relies on a accurate type design
and compile-time validation of code, as opposed to writing down unthoughtful
algorithms dealing with untyped or barely typed data. The basic idea behind it
is that ”a strong type system can not only prevent errors, but also guide you and
provide feedback in your design process” [31], which admittedly requires a deep
understanding of types and how to exploit the compiler as a tool for validating
code.

Recently, interest in type-driven development has increased: the Haskell and
F# communities have been promoting the benefits of designing with types for
years [41], showing how writing programs with the Hindley-Milner type system
[10] shifts the emphasis towards type design and improves the programmer’s
understanding of the static properties of software [32]. Even more advanced
languages based on dependent type systems such as Idris [5] brought type-driven
development to new heights [6], by conducting the programmer to the correct
implementation in a quasi-mechanical way, putting the basis for a form of assisted
programming guided by rich type information.

Although not all programmers can realistically learn dependent types [43],
we believe that any programmer could be trained in respecting the basic type-
driven programming principles to some extent, even without dependent types
or complex In this paper we claim that the fundamental principles of type-
driven programming can be ported to mainstream languages like Java, and any
programmer, at any level of skill, can benefit of it at the cost of learning the
core concepts of functional programming.

1.2 Core Principles

The type-driven approach is particularly recommended when writing libraries.
Libraries impose styles, patterns [13] and discipline to programmers designing
applications and are often responsible for the quality of the outcome in terms of
code maintainability, scalability and safety. A modern library should carefully
find a balance between two opposite characteristics:



Flexibility. Exported functions must be generic and cover a wide range of sce-
narios, exploiting forms of polymorphism;

Type safety. Operations must be constrained to certain data types, guiding
the programmer in writing correct code.

We synthesize a handful of type-driven qualitative principles that have been
put on test in designing and implementing Legodroid.

I Make code more general via higher-order functions [14]. Custom behaviours
can be formulated via callbacks instead of overriding methods in sub-classes,
which leads to a greater use of parametric polymorphism in place of sub-
typing. The higher-order function approach, obviously originating from the
functional world, has been incrementally adopted by mainstream languages
in recent years and is nowadays not unaccepted from the object-oriented
programming community as it used to be in the past [23]. It fits better the
immutable programming style, reducing statefulness in code and thus errors
due to state invalidity [42].

IT Never allow the programmer declare uninitialised variables, but rather emu-
late the functional let-binding by constructing objects in a valid state. Null-
ness checking is crucial: adding Java annotations @NotNull and @Nullable,
combined with an aggressive use of the final qualifier, raises code qual-
ity in a measurable way [8]. This has an impact on how classes and con-
structors are designed: avoiding no-argument constructors discourages the
”create empty and populate with setters”-sort of approach, which in turn
discourages unneeded mutable data [9].

ITT Reduce side effects to the minimum [20]. Arguably, most mutable data

structures in imperative programs are involuntary so, since mutability is
the default condition for variables and fields in most mainstream languages.
Overuse of assignments is a common source of runtime bugs in presence of
concurrent code, for instance, and in general contributes to the proliferation
of runtime errors, whereas programming with immutable data tends to lift
errors up to the type level.
Manipulating immutable data types, moreover, does not make code slower:
this is a common misconception that happens to be true less often than not,
since most OO languages implement call-by-reference parameter passing and
data is never copied unless explicitly cloned [2]. Quite the opposite, this is
another point in favour of immutability, as modifying function parameters
is another error-prone practice that compilers today discourage.

IV Use strong types even for intermediate result. A wise use of types and gener-
ics [4] can literally drive the programmer to the correct solution, by render-
ing unwanted chains of function calls impossible due to type mismatches.
Control flow reflects data flow; and data is ultimately validated by types
[46].

Despite these may seem in contradiction with classic OOP practices and ad-
vises, it has been observed that object-orientation adds abstractions, in the form
of heavyweight type names that represent operations, whereas the functional



approach subtracts abstractions thanks to anonymous functions, i.e. lambda ex-
pressions [22]. Abstractions are useful and powerful in many cases, but overly
complicated class hierarchies are hard to understand: for example, reducing the
number of heavyweight types representing callbacks relieves the programmer of
memorizing dozens of type names that represent functions somehow, and could
therefore be anonymized. This has another advantage in terms of design: it re-
duces the number of classes and interfaces to those cases modelling actual data
types, which aids in separating data from behaviour [2].

2 Library Breakdown

In this section we describe the architecture of Legodroid in terms of types, API
design and patterns. We motivate aspects of the type-driven design in particular.
Before delving into it, a few words on the notation we are using in this paper.

Notation 21 (Subtyping). We write T < S, where T and S are types, for in-
dicating that T is a subtype of S; its symmetric counterpart S = T holds as
well.

Notation 22 (Qualified Names). Method names are suffized by brackets, e.g.
run () is a bare method name, whereas the notation EV3.run() specifies the class
it belongs to.

Legodroid is designed with 3 layers of API. Each layer strictly wraps the
underlying one and supports extensions.

Low level API. It deals with serialization and byte-level manipulation of com-
mands for communicating with the EV3 brick according to the EV8 Com-
munication Developer Kit specification [36]. The comm sub-package, detailed
in section 2.2, contains the Bytecode class, aimed at building commands
by appending op-codes and manipulating parameters at the byte level in a
straightforward way. Users willing to extend the library with new commands
can limit use of such low-level primitives to small self-contained methods.

Mid level API. Class Api® provides the core primitives for interacting with
EV3, such as reading SI or PCT values from a sensor. The EV3 Firmware
Development Kit defines these as half-baked data types translating, respec-
tively, into float and short in Java. Extending the library at this level
means to add new methods implementing EV3 instructions that are currently
unsupported by Legodroid, manipulating arrays of floats or short according
to the specification in section 4 of [37].

High level API. The Api class offers a family of getter methods constructing
strong-typed handles to sensors and motors defined in the plugs package.
Such handles exhibit methods performing high-level operations over sensors
and motors and are distinct classes within the plugs sub-package. Extending
the library at this level means to extend the Api class with new methods

3 We refer to the EV3.Api nested static class as Api for brevity.



constructing new handles, which provide the methods implementing new
commands for the brick in the same way as classes in plugs do.

The reason why the Api class includes two layers of API is subtle: from a user
perspective the high-level methods and handles dealing with sensors and motors
should be enough for most situations. Mid-level methods like getSiValue(),
getPercentValue () and execAsync() are not enough, in number, to justify the
architectural overhead of an additional class. Users willing to implement new
high-level methods have all they need at their fingertips.

We now delve into the details of each package of Legodroid. This is not a
replacement for the documentation of the library but rather the explanation of
how its major feature impact programming in a typeful way.

2.1 1legodroid.lib.util

Package legodroid.lib.comm contains general utilities such as the definition
of functional interfaces [27] for supporting older versions of Android preceding
Java 8; and a Prelude class containing miscellaneous utility functions.
Interfaces Function and Consumer reproduce java.util.Function and

java.util.Consumer as defined in the JDK 8+, providing compatible functional
interfaces working with Android API 21, which does not include Java 8 features.
A more formal way for describing such functional interfaces would be using arrow
types, assuming that & represents the unit type.

Function<A, B>=A — B
Consumer<T>=T — &
Runnable=9 — J

ThrowingConsumer<T, E>extends the functional interface Consumer<T> adding
an extra type parameter E < Throwable that statically tracks the exception pos-
sibly thrown by the Consumer callback through a constrained generic. The Java
throws declaration in method signatures can be modelled by a special arrow
type where the exception is annotated:

ThrowingFunction<A, B, E < Throwable>=A —-BAE
ThrowingConsumer<T, E =< Throwable>=T — & AE
ThrowingRunnable<E < Throwable> =g — & ANE

In order to make these interfaces compatible with their inherited parent func-
tional interfaces, an additional callThrows () method is defined which adds the
throws E declaration, whereas the original call() method is overridden and
traps any exception raised by callThrows() by converting it to a non-checked
RuntimeException. This allows for the best of both worlds: either executing the
callback knowingly expecting an exception or totally trapping it, type-wise.

Finally, class Prelude is just a container for utility functions, among which
trap() is arguably the most useful: trap() picks a function and executes it



within a try-catch block trapping any exception possibly raising from it. Over-
loaded versions for different functional interfaces exist as well, the behaviour
emerging clearly from the following functional type signatures:

trapFunction : Va f (7 < Throwable). (a > SAy) 2 a—= A D
trapConsumer : Vo (5 < Throwable). (a > A L) 2 a— T A D
trapRunnable : Vo < Throwable. (& > @ Aa) > @ > T A D

Mind that these arrow-based type representations are not meant to be accu-
rate, but rather to display how functional manipulation occurs in a more readable
way. Java does not provide arrow types in its type system [33]; there is no unit
type, being void only a keyword for expressing methods with no return state-
ment and not a type constructor [26]; also, currying is technically possible but
not as straightforward as in functional languages, where the application syntax
models the lambda~calculus term for application [1]. These are complications
that ultimately make the actual implementation different from the clean type
signature.

2.2 legodroid.lib.comm

Package legodroid.lib.comm in figure 1 shows the architecture of types re-
lated to the communication facilities provided by the library. Channels represent
the basic abstractions offering communication primitives: a Channel can send a
Command and receive a Reply, both of which are subclasses of Packet. Low-level
communication with EV3 is based on exchanging data as untyped byte arrays
formatted according to the official specification defined by LEGO in the EVS3
Communication Development Kit [36]: direct commands sent by the client and
consequent replies coming from EV3 require a byte-per-byte encoding, which
includes a header followed by a an extra sequence of bytes carrying the custom
content of each request; the header consists of fixed byte fields such as the length
of the packet, the sequence number, the command type, the attached data etc.
Class Const binds all C-style preprocessor symbols defined in the official header
files as static numeric constant fields in Java, mostly used by the Bytecode class
for serializing commands.

The Connection<C> interface represents the contract for constructing chan-
nels of type C, where C < Channel, essentially implementing a typed factory
pattern tracking the type information associated to the result type, as opposed
to the old-fashioned, classic factory pattern which is often considered an obsolete
unsound way of constructing objects [12]. Interestingly, Connection is equivalent
to the java.util.Supplier interface defined by JDK 84-, making it a functional
interface de facto, albeit with type C being upper-bounded to type Channel. We
can, in other words, write the following type equation:

Connection<C =< Channel> = Supplier<C>=9 - CA



Fig. 1. UML Class Diagram of package legodroid.lib.comm
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Fig. 2. UML Class Diagram of package legodroid.lib
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2.3 legodroid.lib

The root package of the library contains the main classes for programming with
Legodroid, as shown in figure 2. Class EV3 stands at its core and exhibits most of
the type-driven practices. An instance of type EV3 represents a physical instance
of the EV3 brick and can basically do one thing: executing a callback as if it was
the main function for that brick, running on the Android device as a standalone
thread which constantly communicates with the brick in a transparent way.
The run() method takes a function Api — @ (or a Consumer<Api> function
object) as argument and executes it within an Android AsyncTask that traps
and logs any unexpected exception. It also behaves like a singleton, granting only
one callback is running at any given time on the brick. Perhaps surprisingly, the
EV3 class does not provide any method for interacting with sensors and motors:
the Api class does; and objects of type Api cannot be freely constructed - this
is a crucial design point of the whole library. An object of type Api is passed
to the Consumer<Api> callback being passed to the EV3.run() method by the
programmer as the robot main function: no other legal way of obtaining an
object of type Api exists, which is a strong type-driven principle that discourages
error-prone programming approaches. Pattern 3.2 in section 3 shows its details.

2.4 Concurrency in the Safe Way

In Legodroid concurrent computations occur often and are wrapped by future
computations [40], also known as promises [21]. The implementations extends
Android FutureTask [17], which gets lazily evaluated as the get() method
is invoked and caches the result for subsequent calls. In class Api, method
execAsync () belongs to the mid level API and is the basic primitive for perform-
ing automatic future computations in a type-safe way. It executes the callback
argument of type Callable<T>* with the default Android single-thread serial
executor [16] and returns a FutureTask<T>, i.e. a delayed computation over a
value of type T. The type of execAsync() can be formally described with the
following polymorphic type scheme [24]:

exeAsync : Va. (& — a) — Future<a>

Thanks to Java 8+ lambdas [34] [39] wrapping any code block into a no-
argument closures is syntactically convenient, that is why only callbacks of type
Callable<T> are supported. All methods communicating with the EV3 brick,
such as getPercentValue (), internally call execAsync() for decoding the data
contained in the Reply at the byte level.

This mechanism for processing replies to command requests is related to how
SpooledAsyncChannel works, converting a synchronous Channel into an asyn-
chronous AsyncChannel by spawning an AsyncTask in the background which

4 The functional interface Callable<T> represents functions with no arguments and a
result of type T, in the same way as Supplier<T> does, whose functional type can
be written as @ — T.
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acts as a spooler service, hence SpooledAsyncChannel : Channel — AsyncChannel.
The background thread constantly reads from the underlying synchronous chan-
nel and dispatches incoming replies to the right owner; where an owner is a
FutureReply object pushed into a synchronized queue at the moment the orig-
inal command has been sent. When a reply is received, the spooler checks its
sequence number and notifies the relevant FutureReply object, triggering its
computation - such computations are those created by execAsync().

The decoding of replies is performed asynchronously by dozens of short-living
threads belonging to the Android thread pool: any input operation, from reading
sensors to moving motors, is wrapped within a future computation - in other
words, the whole high level API returns objects of type Future<r>, for some
type 7. From the user’s perspective, blocking calls to Future.get () are required
to retrieve any result; subsequent calls do not trigger the computation again,
enabling a form of lazy evaluation [25]. Virtually, by postponing Future.get ()
calls to the very point where the result is needed may lead to minor performance
gains due to massive concurrency, depending on the level of support from the
Dalvik virtual machine [11] for fine-grained future computations [45] [44].

Admittedly, other systems in literature use a more sophisticate approach to
programming with futures, for instance by generating transparent proxies for
delayed computations [30], whereas Legodroid proposes a lighter-weight library
based solution. Our point is: how realistically useful is a solution relying on
external tools, analyzers and code generators that time makes obsolete and in-
compatible with the ever-changing technology underlying Java and its world?
A pure library surely cannot yield the same results, but we believe it is a good
compromise of usability and safety that arguably has a better chance to survive
the test of time.

2.5 Generalized EV3

Class EV3 is actually a subclass of the more general GenEV3<A> parametric class,
where A =< Api. This mixes generics with subtyping, object-orientation with
generic programming, in order to achieve extensibility and type safety at the
same time [3]. Nested static types InputPort, OutputPort and Api are defined
within EV3 rather than GenEV3 for simplicity and name brevity, hiding the super-
class to casual users. EV3 instantiates the type parameter A with the Api concrete
type, which is enough for most applications; programmers willing to extend the
Api class with additional custom methods are allowed do so by applying the
subclass as type argument to GenEV3<A>. The sample below shows how:

public class MainActivity {
static class MyApi extends EV3.Api {
MyApi(GenEV3<? extends EV3.Api> ev3) {
super(ev3);

public void myAdditionalCommand () {
// implementation

}

protected void onCreate(Bundle b) {
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BluetoothConnection conn =

new BluetoothConnection (" MyEV3Brick” );
BluetoothChannel ch = conn.connect ();
GenEV3<MyApi> ev3 = new GenEV3<>(ch);
ev3.run(this::legoMain, MyApi::new)));

}

private void legoMain (MyApi api) {
api.myAdditionalCommand ();
}

Since the 1legoMain () function passed to GenEV3.run() picks a parameter of
type MyApi, calls to additional methods are allowed without any cast or undis-
ciplined pattern.

This generalization comes at the cost of providing one extra argument to
GenEV3.run(): a function of type GenEV3<A> — A, required for constructing the
object of type A to be passed to the lego main. Such second argument could be
omitted if the Java type system supported constructor constraints: type param-
eter A could have been constrained to be constructible from an object of type
GenEV3<A>. Alternatively, lambdas can replace this missing feature at the cost of
explicitly passing a constructor reference, like MyApi: :new in the example [28].
This is also a preferable solution than a factory, which would otherwise require
additional classes and verbosity [12].

2.6 legodroid.lib.plugs

Figure 3 shows the classes representing sensors and motors. Each one exposes
methods for reading sensors (GyroSensor, LightSensor, TouchSensor) or mov-
ing motors (TachoMotor) in a typed way:

1. ports are distinct enum types (EV3.0utputPort, EV3. InputPort);

2. minor flags representing motor polarity and type® are enum types as well;

3. all sensor and motor classes inherit from a common superclass Plug<P> where
P represents the port type: this makes subclasses instantiate the generic P
with some concrete type at inheritance time;

4. sensors inherit from a common abstract class AbstractSensor: protected

methods getPercent (), getPercent1(), getSi() and getSil() are com-
modities for quickly implementing actual sensor subclasses.
The classes included in this package behave as handles for accessing LEGO
accessories, such as sensors and motors, connected to the I/O ports. As
explained in section 2, extending the library for supporting new accessories
requires extending the Plug abstract class (or even AbstractSensor) and
implementing the relevant communication primitives in function of the mid-
level methods mentioned above.

® Refer to the documentation of EV3 firmware instructions (op-codes
opOutput_Polarity and opOutput_Set_Type) in section 4.9 of [37].
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Fig. 3. UML Class Diagram of package legodroid.lib.plugs
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3 Type-driven Patterns

This section describes in detail the most interesting type-driven programming
patterns used in Legodroid. These are the result of combining design patterns
existing in literature and in the industry with the formal and sound approach of
the functional language scientific community.

3.1 Objects as Evidences

Using objects as evidences for constructing other objects is a type-driven practice
any strongly typed language can benefit of.

Pattern 31 (Objects as Evidences). In order to ensure that a given set of
operations O becomes available only after some state Sy, has been reached within
a sequence of increasingly mutating states S1 .. Sy such that 1 < k < n and
n > 0, the following pattern can be followed:

— operations O can be translated into methods of a stateless object of type O;
— each state S; can be translated into an object of type S; fori € [1,n]:
e cach object S; holds the information for the state S;;
e an object of type S;, for i > 1, can only be constructed by providing an
argument of type S;_1, i.e. the previous state;
e the initial state Sy, implemented by an object of type Sy, can be con-
structed explicitly from scratch;
— objects of type O can only be constructed given an argument of type Sk.

FEach object constructor formally behaves like a function S; : S;—1 — S,
where only Sy is initially given and no alternative way of instantiation exists for
the remaining states.

In Legodroid this type-driven practice emerges from the type architecture:

— in order to access EV3 motors and sensors, the programmer needs an object
of type Api;

— an object of type Api can only be obtained as argument passed to the callback
of type Consumer<Api> the programmer passes to the EV3.run() method;

— an object of type EV3, which represents a physical EV3 brick connected to
the Android device, requires an object of type AsyncChannel, which provides
the I/O primitives for asynchronous communication between Android and
the brick itself;

— AsyncChannel’s can be created given a synchronous Channel by using the
SpooledAsyncChannel class, which can be seen as a function of type Channel —
AsyncChannel;

— aChannel can be created by calling Connection.connect (): class BluetoothConnection
implementing Connection<BluetoothChannel> behaves like a factory for
producing objects of type BluetoothChannel, which are synchronous chan-
nels;
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— aConnection requires the target peer in order to be constructed, e.g. BluetoothConnection
requires the name the EV3 brick physically uses for pairing with Bluetooth,
whereas WifiConnection requires the IP address of the brick.

Each step in this chain represents a state S; in our generalized pattern 31:
the initial state Sy here is a string constant and subsequent states S;..S3 are
represented by each object in the flow:

So = String

4 i\

S = Connection
4 4

So = Channel

4 l

S3 = EV3

b \

S3(AO. M) =EV3.run((Api api) -> M)

The final step is different: we do not consider it as a further state Sy, but
rather as a dictionary of operations O that requires state S3 and is eventually
passed to the lego main block M. In Java the chain above is implemented by
the following code:

String name = ”MyEV3BrickName” ;
Connection conn = new BluetoothConnection (name);
Channel ch = conn.connect ();

AsyncChannel ach = new SpooledAsyncChannel(ch);
EV3 ev3 = new EV3(ach);

ev3.run ((Api api) —> /* lambda body M ></ E

The last line introduces the next pattern.

3.2 Limiting Access to a Resource

Let us assume a general scenario where a given resource R has to be accessible in
a restricted environment, a mere binding does not meet the robust discipline we
are looking for, as once an object has been bound to a variable name there is no
mechanism for unbinding it from the environment. Callbacks and lambdas are
an effective tool for controlling the scope of a resource R, since the application
of the argument R is performed and controlled by its owner.

Pattern 32 (Lambdas for Scoped Access). Users willing to access a resource
R must provide a callback f by either defining a lambda, an anonymous class or
a functional object® parametric over the resource R. The owner applies R to f
and can control what happens before and after the function application.

The following example shows a minimal implementation of this general pat-
tern (not an excerpt of Legodroid):

5 In Java 8+ all the mentioned language constructs are equivalent type-wise.
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public class FunProxy<R> {
private R resource;
public FunProxy (R resource) {
this.resource = resource;

}
public <T> T perform (Function<R, T> f) {

// do something before
T result = f.apply(resource);

// do something after
return result;

Admittedly, this pattern does not prevent the user from saving the pointer
to the protected resource for later use outside of its controlled scope. The Java
compiler detects the simplest scenario and forbids assignments to plain variables
captured by a closure:

String copy; // target pointer in closure
FunProxy<String> p = new FunProxy<>("MyString” );
p.perform ((res) —> { copy = res; }) // illegal!

However, a well-known workaround exists: putting the copy inside the cell 0
of a final array of size 1 [15]. We believe such a syntactic overhead discourages
most programmers though.

This pattern has a number of applications, ranging from synchronizing ac-
cess to a resource by locking and unlocking a mutex, to trapping exceptions by
surrounding the application with a try-catch block (Prelude.trap() in package
legodroid.lib.util is an example). Even without performing any operation,
the callback alone is useful: assume the dictionary of operations O described in
pattern 31 is our resource R, then we can merge the two patterns for restricting
the use of Api objects to the scope of a callback.

4 Experimental Results

Legodroid is open source and available on GitHub at the following URL:
https://github.com/alvisespano/Legodroid

The repository includes an Android Studio project with two modules: the
library and a demo app showing the main patterns and features.

We extensively tested the library with undergraduate students of the Software
Engineering course” Over 100 students divided into small teams of 3-5 people
produced 17 Android apps performing complex interactions with LEGO Mind-
storms devices. The LEGO physical devices created by each team ranged from
wheeled machines capable of processing the environment via sensors and avoiding
obstacles, to printers capable of moving a pen up and down on a scrolling paper,
rendering an input image with dots, to automatic equation solvers printing each
reduction step on a paper.

7 Bachelor degree in Computer Science, year 2018-19, at DAIS, Universitd Ca’ Foscari
Venezia.
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Teams using Legodroid were 7 out of 17; the remaining teams either used
1eJOS (8 teams) or flashed the brick with a custom firmware (2 teams).

Anyhow all teams had to interact with the EV3 from an Android device in
a non-trivial way. Apps were supposed to exploit the additional computational
power of Android, though depending on how teams designed their system this
requirement has been more or less fulfilled. A few teams wrote entire algorithms
with 1eJ0S, reducing the Android contribution to a remote UI; others exploited
the Android mobile, moving robot logic to the Android code to varying degrees.

We observed that teams using Legodroid reported a smoother development
experience compared to those working with 1eJ0S. The type-driven patterns
offered by the library were positively received by all teams. Advanced coding
practices have not been entirely understood by the majority, which is reasonable
for a junior developer, though this did not prevent them to take full advantage
of those patterns. This is a strong point in favour of type-driven programming;:
types impose such a strict, yet clear, discipline that any possible misuse of the
API is rejected by the compiler, putting the development process on a rail that
forcefully led teams to the correct implementation. This sense of guidance and
safety has been particularly appreciated by our teams and arguably counterbal-
ances the lower understanding due to type complexity.

The comfortable programming style allowed teams to put more effort into
smarter algorithms and advanced interaction. The same did not apply to 1eJ0S
users, who had a harder time implementing their applications, even though 1eJ0S
wraps low level operations as much as Legodroid does, offering comparable lev-
els of abstraction. Android makes the difference here: its programming pattern
requires extra care when managing object references due to complications arisen
from activity life-cycle [18]. This impacted those apps interacting with leJOS:
despite the longer development time, teams using 1eJ0S could not finalize their
code, presenting runtime bugs and weird behaviours at different levels.

Teams reported their appreciation for how Legodroid immutable data types
can be constructed and reconstructed safely, in a stateless fashion that fits how
Android transitions through different construction/destruction phases. Positive
feedback was given to the lego main control flow, which is straight, in the likes
of 1eJ0S native code and unlike the respective Android side, which consisted in
fragmented code spread throghout many callbacks. The event-driven style was
often used, which is less than ideal for encoding long algorithms and introduce
bugs that could arguably be avoided by a type-driven discipline.

5 Conclusions

We presented Legodroid, an Android library for interacting with LEGO Mind-
storms devices through type-driven programming patterns that guide the user
into writing robust code. This cross-programming practice has been put on test
by a number of junior teams designing and implementing several original LEGO
systems exploiting the Android platform capabilities in a non-trivial way. Teams
using Legodroid reported a smoother coding experience compared to teams us-
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ing alternate solutions such as 1eJ0S, as our library imposes a type-driven style
that enhances the development process in various ways, making sophisticate
interaction between the mobile device and the robot seamless and sound.
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