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Extending Forgetting-Based Abduction Using
Nominals

Warren Del-Pinto and Renate A. Schmidt

School of Computer Science, University of Manchester, Oxford Road, Manchester,
M13 9PL, United Kingdom

Abstract. Abductive reasoning produces hypotheses to explain new ob-
servations with respect to some background knowledge. This paper fo-
cuses on ABox abduction in ontologies, where knowledge is expressed in
description logics and both the observations and hypotheses are ground
statements. The input is expressed in the description logic ALC and the
observation can contain any set of ALC concept or role assertions. The
proposed approach uses forgetting to produce hypotheses in the form
of a disjunctive set of axioms, where each disjunct is an independent
explanation for the observation and the overall hypothesis is semanti-
cally minimal, i.e., makes the least assumptions required. Previous work
on forgetting-based abduction is combined with the semantic forgetting
method of the system FAME. The hypotheses produced are expressed
in an extension of ALC which uses nominals, role inverses and fixpoints:
ALCOIµ(∇). This combination overcomes the inability of the existing
forgetting-based approach to allow role assertions in observations and hy-
potheses, and enables the computation of other previously unreachable
hypotheses. An experimental evaluation is performed using a prototype
implementation of the method on a corpus of real world ontologies.

1 Introduction

Abduction was first identified as a form of reasoning by C.S. Peirce, who likened
it to a “flash of insight”. Like induction, and unlike deduction, abduction is
ampliative: the conclusion of the reasoning process extends beyond what already
follows from existing background knowledge. Abduction is often seen as the
process of hypothesis generation, while induction can be seen as the process of
hypothesis evaluation or generalisation. The use cases for abduction have led
to a diverse range of investigations into the topic. These include complexity
studies [10], applications in natural language interpretation [16], inductive and
abductive logic programming [26, 29], statistical relational AI [28] and studies of
the interaction between abduction and induction [12].

This paper focuses on abductive reasoning in description logics (DLs), which
are fragments of first-order logic. In this setting, background knowledge is ex-
pressed in an ontology, which contains information regarding concepts and rela-
tions between entities. Ontologies are used in a wide variety of fields including
bioinformatics, robotics and finance. Benefits of using ontologies include the



ability to clearly model, reuse, share and reason about existing knowledge. Most
existing reasoning systems in ontologies are deductive. They can be used to de-
rive consequences of the existing ontology that are not explicitly represented.
However, they cannot be used directly to explain new observations that do not
follow from the existing knowledge, which is required for tasks such as hypothe-
sis generation, diagnostics and belief expansion. The importance of abduction in
DLs has been recognised [11] and a variety of work exists on the topic, including
complexity studies [3], applications to repair and query explanation [21, 5] and
methods for different forms of TBox and ABox abduction [17, 8, 15, 27, 9].

One approach to performing abductive reasoning in DL ontologies uses for-
getting. Forgetting aims to eliminate specified symbols in an ontology while pre-
serving all entailments that can be represented in the restricted signature. The
dual task is called uniform interpolation. Both of these are related to second-
order quantifier elimination [13], which translates logical formulae expressed in
second-order logic into equivalent formulae in first-order logic by eliminating ex-
istentially quantified predicate symbols. The use of second-order quantifier elim-
ination for abduction has been proposed for relatively small theories expressed in
propositional or classical logics [7, 13, 30], while forgetting has been proposed for
TBox abduction in DLs [20]. More recently, a method for performing ABox ab-
duction in the DL ALC was developed [6], which utilises contrapositive reasoning
and the resolution-based forgetting system LETHE [19]. This approach produces
hypotheses that consist of a disjunctive set of ABox assertions. Each disjunct is
an independent explanation [18], resulting in a space of possible explanations.
The method has been shown to be practical over large ontologies. However, a
limitation to the method is the absence of role assertions in observations and
hypotheses, which restricts its use of existing information contained within the
ABox. Given an ABox observation, the approach cannot use relationships be-
tween individuals to provide a more specific explanation. These explanations
would be useful in many applications, such as those involving the use of large
knowledge graphs which have seen increasing interest in recent years.

The primary aim of this work is to overcome this limitation by combining the
method in [6] with another forgetting system: FAME [32, 33]. The key character-
istic of FAME is its ability to perform forgetting in ALCOIµ(∇), which includes
nominals. As suggested in [6], nominals can be used to overcome the limitations
of the abduction method. This is explored and confirmed in this paper.

2 Problem Definition

In this work, knowledge is expressed in the description logic ALC [2]. The signa-
ture of ALC is defined by disjoint sets Nc, Nr and NI containing atomic concept
names, role names and individual names respectively. Concepts in ALC can take
the following forms: ⊥ | > | A | ¬C | C tD | C uD | ∃r.C | ∀r.C, where A is
any atomic concept name, C and D are any ALC concepts and r is a role name.

An ontology O expressed in ALC takes the form O = T ∪ A, where T is a
TBox and A is an ABox. The TBox contains information about concepts rep-



resented as general concept inclusions (GCIs) of the form C v D or equivalence
axioms of the form C ≡ D, which can also be expressed as the two GCIs C v D
and D v C. The ABox contains (ground) assertions about specific individuals
of the form C(a) or r(a, b) where a, b are arbitrary individual names.

The semantics of ALC is defined in terms of an interpretation I as a pair
I = 〈∆I , ·I〉, where ∆I is a non-empty set called the domain and ·I is an
interpretation function mapping each individual a ∈ NI to a single element
aI ∈ ∆I , each concept to a subset of ∆I and each role to a subset of ∆I ×∆I .
This is extended to ALC concepts as follows:

⊥I= ∅ >I = ∆I ¬C = ∆I \ CI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI

(∃r.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
(∀r.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ rI → y ∈ CI}

For TBox axioms, the GCI C v D is true in I iff CI ⊆ DI holds. A model
of a TBox is an interpretation for which all axioms in the TBox are true, and if
a TBox has a model then it is satisfiable.

For this paper, it is also necessary to consider the DL ALCOIµ(∇), which ex-
tends ALC with nominals, role inverses, the top role and in some cases fixpoints.
For each individual a ∈ NI , the corresponding nominal {a} is interpreted as a
concept containing only a. Using nominals, ABox assertions can be expressed
as equivalent TBox axioms, i.e., C(a) and r(a, b) can be expressed as {a} v C
and {a} v ∃r.{b} respectively. The role inverse of a role r is denoted by r−,
and the top role is denoted by ∇. The semantics of these are defined as follows:
(r−)I = {(y, x) ∈ ∆I × ∆I |(x, y) ∈ r} and ∇I = ∆I × ∆I . In some specific
cases, described later in this paper, fixpoints may be used to represent cyclic
results. We refer to [4] for a full description and the semantics of fixpoints.

Here the focus is on ABox abduction over ALC ontologies. Our aim is to
produce hypotheses that satisfy the following:

Definition 1. Let O be an ontology and ψ be a set of ABox assertions, both
expressed in ALC, where O, ψ 6|=⊥ and O 6|= ψ. Let SA be a set of abducible
symbols, containing any subset of the symbols in the signature of O, ψ. The ABox
abduction problem is to find a hypothesis H as a disjunction of ABox assertions,
containing only the symbols in SA, which satisfies the following conditions:

(i) O,H 6|=⊥, (ii) O,H |= ψ
(iii) Each disjunct αi in H is an independent explanation for ψ: i.e. for every αi

in H, O, αi 6|= α1 t ... t αi−1 t αi+1 t ... t αn.
(iv) If there exists a H′ which satisfies conditions (i)—(iii), such that H′ con-

tains only symbols in SA and O,H |= O,H′, then O,H′ |= O,H.

Conditions (i), consistency, and (ii), explanation, are standard conditions
on abductive hypotheses, requiring that the hypothesis computed explains the
observation using the information in O without contradicting it. Condition (iii)



requires that there are no redundant disjuncts in the hypothesis H. A redundant
disjunct is one that contradicts the information in O, or provides an explanation
that is simply stronger than one that is already contained within the rest of the
hypothesis H. From this, it can be seen that condition (i) is a consequence of
condition (iii). However, condition (i) is still included here for clarity as it is a
key requirement. Condition (iv) requires that the overall hypothesis computed is
the one that makes the least assumptions required to entail the observation, and
is referred to as semantic minimality [15]. As noted in [6], in settings where the
hypothesis can contain disjunctions it is necessary to consider the redundancy
of individual disjuncts prior to checking for semantic minimality.

The above definition extends the problem defined in [6] by lifting the restric-
tions on ψ, SA and H. Specifically, both ψ and H may contain any combination
of ALC ABox assertions, including role assertions, and the set of abducibles SA
is no longer required to contain all role symbols in O, ψ.

In addition, in this work the produced hypothesis consists of a disjunction of
ALCOIµ(∇) axioms. Thus, certain hypotheses that can only be expressed using
nominals and inverse roles are also reachable using this extended approach. The
exact form of these are discussed alongside the proposed method.

3 Forgetting-Based Abduction

Forgetting eliminates symbols, i.e., concept and role names from an ontology
while preserving the entailments that are representable in the restricted signa-
ture. The symbols to eliminate are specified by a forgetting signature F , where F
can contain any subset of symbols in the signature of the ontology.

Forgetting can be utilised for abduction via contraposition: O,H |= ψ if and
only if O,¬ψ |= ¬H. For an ontology O and observation ψ, both expressed in
ALC, the steps in forgetting-based abduction are given in Figure 1.

1. Eliminate a specified set of symbols F from (O,¬ψ). The result of this step
is a new ontology, V = {β1, ..., βn}, which is called the forgetting solution of
(O,¬ψ) with respect to F .

2. Extract a reduced forgetting solution V∗ from V. This is done by eliminating
all axioms in V that violate the dual of Definition 1(iii), i.e., those βi ∈ V such
that O, β1, ..., βi−1, βi+1, ..., βn |= βi.

3. Negate V∗ to obtain a hypothesis H, in the form of a disjunctive set of axioms,
which satisfies Definition 1.

Fig. 1. Steps in forgetting-based abduction [6].

There are several important features of forgetting that make forgetting-based
abduction promising [6]. (1) Given that forgetting preserves all remaining entail-
ments, the forgetting solutions can be seen as strongest necessary conditions of
an input ontology in the restricted signature. This means that the forgetting solu-
tion V is the strongest necessary condition [22] of (O,¬ψ) in the signature SA. As



a result, the negation of V is a weakest sufficient condition, as strongest necessary
and weakest sufficient conditions are dual notions. Weakest sufficient conditions
correspond to a weakest abduction result [22, 7], i.e., a semantically minimal hy-
pothesis. When combined with the negation step 3 in Figure 1, this results in a
hypothesis H that satisfies both conditions (iii) and (iv). (2) The use of a forget-
ting signature F provides a goal-oriented method for specifying the abducible
symbols SA: for an ontology O and an observation ψ, SA = sig(O ∪ {ψ}) \ F .
It may be the case that a user does not have sufficient information to manually
choose the abducibles from a large set of available symbols. In this case, by in-
specting the signature of the observation ψ, F can be defined by simply setting
it equal to a subset of the symbols in ψ. This guarantees that inferences are made
between O and ψ in order to eliminate the symbols in F , in turn guaranteeing
that a non-trivial hypothesis H 6= ψ is obtained. (3) Forgetting can be applied
iteratively. For example, eliminating a set of symbols F1 from an ontology O
results in a forgetting result V1. If a second set of symbols F2 is then eliminated
from V1, the result obtained will be the same as eliminating all of the symbols
in F1 ∪F2 from O. This provides a method for hypothesis refinement: the steps
in Figure 1 can be repeated by eliminating symbols that occur in the current
hypothesis to obtain a stronger hypothesis, perhaps based on heuristics or ex-
ternal data. (4) There exist several forgetting systems that have been shown to
be efficient across large real-world ontologies, for example [23, 19, 33].

The abduction method proposed in [6] utilises the resolution-based forgetting
approach implemented in the system LETHE [19], which performs forgetting
over ALC ontologies with ABoxes. LETHE adopts the uniform interpolation
perspective on forgetting [24], meaning that it preserves all consequences of
the input ontology in the restricted signature. Thus, the forgetting solution V
computed by LETHE is called a uniform interpolant.

By using LETHE for the forgetting step 1 in Figure 1, the abduction approach
in [6] can compute hypotheses which satisfy a restricted form of Definition 1,
and has been shown to be sound and complete for this problem. The first main
restriction, however, is that the set of abducibles SA must contain all role symbols
in (O,¬ψ). This is due to the fact that the form of role forgetting currently
implemented in LETHE is not complete for the abduction problem. This was
noted in [6] and an example was provided. Here is another example:

Example 1. Consider the following ontology: O = {B v ∃r.B}. Let the observa-
tion be ψ = ∃r.B(a). The expected hypothesis given SA = {B} is H = B(a).

The result of applying LETHE’s calculus [19] to forget r is an empty uniform
interpolant. While this is sufficient for the uniform interpolation problem, for
abduction the expected hypothesis B(a) is not computed.

The second restriction is that the observations and hypotheses cannot contain
role assertions. Consider the following example:

Example 2. Consider the following ontology O = {∃r.B v A,B(b)}. Let the
observation be ψ = A(a). Case 1: given a set of abducibles SA = {B, r}, the hy-



pothesis satisfying Definition 1 would be H1 = ∃r.B(a). Case 2: given SA = {r},
the hypothesis would instead be H2 = r(a, b).

The first hypothesis H1 is reachable using LETHE. However, the second
hypothesis H2 is not. This is due to the fact that LETHE’s calculus does not
support deriving negated role assertions of the form ¬r(a, b), as it is designed to
preserve all entailments of the input that are expressible in ALC and ¬r(a, b) is
not expressible in ALC. Thus, these are not obtained in the reduced forgetting
solution V∗ and role assertions will be absent from the hypothesis when V∗ is
negated in step 3. This restriction means that the system is not able to utilise
existing relationships between individuals in the observation and those in the
ABox of the background ontology when generating hypotheses. Thus, many of
the more specific hypotheses such as H2 in the example above are not reachable.

In summary, the existing forgetting-based abduction approach in [6] takes as
input an ALC ontology O, an observation of the form ψ = {C1(a1), ..., Ck(ak)}
where each Ci is an ALC concept and each ai is an individual, and a set of
abducibles SA containing all role symbols in (O,¬ψ). The negation of the ob-
servation takes the form ¬ψ = ¬C1(a1) t ... t ¬Ck(ak). The final hypothesis
produced via steps 1—3 in Figure 1 takes the form H = α1(a1) t ... t αn(an)
where each αi is an ALC concept. It turns out the final output may need to be
expressed in ALC extended with disjunctive ABox assertions ALCν.

4 Extending the System

In this work, the forgetting-based approach is extended via the use of nominals.
However, producing hypotheses with nominals requires the use of a forgetting
method that can compute forgetting solutions for ontologies expressed in ALCO.

For this purpose, the abduction approach above is combined with the forget-
ting system FAME [32, 33]. As opposed to the uniform interpolation perspective
taken by LETHE, FAME frames the problem of forgetting in terms of semantic
forgetting [32, 33]. This view is closely related to second-order quantifier elimina-
tion [7, 13], where the forgetting result must be equivalent to the original formula
in second-order logic. From the viewpoint of abduction, while the steps taken in
the approach are conceptually the same when utilising FAME, each step must
be extended in several ways compared to the previous approach.

First it is helpful to consider how FAME handles the forgetting process [33].
Any ABox assertions in the input are translated to equivalent TBox axioms
involving nominals. Then, the ontology is transformed into a set of clauses N .
Before the process of eliminating the symbols in the forgetting signature F can
take place, the set N must be transformed into the appropriate reduced forms.

For role forgetting, N is transformed into r-reduced form. Given a role sym-
bol to be forgotten r, every clause in N that contains r must be of the form
C t ∀r.D or C t ¬∀r.D where C and D are possibly complex concepts that do
not contain r. During this transformation, definer symbols may need to be in-
troduced. These are fresh symbols that do not appear in the input ontology and



are used to incrementally replace the concept symbols C and D in clauses such
as the one above, until neither of them contain r. For example, given a forgetting
signature F = {r} and a clause ∀r.A t ∀r.B, a definer is introduced to replace
∀r.A. This results in the two clauses D1 t ∀r.B and ¬D1 t ∀r.A respectively.

For concept forgetting, the reduced form is the A-reduced form. To forget a
concept A, every clause must be of the form AtC where C is a possibly complex
concept which does not contain A or contains only negative occurrences of A.
For example, the clauses A tB and A t ∀r.¬A are in A-reduced form.

When forgetting the symbols in F , role symbols are eliminated first followed
by concept symbols. In both cases, the set N is first transformed into r-reduced
and A-reduced forms respectively [33]. Once the appropriate reduced form is
obtained, rules based around Ackermann’s Lemma [1] are used to forget the
symbols in F . Given a symbol A to be eliminated, the essence of Ackermann’s
lemma is to construct a definition of A, which does not contain it, from the exist-
ing clauses in which it occurs. This definition can then be used to replace every
instance of A, thereby eliminating it from the original ontology. The AckermannR

and PurifyR rules are used to eliminate role symbols, while the AckermannC and
PurifyC rules, shown in Figure 2, are used to eliminate concept symbols [33].
Finally any definer symbols are eliminated, via the use of the AckermannC and
PurifyC rules, resulting in the forgetting solution V.

Full details of this process, including the rules for obtaining the reduced
forms and the forgetting rules, can be found in the relevant papers [32, 33]. The
concept forgetting rules have been included for reference in Figure 2, since these
are utilised in illustrative examples throughout this paper.

An important aspect of FAME for this work is the fact that it is sound for
forgetting in ALCOIµ(∇), as expressed in this theorem.

Theorem 1. For any ALCOIµ(∇) ontology O and any signature F ⊆ sig(O),
where sig(O) is the set of concept and role symbols in O, FAME always termi-
nates and returns a set V of clauses. If V does not contain any symbols in F ,
then the symbols in F were successfully forgotten and the set V is a solution of
forgetting the symbols in F from O.

This theorem is a weaker form of the theorem in [33], specifically focussed on
the description logic ALCOIµ(∇), as this is the language required in the setting
of this paper. The original theorem holds for the logic ALCOIHµ+(∇,t), which
also includes role hierarchies of the form r v s and role conjunction. However,
here all inputs are expressed in ALCO(∇). For this setting, role hierarchies are
excluded. Role conjunctions are also excluded since they are only needed in the
solution when the input is expressed in ALCOIH [31].

One limitation of using FAME to compute the forgetting result is that FAME
is not complete. However, it is worth noting that LETHE is not complete for role
forgetting in the context of abduction either [6]. Thus, the incompleteness draw-
back of FAME is offset by the fact that additional hypotheses can be reached.
This is illustrated by examples 4, 5 and 7 later in this paper.

Via the use of FAME, the forgetting step 1 of the abduction method can
now take any ontology O and observation ψ for which the combination (O, ψ)



Non-cyclic AckermannC : N , C1 tA, ..., Cn tA
NA
¬C1t...t¬Cn

where (i) A does not occur in any Ci (ii) N is negative with respect to A

Cyclic AckermannC : N , C1[A] tA, ..., Cn[A] tA
NA
µX.(¬C1t...t¬Cn)[X]

where (i) each Ci is negative with respect to A, (ii) N is negative w.r.t A

PurifyC : N
NA

(¬)>
where N is positive with respect to A

Fig. 2. Rules used in the forgetting system FAME to forget a concept A, where NA
C is

the set of clauses obtained from N by replacing every occurrence of A with C [33].

is expressible in ALCO, where the signature of abducibles SA can be any set
of concept or role symbols occurring in (O, ψ). Note, the set of abducibles SA
includes all nominals, since no form of nominal forgetting is utilised in this work.

However, it is first necessary to decide how to represent the negation of the
observation ψ and the form of the hypothesis H, since FAME operates on and
produces ALCO TBoxes rather than ABox assertions. To illustrate this, as well
as the procedure for concept forgetting in FAME, recall Example 2:

Example 3. The ALCO reformulation of the ontology considered in Example 2
is: O = {∃r.B v A, {b} v B} and the observation is ψ = {a} v A, where {a} and
{b} are nominals. Given a set of abducibles SA = {B, r}, the hypothesis obtained
using FAME in step 1 of Figure 1 is H1 = {a} v ∃r.B. If instead SA = {r}, the
hypothesis is H2 = {a} v ∃r.{b}. Both H1 and H2 satisfy Definition 1.

However, in cases where either the observation or the hypothesis take the
form of a conjunction or disjunction of ABox assertions, the reformulation is less
obvious. In this case, it is possible to take advantage of the fact that FAME can
perform forgetting in the presence of the top role ∇.

Example 4. Consider the following ontology O = {∃r.B v A,C v D, {b} v B}
and the observation ψ = A(a)uD(c). Let SA = {r, C}. The expected hypothesis
under Definition 1 should be equivalent to H = r(a, b) u C(c). The negation of ψ
can be represented as: ¬ψ = > v ∀∇.(¬{a} t¬A)t ∀∇.(¬{c} t¬D). Following
the steps in Figure 1 using FAME, in step 1, where F = {A,B,D}, the hypothe-
sis obtained can be represented as: H = > v ∃∇.(¬{a}t∃r.{b})t∃∇.(¬{c}tC).
This is equivalent to the expected hypothesis r(a, b) u C(c).

This leads to the general form used for the negated observations and the
hypotheses produced. These are shown below:



¬ψ = > v ∀∇.(¬{a1} t ¬C1) t ... t ∀∇.(¬{ak} t ¬Ck) (1)
HF = > v ∃∇.D1 t ... t ∃∇.Dn (2)

where each Ci is an ALCO concept and each Di is an ALCOIµ(∇) concept.
From here HF is used to denote the hypothesis obtained using FAME in step 1
in Figure 1 and HL is used to refer to the one obtained using LETHE.

The following lemma relates HF to the disjunctive form in Definition 1:

Lemma 1. The hypothesis HF is expressed as HF = α1 t ... t αn where each
disjunct αi is of the form > v ∃∇.Di and each Di is an ALCOIµ(∇) concept.

It is still possible to satisfy conditions (iii) and (iv) of Definition 1 using this
representation. However, it is first necessary to adapt the filtering method of
step 2 in Figure 1 to obtain the reduced forgetting solution V∗, as this is an
important part of the feasibility of the approach in practice [6].

An annotation concept ` is used to efficiently trace any dependencies on the
negated observation ¬ψ in the forgetting result V. Any axioms which do not
contain the concept ` are removed from V, thereby removing the majority of
the axioms that are redundant with respect to Definition 1. Fortunately, extend-
ing this approach to the current setting is straightforward. Here, the negated
observation provided in step 1 of Figure 1 is annotated as follows:

¬ψ = > v ∀∇.(¬{a1} t ¬C1 t `) t ... t ∀∇.(¬{ak} t ¬Ck t `)

where as before, ` is a fresh concept symbol that does not occur in (O, ψ), nor
in the signature F . The soundness of this filtering approach is expressed below.

Theorem 2. Let O be an ALCOIµ(∇) ontology, ψ an observation as a set of
axioms, F a forgetting signature and ` an annotator concept appended disjunc-
tively to each disjunct in ¬ψ, where ` 6∈ sig(O) and ` 6∈ F . For each axiom β in
the forgetting result V obtained by forgetting all symbols in F , if ` 6∈ sig(β) then
β is redundant under the dual of Definition 1(iii), and should be removed in the
extraction of the reduced forgetting result V∗.
Proof sketch: The proof is by induction over the construction of a derivation
using the calculus of FAME [33], and takes the same form as the proof in [6].
The annotation concept ` does not appear in the signature F . Thus, ` is not
eliminated and if a clause in the normal form of (O,¬ψ) contains the annotation
concept `, then any clause derived via inferences on this clause under FAME’s
forgetting calculus will also contain `. Therefore, any axiom β in the forgetting
result V that does not contain ` was derived purely using axioms in the back-
ground ontology O, i.e., O |= β. Since under Definition 1, O 6|= ψ, such a β will
not contribute to the explanation of ψ required by abduction, and should be
omitted from HF to satisfy Definition 1(iii).

As proposed in [6], the filtering step 3 in Figure 1 can be performed in an
approximate or full manner. The approximate filtering utilises the annotation-
based method to inexpensively remove all redundancies that can be captured
using this approach. The result is an approximation of the reduced forgetting



result V∗, denoted by V∗app. This can be negated in step 3 to return an approxi-
mate hypothesis. Alternatively, the full filtering setting further performs the dual
entailment check of Definition 1(iii) over each axiom in V∗app using an external
reasoner. This eliminates any remaining redundancies that cannot be captured
using annotations, an example of which appears in [6]. The result is then V∗,
which is negated to return a hypothesis satisfying Definition 1.

It is worth noting that, for fixpoints to occur in the hypothesis, a cycle
would need to occur both over the symbols in F and also not be redundant
under Theorem 2. As found in [6] this is rare in practice.

Example 5. To illustrate the full procedure, for the ontology O and the obser-
vation ψ from Example 4, the input given to FAME is:

∃r.B v A C v D
{b} v B > v ∀∇.(¬{a} tA t `) t ∀∇.(¬{c} tD t `).

The set of abducibles is SA = {C, r} and thus the forgetting signature is F =
{A,B,D}. In step 1, (O,¬ψ) is first transformed into A-reduced form:

∀r.¬B tA ¬C tD
¬{b} tB ∀∇.(¬{a} t ¬A t `) t ∀∇.(¬{c} t ¬D t `)

This is also in D-reduced form. Forgetting the concepts A and D results in:

¬{b} tB ∀∇.(¬{a} t ∀r.¬B t `) t ∀∇.(¬{c} t ¬C t `)

Forgetting the concept B then produces:

∀∇.(¬{a} t ∀r.¬{b} t `) t ∀∇.(¬{c} t ¬C t `),

which is the forgetting result V. In the filtering step 3 of Figure 1, the axiom
is retained and the annotation concept ` is set to ⊥. Neither disjunct in this
hypothesis is redundant with respect to the dual of Definition 1(iii) and thus
both are retained in the reduced forgetting result V∗, which is then negated in
step 3 to produce the hypothesis: HF = > v ∃∇.({a} u ∃r.{b}) t ∃∇.({c} uC).
This is equivalent to the suggested hypothesis H = r(a, b) u C(c).

5 Comparing Hypotheses

Since the main aim of abductive reasoning is to produce an explanation, the form
taken by the hypotheses is important. This is in contrast to the problem of for-
getting, where restricting the original ontology while preserving all representable
entailments [19] or obtaining an equivalent set of formulae [32] is the main goal.
Thus, the readability of the forgetting result has so far received little attention.
For abduction, aside from the conditions in Definition 1, the readability of the
hypotheses should be considered to provide insight into unseen observations.

Therefore, it is useful to compare the hypotheses produced by both ap-
proaches to forgetting-based abduction: the first using the resolution-based ap-
proach of LETHE, and the second using the Ackermann approach of FAME.
Consider the following example:



Example 6. Let the background ontology O contain the following axioms:

Pogona v ∃livesIn.(Arid uWoodlands) Woodlands v Habitat
EucalyptForest vWoodlands EucalpytForest(SpringbrookPark)

and consider the observation ψ = ∃livesIn.Woodlands(Gary). Case (1): let SA
include all symbols in O except Woodlands, i.e. F = {Woodlands}. The hy-
potheses obtained using LETHE and FAME respectively are:

HL = Pogona t ∃livesIn.EucalyptForest(Gary)
HF = > v ∃∇.(Pogonau∀livesIn.(¬Aridt¬Habitatt∃livesIn−.{Gary})

t∃∇.({Gary} u ∃livesIn.EucalyptForest),

where livesIn− denotes the inverse of the role livesIn.

Example 6 illustrates a potential drawback of utilising a more expressive
forgetting approach: the hypothesis produced can be more difficult to inter-
pret, as seen by the additional syntactic redundancy in the first disjunct of
HF . Despite this, the extra expressivity in the target language of FAME can
be useful. Since FAME’s solution preserves additional entailments compared to
LETHE’s, it may lead to additional explanations (disjuncts) in the final hypothe-
sis. In Example 6, if F is extended to F = {Woodlands,EucalyptForest}, then
HL = Pogona(Gary), whereas HF = > v ∃∇.(Pogona u ∀livesIn.(¬Arid t
¬Habitatt ∃livesIn−.{Gary})t ∃∇.({Gary} u ∃livesIn.{SpringbrookPark}).
The second disjunct in HF is equivalent to livesIn(Gary, SpringbrookPark),
an explanation that is absent from HL.

In Example 6, the following relations hold: O,HL |= HF and O,HF 6|= HL.
This indicates that the hypotheses obtained by using FAME in the forgetting
step 1 in Figure 1 can be weaker than those obtained using LETHE. This is to
be expected, since the forgetting solution computed by FAME can be stronger
than the uniform interpolant produced by LETHE due to the extended language
of FAME’s solution. Thus, HF can be weaker than HL under the background
ontology, since these are obtained by negating the reduced forgetting solutions.

6 Experimental Evaluation

To perform a preliminary evaluation of the new forgetting-based abduction
method, a prototype was implemented in Java using the OWL-API1. Since one
of the primary aims of this work is to assess the benefit of utilising FAME for
abduction rather than LETHE, the forgetting module in the abduction method
utilises either of the two tools: LETHE2 or FAME [32, 33].

Since no benchmarks exist for abduction problems in DLs, a challenging
aspect of experimentally evaluating tools for abduction is the generation of ap-
propriate observations. These observations should not violate the conditions in

1 http://owlapi.sourceforge.net/
2 http://www.cs.man.ac.uk/koopmanp/lethe/index.html



Ontology DL TBox ABox Num. Num.
Name Size Size Concepts Roles

BFO EL 52 0 35 0
LUBM EL 87 0 44 24
HOM EL 83 0 66 0
DOID EL 7892 0 11663 15
SYN EL 15352 0 14462 0
ICF ALC 1910 6597 1597 41
Semintec ALC 199 65189 61 16
OBI ALC 28888 196 3691 67
NATPRO ALC 68565 42763 9464 12

Table 1. Characteristics of the experimental corpus.

Definition 1, i.e. they should be consistent with the corresponding background
ontology, but should also not be entailed by it. However, it is also necessary to
consider the forms the observations take. While it is not possible to know exactly
what forms the observations may take outside of case studies, it is important
to try to emulate information that may be seen in practice. To do this, in this
work the observations were generated randomly using existing information in
each background ontology, as in [6]. Specifically, to generate a set of candidate
observations for a background ontology, the concepts occurring in the axioms of
the ontology were scanned and stored. These were selected at random and com-
bined with ALC operators, also at random, to encourage variety. Each candidate
observation was checked using HermiT to determine if it satisfied the conditions
in Definition 1. If it did not, it was discarded. This process was repeated until
the required number of observations was obtained.

For the first experiment, the aim was to compare the performance of the ab-
duction method using LETHE and FAME in terms of time and the hypotheses
obtained. The set of observations was restricted to those that can be handled by
the abduction system using LETHE as in [6]. These included any ALC concept
assertion, with at least one concept symbol that is not > or ⊥, over a single
individual. For ontologies with an ABox, each individual in the observations was
an existing individual, while for those without an ABox the individual was a
fresh one. The restriction to one individual was performed because in the OWL
API disjunctive assertions cannot be expressed for ALC. For each observation,
the forgetting signature F was set to one random concept symbol in the obser-
vation ψ. In this way, the results are indicative of a single step of the abduction
procedure, assuming that the user has no additional information that would lead
them to further restrict the set of abducibles SA. Thus, the hypothesis obtained
is one of the weakest possible hypotheses (least assumptions). It is assumed that
the user would proceed to further refine the hypothesis by forgetting symbols
from the hypotheses obtained. The time limit in this experiment was 300s for
both the forgetting and filtering steps respectively.



Number of Mean Median 90th Percentile Maximum

TBox Axioms 1374 328 3830 8535
ABox Assertions 1014 26 2472 10889
Concepts 783 221 2232 6446
Roles 54 21 76 1043
Individuals 558 23 1605 8220

Table 2. Characteristics of the experimental corpus used in experiment 2.

The corpus used in experiment 1 is the same as the one used in [6], which
consists of ontologies taken from NCBO Bioportal 3, OBO Foundry 4, the LUBM
benchmark [14] and the Semintec5 financial ontology. The choice of corpus is
detailed in [6]. The statistics of this corpus are shown in Table 1.

The aim of the second experiment was to assess the performance of FAME
with the approximate and full filtering settings of the abduction approach in the
less restrictive setting of this paper. The corpus was extracted from a snapshot
of NCBO Bioportal [25]. The observations were generated in the same way as
in experiment 1, but without the restrictions which excluded role assertions.
The forgetting signature in each case included at least one symbol from the
observation, including role symbols. Again the assumption is that, unlike for
forgetting, the aim is not to restrict a background ontology to a portion of the
original, but to produce a space of independent explanations that does not make
too many assumptions without sufficient prior knowledge about the observation.
Thus, the forgetting signature was set to small portions of the symbols in the
ontology. The timeout for the method was set to 1000 seconds in total. The
success rates reported include cases for which FAME failed to forget at least one
symbol, or one of these two steps exceeded the time limit.

The requirements for the ontologies in the extracted corpus were as follows.
(1) They should be parsable by the OWLAPI, FAME and HermiT. This ex-
cludes cases for which there were errors in loading the ontology into any of these
systems. For this reason, the ontologies were also restricted to those containing
at most 100,000 axioms. (2) The observation generation method should succeed
after 2,000 attempts. This was done to exclude ontologies for which it is not
possible to generate a sufficient number of non-entailed, consistent observations
for the given ontology. (3) The ontology should contain an ABox, since the main
benefit of this less restrictive setting is that information in the ABox can be used
to produce hypotheses that utilise local information about an individual and its
relationships with other individuals in the ABox. The final corpus contained 50
ontologies, the statistics of which are summarised in Table 2.

All ontologies were preprocessed into their ALC fragments, since this is the
setting of this work. To do this, axioms not representable in ALC were removed.
Others that were representable in ALC were translated using simple conversions.

3 https://bioportal.bioontology.org/
4 http://www.obofoundry.org/
5 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm



Ont. Mean Time /s Max Time/s Mean Disjuncts O,HL ≡ O,HF Success %
Name HL HF HL HF HL HF % HL HF
BFO 0.05 0.04 0.64 0.26 1.73 1.73 100.0 100.0 100.0

LUBM 0.08 0.06 0.67 0.30 2.53 2.96 60.8 100.0 86.7
HOM 0.06 0.05 0.65 0.26 2.5 2.5 100.0 100.0 100.0
DOID 3.35 3.07 9.97 10.26 4.77 4.77 100.0 100.0 100.0
SYN 6.18 2.84 16.12 13.92 5.6 5.6 100.0 100.0 100.0
ICF 0.96 0.67 3.56 2.16 1.93 1.93 100.0 100.0 100.0
Sem. 2.89 3.09 6.70 6.39 1.10 1.63 58.3 96.7 100.0
OBI 34.47 32.97 120.05 108.85 43.45 42.2 91.3 96.7 100.0

NAT. 46.04 138.24 301.27 688.87 10.61 4.17 62.5 76.7 76.7

Table 3. Results for the first experiment. HL (HF ) indicates results for the abduction
system using LETHE (FAME). The time limit for forgetting and filtering was 300
seconds each. For the equivalence check, only cases where both LETHE and FAME
computed a hypothesis were compared. For the success rate, failures took into account
both times exceeding the timeout and, in the case of FAME, results for which the
concept could not be forgotten and results containing definer symbols.

Since fixpoint operators are not utilised in the implementation of FAME,
these were not present in the results. Thus, cases requiring fixpoints are deemed
to be a failure case and count against the reported success rates. However, these
are unlikely to have a significant impact as they are rare in practice [6].

Both experiments were performed on a machine using a 2.8GHz Intel Core
i7-7700HQ CPU and 12GB of RAM.

The results for experiment 1 are shown in Table 3. Over most ontologies,
utilising FAME resulted in a shorter mean runtime. Two exceptions were the
Semintec and NATPRO ontologies. The maximum runtime was longer when
using FAME in a few cases, most noticeably over NATPRO, for which it was
over double that obtained using LETHE. These differences could be due to the
computation of additional explanations requiring the expressivity of FAME’s so-
lution, which would necessitate additional entailment checks during the filtering
step. Also, for ontologies with large ABoxes, a significant number of axioms need
to be transformed to TBox axioms using nominals, which may increase the time
taken. In most cases, the success rate when using LETHE was 100%. The same is
true using FAME. In LETHE’s case, failures occurred over the larger and more
expressive ontologies, Semintec, OBI and NATPRO. These are due to timeouts,
indicating that LETHE took longer than 300 seconds to produce a solution. For
FAME, failures can occur due to the incompleteness of FAME’s calculus: all of
the failures over the LUBM ontology were due to this characteristic. For the
NATPRO ontology, all of the failures observed using FAME were instead due
to timeouts. In most cases, the hypotheses HL and HF were equivalent under
the corresponding ontology. This indicates that it should often be possible to
express HF in ALC, which may help to improve the readability issue discussed
in Example 6 in these cases. Over the LUBM, Semintec, OBI and NATPRO
ontologies, a number of the hypotheses produced using FAME were weaker than



those returned using LETHE. This is expected: the forgetting result returned
by FAME may be stronger than the uniform interpolant produced by LETHE,
and in some cases there may be hypotheses that cannot be expressed without
the extra expressivity of FAME’s result. The following is an example taken from
the LUBM experiments, demonstrating the benefit of this in practice.

Example 7. For the observation ψ = ¬Organization(a), where a is a fresh indi-
vidual, the key axioms in the LUBM ontology were:

Person u ∃worksFor.Organization v Employee College v Organization
Employee v Person u ∃worksFor.Organization

For the forgetting signature F = {Organization}, the hypothesis was:

HF = > v ∀∇.(¬{a} t ∃worksFor−.(¬Employee u Person))

Other explanations, such as those equivalent to ¬College(a), are redundant with
respect to Definition 1(iii) and are removed by the filtering in step 3 of Figure
1. Using LETHE, no hypothesis was produced as the above hypothesis requires
the use of the inverse role worksFor−, which cannot be produced by LETHE.

The results for experiment 2 are shown in Table 4. As expected, the approxi-
mate filtering took less time than the full filtering across all cases, as it does not
perform the additional, expensive entailment checks. The maximum time for the
approximate filtering for an F size of 1 is particularly high. It is likely that for
this single case the forgetting solution was particularly large, indicating that the
forgotten symbol occurred frequently in the given ontology. The mean number
of redundant axioms removed from the forgetting results by the approximate
filtering was 2444.6, 2510.4 and 2873.3 for F sizes of 1, 5% and 10% respec-
tively. The mean additional redundancies removed by the full filtering setting
was 11.7, 11.3 and 9.7 axioms respectively. This indicates that in many cases the
approximate filtering may be sufficient to obtain a space of explanations that
is largely free of redundancies. The success rates indicate that the full filtering
setting caused a number of additional timeouts for each size of F . However, the
majority of failures were the result of FAME failing to forget at least one sym-
bol in F . For the approximate filtering cases, 100%, 100% and 99.5% of failures
occurred due to the forgetting step for F sizes 1, 5% and 10% respectively. For
the full filtering cases, the corresponding values were 88.8%, 94.8% and 94.8%
respectively. FAME’s failure rates for these abduction experiments are higher
than those reported for forgetting experiments [33, 31]. This may be due to the
frequency of role symbols occurring in ABox observations for abduction, many
of which included role assertions or complex concepts involving roles.

7 Conclusion and Future Work

In this paper the expressivity of forgetting-based abduction was extended us-
ing the forgetting system FAME. Role symbols can now be excluded from the



F Forgetting Time Approx. Filter Time Full Filter Time Successes %
Size Mean Max Mean Max Mean Max Approx. Full

1 0.05 1.02 0.74 869.63 7.40 880.11 90.3 89.3
5% 0.13 11.15 0.09 28.25 8.29 878.05 81.7 80.9
10% 1.04 75.09 0.06 5.52 6.45 975.24 70.9 70.6

Table 4. Results for experiment 2. Percentages for F are relative to sig(O, ψ). All
times are in seconds.

abducibles, and observations and hypotheses can now contain role assertions,
including conjunctions and disjunctions of these. Hypotheses requiring role in-
verses can also now be computed. These extensions are useful in practice, as data
in the ABox of an ontology can be used to compute more specific hypotheses.

One limitation of the approach is the lack of completeness, due to the fact
that FAME uses semantic forgetting, which is not complete. A possible solution
is to combine the use of FAME and LETHE, enabling LETHE to forget definer
or forgetting symbols in FAME’s result. Future work will also include further,
fine-grained experimental evaluation and applications such as concept learning.
These will benefit significantly from the enhanced expressivity of the approach.
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