
A CDCL-style calculus for solving non-linear
constraints?

F. Brauße1, K. Korovin2, M. Korovina3, and N. Müller1

1 Abteilung Informatikwissenschaften, Universität Trier, Germany
2 The University of Manchester, UK

3 A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia

Abstract. In this paper we propose a novel approach for checking sat-
isfiability of non-linear constraints over the reals, called ksmt. The pro-
cedure is based on conflict resolution in CDCL-style calculus, using a
composition of symbolical and numerical methods. To deal with the non-
linear components in case of conflicts we use numerically constructed
restricted linearisations. This approach covers a large number of com-
putable non-linear real functions such as polynomials, rational or trigono-
metrical functions and beyond. A prototypical implementation has been
evaluated on several non-linear SMT-LIB examples and the results have
been compared with state-of-the-art SMT solvers.

1 Introduction

Continuous constraints occur naturally in many areas of computer science such
as verification of safety-critical systems, program analysis and theorem prov-
ing. Historically, there have been two major approaches to solving continuous
constraints. One of them is the symbolic approach, originated by the Tarski’s
decision procedure for the real closed fields [31], and developed further in proce-
dures based on cylindrical decomposition (CAD) [5], Gröbner basis [3,14], and
virtual substitution [20,7]. Another one is the numerical approach, based on
interval computations, where the technique of interval constraint propagations
have been explored to deal with continuous constraints on compact intervals,
e.g., [1,10,12,11]. It is well known that both approaches have their strengths and
weaknesses concerning completeness, efficiency and expressiveness.

Recently, a number of methods has been developed aimed at merging strengths
of symbolical and numerical methods, e.g. [27,9,4,28]. In particular, the approach
developed in this paper is motivated by extensions of CDCL-style reasoning into
domains beyond propositional logic such as linear [17,23,16,15] and polynomial
constraints [13]. In this paper we develop a conflict-driven framework called ksmt

? The research leading to these results has received funding from the DFG grant
WERA MU 1801/5-1 and the DFG/RFBR grant CAVER BE 1267/14-1 and 14-
01-91334. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 731143.

ar
X

iv
:1

90
5.

09
22

7v
2

 [
cs

.L
O

]
 5

 J
ul

 2
01

9

for solving non-linear constraints over large class of functions including polyno-
mial, exponential and trigonometric functions. Our approach combines model
guided search for a satisfying solution and constraint learning as the result of
failed attempts to extend the candidate solution.

In the nutshell, our ksmt algorithm works as follows. Given a set of non-linear
constraints, we first separate the set into linear and non-linear parts. Then we
incrementally extend a candidate solution into a solution of the system and when
such extension fails we resolve the conflict by generating a lemma that excludes a
region which includes the falsifying assignment. There are two types of conflicts:
between linear constraints which are resolved in a similar way as in [17] and non-
linear conflicts which are resolved by local linearisations developed in this paper.
One of the important properties of our algorithm is that all generated lemmas
are linear and hence the non-linear part of the problem remains unchanged
during the search. In other words, our algorithm can be seen as applying gradual
linear approximations of non-linear constraints by local linearisations guided by
solution search in the CDCL-style.

The quantifier-free theory of reals with transcendental functions is well known
to be undecidable [30] and already problems with few variables pose considerable
challenge for automated systems. In this paper we focus on a practical algorithm
for solving non-linear constraints applicable to problems with large number of
variables rather than on completeness results. Our ksmt algorithm can be used
for both finding a solution and proving that no solution exist. In addition to a
general framework we discuss how our algorithm works in a number of important
cases such as polynomials, transcendental and some discontinuous functions. In
this paper we combine solution guided search in the style of conflict resolution,
bound propagation and MCSAT [6] with linearisations of real computable func-
tions. The theory of computable functions has been developed in Computable
Analysis [32] with implementations provided by exact real arithmetic [24]. Lin-
earisations have been employed in different SMT theories before, including NRA
and a recently considered one with transcendental functions [21,29,4], however,
not for the broad class we consider here. We define a general class of functions
called functions with decidable rational approximations to which our approach is
applicable. This class includes common transcendental functions, exponentials,
logarithms but also some discontinuous functions.

We implemented the ksmt algorithm and evaluated it on SMT benchmarks.
Our implementation is at an early stage and lacking many features but already
outperforms many state-of-the-art SMT solvers on certain classes of problems.

2 Preliminaries

We consider the reals extended with non-linear functions Rnl = (R, 〈Flin ∪
Fnl ,P〉), where Flin consists of rational constants, addition and multiplica-
tion by rational constants; Fnl consists of a selection of non-linear functions
including multiplication, trigonometric, exponential and logarithmic functions;
P = {<,≤, >,≥} are predicates.

We consider a set of variables V . We will use x, y, z possibly with indexes for
variables in V , similar we will use q, a, b, c, d for rationals, f, g for non-linear func-
tions in Fnl . Terms, predicates and formulas over X are defined in the standard
way. We will also use predicates 6=,=, which can be defined using predicates
in P. An atomic formula is a formula of the form t � 0 where � ∈ P. A lit-
eral is either an atomic formula or its negation. In this paper we consider only
quantifier-free formulas in conjunctive normal form. We will use conjunctions
and sets of formulas interchangeably.

We assume that terms are suitably normalised. A linear term is a term of the
form q1x1 + . . .+ qnxn + q0. A linear inequality is an atomic formula of the form
q1x1 + . . . + qnxn + q0 � 0. A linear clause is a disjunction of linear inequalities
and a formula is in linear CNF if it is a conjunction of linear clauses.

2.1 Separated linear form

In this paper we consider the satisfiability problem of quantifier-free formulas in
CNF over Rnl , where the linear part is separated from the non-linear part which
we call separated linear form.

Definition 1. A formula F is in separated linear form if it is of the form
F = L ∪ N where L is a set of clauses containing predicates only over linear
terms and N is a set of unit-clauses each containing only non-linear literals of
the form x � f(t), where f ∈ Fnl , t is a vector of terms and � ∈ P.
Lemma 1 (Monotonic flattening). Any quantifier-free formula F in CNF
over Rnl can be transformed into an equi-satisfiable separated linear form in
polynomial time.

Proof. Consider a clause C in F which contains a linear combination of non-
linear terms, i.e., is of the form C = qf(t) + p � 0∨D, where f ∈ Fnl and q 6= 0.
Then we introduce a fresh variable x, add x �′ f(t) into S and replace C with
qx + p � 0 ∨ D. Here, �′ is ≥, if either q > 0 and � ∈ {≤, <} or q < 0 and
� ∈ {≥, >}; and �′ is ≤ otherwise. The resulting formula is equi-satisfiable to F .
The claim follows by induction on the non-linear monomials.

Let us remark that monotonic flattening avoids introducing equality predicates,
which is based on the monotonicity of linear functions. In some cases we need
to flatten non-linear terms further (in particular to be able to represent terms
as functions in the FDA class introduced in Section 5). In most cases this can
be done in the same way as in Lemma 1 based on monotonicity of functions
in corresponding arguments, but we may need to introduce linear conditions
expressing regions of monotonicity. For simplicity of the exposition we will not
consider such cases here.

2.2 Trails and Assignments

Any sequence of single variable assignments α ⊂ (V ×Q)∗ such that a variable
is assigned at most once is called a trail. By ignoring the order of assignments in

α, we will regard α as a (partial) assignment of the real variables in V and use
V (α) ⊆ V to denote the set of variables assigned in α. We use the notation JtKα to
denote the (partial) application of α to a term t, that is, the term resulting from
replacing every free variable x in t such that x ∈ V (α) by α(x) and evaluating
term operations on constants in their domains. We extend J·Kα to predicates over
terms and to CNF in the usual way. An evaluation of a formula results in true or
false, if all variables in the formula are assigned, or else in a partially evaluated
formula. A solution to a CNF C is a total assignment α such that each term in C
is defined under α and for each clause C ∈ C there is (at least) one literal l ∈ C
with JlKα = true.

Any triple (α,L,N) when α is a trail, L is a set of clauses over linear predi-
cates and N is a set of unit clauses over non-linear predicates is called state. A
state is called linearly conflict-free if JLKα 6= false. It is called conflict-free if it
is linearly conflict-free and JN Kα 6= false.

The main problem we consider in this paper is finding a solution to L ∧ N
or showing that no solution exists.

3 The ksmt algorithm

Our ksmt algorithm will be based on a CDCL-type calculus [22,25] and is in
the spirit of Conflict Resolution [17,16], Bound Propagation [18,8], GDPLL [23],
MCSAT [6] and related algorithms.

The ksmt calculus will be presented as a set of transition rules that operate on
the states introduced previously. The initial state is a state of the form (nil,L,N).
A final state will be reached when no further ksmt transition rules (defined below)
are applicable.

Informally, the ksmt algorithm starts with a formula in separated linear form
and the empty trail, and extends the trail until the solution is found or a triv-
ial inconsistency is derived by applying the ksmt transition rules. During the
extension process the algorithm may encounter conflicts which are resolved by
deriving lemmas which will be linear clauses. These lemmas are either derived by
resolution between two linear clauses or by linearisation of non-linear conflicts,
which is described in detail in Section 3.4. One of the important properties of our
calculus is that we only generate linear lemmas during the run of the algorithm
and the non-linear part N remains fixed.

3.1 General procedure

Let (α,L,N) be a conflict-free state and z ∈ V \ V (α) be a variable unassigned
in α. Assume there is no q ∈ Q such that (α :: z 7→ q,L,N) is linearly conflict-
free. That means that for any potential assignment q there is a clause D ∈ L
not satisfied under α :: z 7→ q. Another way of viewing this situation, called a
conflict, is that there are clauses consisting under α only of predicates linear in
and only depending on z that contradict each other. Analogously to resolution

in propositional logic,
A ∨ ` B ∨ ¬`

A ∨B
the following inference rule we call arithmetical resolution on x is sound [17,23]
on clauses over linear predicates:

A ∨ (cx+ d ≤ 0) B ∨ (−c′x+ d′ ≤ 0)
A ∨B ∨ (c′d+ cd′ ≤ 0)

where c, c′ are positive rational constants and d, d′ are linear terms. Similar rules
exist for strict comparisons. We denote by Rα,L,z a set of resolvents of clauses
in L upon variable z such that JRα,L,zKα = false. In Section 3.3 we discuss how
to obtain such a set.

We consider the following rules for transforming states into states under some
preconditions, i.e., the binary relation ⇒ on states.

Assignment refinement: In order to refine an existing partial assignment α
by assigning z ∈ V to q ∈ Q in a state (α,L,N), the state needs to be
linearly conflict-free, that is, no clause over linear predicates in L must be
false under α. Additionally, under this assignment the clauses over linear
predicates in L must be valid under the new assignment, formally: For any
state (α,L,N), z ∈ V and q ∈ Q

(α,L,N)⇒ (α :: z 7→ q,L,N) (A)

whenever JLKα 6= false, z /∈ V (α), and JLKα::z 7→q 6= false. In the linear setting
of [17], this rule exactly corresponds to “assignment refinement”.

Conflict resolution: Assume despite state (α,L,N) being linearly conflict-
free and z ∈ V unassigned in α there is no rational value to assign to z
that makes the resulting state linearly conflict-free. This means, that for any
q ∈ Q there is a conflict, i.e., a clause in L that is false under α :: z 7→ q.
In order to progress in determining sat or unsat, the partial assignment α
needs to be excluded from the search space. Arithmetical resolution Rα,L,z
provides exactly that: a set of clauses preventing any β ⊇ α from being
linearly conflict-free. For any state (α,L,N) and z ∈ V

(α,L,N)⇒ (α,L ∪Rα,L,z,N) (R)

whenever JLKα 6= false, z /∈ V (α) and ∀q ∈ Q : JLKα::z 7→q = false. In the
linear setting of [17], this rule corresponds to “conflict resolution”.

Backjumping: In case the state (α,L,N) contains one or more top-level assign-
ments that make it not linearly conflict-free, these assignments are removed.
This is commonly known as backjumping. Indeed, when transitioning to ap-
plying this rule, the information on the size of the suffix of assignments to
remove is already available, as is detailed in Section 3.2. Formally, for a state
(α,L,N) such that JLKα = false, let γ be the maximal prefix of α such that
JLKγ 6= false. Then, Backjumping is defined as follows:

(α,L,N)⇒ (γ,L,N) (B)

Linearisation: The above rules are only concerned with keeping the (partial)
assignment linearly conflict-free. This rule extends the calculus to ensure
that the non-linear clauses in N are conflict-free as well. In essence, the
variables involved in a non-linear conflict are “lifted” into the linear domain
by a linearisation of the conflict local to α. The resulting state will not be
linearly conflict-free as is shown in Lemma 4. Formally, if (α,L,N) is a state
and Lα,N a non-empty set of linearisation clauses as detailed in Section 3.4,
then the rule reads as

(α,L,N)⇒ (α,L ∪ Lα,N ,N) (L)

whenever JLKα 6= false and JN Kα = false.

Let us note that the set N remains unchanged over any sequence of states
obtained by successive application of the above rules.

Lemma 2 (Soundness). Let I be an input instance in separated linear form.
Let (S0, S1, . . . , Sn) be a sequence of states Si = (αi,Li,N) where S0 is the
initial state and each Si+1 is derived from Si by application of one of the rules
(A), (R), (B), (L).

1. For all i < n and total assignments α : V → Q: JLi ∧N Kα = JLi+1 ∧N Kα.
2. If no rule is applicable to Sn then the following are equivalent:

– I is satisfiable,
– αn is a solution to I,
– Sn is linearly conflict-free,
– the trivial conflict clause (1 ≤ 0) is not in Ln.

Lemma 3 (Progress). Let (Si)i be a sequence of states Si = (αi,Li,N) pro-
duced from initial state S0 by the ksmt rules, n be the number of variables and

Λi := {α : (A) cannot be applied to (α,Li,N) linearly conflict-free}.
Then Λi ⊇ Λi+1 and Λi 6= Λi+n+2 hold for all i.

The proofs follow from the following:

1. (A) does not change Λ and can be applied consecutively at most n times,
2. after application of (R) or (L) the set Λ is reduced which follows from the

properties of the resolvent, and Corollary 2 respectively, and
3. (B) does not change Λ and can be applied only after (R) or (L).

Corollary 1. After at most n+ 2 steps the search space is reduced.

3.2 Concrete algorithm

The algorithm transforms the initial state by applying ksmt transition rules
exhaustively. The rule applicability graph is shown in Figure 1. The rule (B)
is applicable whenever the linear part is false in the current assignment. This
is always the case after applications of either (R) or (L). In order to check
applicability of remaining rules (A), (R) and (L) the following conditions need
to be checked.

1. Is the state conflict-free? In particular, we need to check whether the non-
linear part evaluates to false under the current assignment. Decidability of
this problem for the broad class of functions FDA is shown in Section 5.1,
along with concrete algorithms for common classes of non-linear functions.

2. If the state is linearly conflict-free and a variable is chosen, can it be assigned
in a way that the linear part remains conflict-free? A polynomial-time pro-
cedure is described in Section 3.3.

A

R

B

L

Fig. 1. Transitions between
applicability of rules.

These computations determine whether (A), (R)
or (L) is applicable next. Item 2 has to be checked
after each application of (A) and (B). Note that in
case of transitioning to an application of rule (B)
the size of the suffix of assignments to revoke is syn-
tactically available in form of the highest position in
α of a variable in Rα,L,z or the linearisation Lα,N ,
respectively.

Let us note that the calculus allows for flexibility
in the choices of:

1. The variable z and value q to assign to z when applying rule (A).
2. Which arithmetical resolutions to perform when applying rule (R).
3. Which linearisations to perform when applying rule (L). We describe the

general conditions in Section 3.4 and our approach in Section 5.2.

Many of the heuristics presented in [16,8] are applicable to items 1 and 2 as well.

3.3 Determining bounds and resolvents

In this section we consider the problem of checking whether we can extend the
trail of a linearly conflict-free state in such a way that the linear part remains
conflict-free after the extension and in this case we apply rule (A), or otherwise
there is a conflict which should be resolved by applying rule (R).

Given a linearly conflict-free state (α,L,N) and a variable z unassigned in
α, the problem

∃q ∈ Q : JLKα::z 7→q 6= false

can be solved efficiently by the following algorithm. Let Lz,α be those partially
applied (by α) clauses from L that only depend on z. The other clauses are
either already satisfied or depend on a further unassigned variable. So each
D ∈ Lz,α is ‘univariate’, i.e. just a set of z � ci. The disjunction of these simple
predicates in D is equivalent to a clause of the form (i) z < a ∨ z > b, perhaps
with non-strict inequalities, giving an alternative between a lower and an upper
bound or (ii) a unit clause for a lower bound, or (iii) a unit clause for an upper
bound, or (iv) an arithmetic tautology. So each clause is equivalent to the union
of at most two half-bounded rational intervals. The conjunction of two such
clauses corresponds to the intersection of sets of intervals, which is again a set
of intervals. This intersection can be computed easily and can also be checked
for emptiness. In case the intersection is not empty, it even gives us intervals to
choose an assignment q for z with JLKα::z 7→q 6= false. If the intersection is empty,

we know there is no such q and we can use arithmetical resolution to resolve this
conflict to obtain Rα,L,z.

3.4 Non-linear predicates

While resolution is a well-established and efficient symbolic technique for dealing
with the linear part of the CNF under consideration, there seem to be no similarly
easy techniques for non-linear predicates. The approach presented here is based
on numerical approximations instead.

Given a linearly conflict-free state (α,L,N), in order to decide on the appli-
cability of (L), the non-linear unit clauses in N have to be checked for validity
under α. If all are valid, then, by definition, (α,L,N) is conflict-free. Lemma 5
gives sufficient conditions on the non-linear functions in Fnl in order to make
this problem decidable. In this section, we will describe how we deal with the
case that some unit clause {P} ∈ N is false under α, where according to (L) we
construct a linearisation of P with respect to α. We will not need the order of
variables given in the trail α, so we will only use α as a partial assignment.

Definition 2. Let P be a non-linear predicate and let α be a partial assignment
with JP Kα = false. An (α, P)-linearisation is a clause Lα,P = {Li : i ∈ I}
consisting of finitely many rational linear predicates (Li)i∈I with the properties

1. {β : JP Kβ = true} ⊆ {β : JLα,P Kβ = true}, and
2. JLα,P Kα = false.

If we let cα denote the values assigned in α and x the vector of assigned variables,
we can reformulate the properties of Lα,P as a formula:(

P =⇒
∨
i∈I

Li

)
∧
(
x = cα =⇒ ¬

∨
i∈I

Li

)
This formula will not be added to the system but is just used as a basis for
discussions. Later we will use a similar formalism to define linearisation clauses.

A central idea of our approach is to add Lα,P as a new clause to the CNF, as
well as the predicates Li. Adding Lα,P is sound, as the following lemma shows:

Lemma 4. Suppose a partial assignment α violates a predicate P with {P} ∈ N ,
so JP Kα = false. Further suppose Lα,P is an (α, P)-linearisation.

1. Any β, which is a solution for L∪N , is also a solution for L∪{Lα,P }∪N .
2. (α,L ∪ {Lα,P },N) is not linearly conflict-free.

Corollary 2. Whenever (L) is applied, the search space is reduced.

Hence at least the partial assignment α (and all extensions thereof) are re-
moved from the search space for the linear part of our CNF, at the cost of adding
the clause Lα,P usually containing several new linear predicates Li. In general,
our linearisations will not just remove single points but rather polytopes from
the search space.

 0

 1

 2

 3

 0 1 2 3 4

(1)

(2)

x

y

 0

 1

 2

 3

 0 1 2 3 4

(1)

(2)
(3a)(3b)

(4a) (4b)

x

y

Fig. 2. Initial system and linearisations constructed.

We should emphasise several remarks on the linearisations: There is a high
degree of freedom when choosing a linearisation for a given pair (α, P). Tech-
niques for constructing these will be discussed in Section 5.2. They will all be
based on numerical approximations.

Furthermore we are allowed to add more than one clause in one step, so we
can construct several linearisations for different (α, P ′) as long as JP ′Kα = false,
and then add all of them. This has already been formulated in (L) as a set of
linearisation clauses Lα,N instead of a single clause Lα,P .

4 Example

As a basic example describing our method we consider the conjunction of the
non-linear predicate P : (x ≤ 1

y), and linear constraints L1 : (x ≥ y/4 + 1)

and L2 : (x ≤ 4 · (y − 1)), shown on Figure 2. We will first detail on how
linearisations can be constructed numerically for P . In Section 5.2 we will detail
on how linearisations can be constructed in general.

Linearisation of P . Assume JP Kα = false under assignment α. By definition, α
assigns (x, y) to some values (cx, cy) such that cx > 1/cy, (point (3a), at (8/3, 2)).
Here we will only discuss the case cy > 0 needed below. The other cases can
be dealt with in a similar way. To construct an (α, P)-linearization, first we
compute the rational number d such that 1/cy < d < cx. In this example, we
take d := (cx+1/cy)/2, that is, for this linearisation 19/12 ≈ 1.58. In general, such
values are computed by numerical approximations to the function value. Then
the clause Lα,P = {x ≤ d, y ≤ 1/d} is the required linearisation (which excludes
region (3b) containing the conflicting assignment). Indeed, Lα,P is implied by P
and JLα,P Kα = false.

After adding Lα,P to the linear constraints, region (3b) is excluded from the
search space and backjumping to the empty assignment is performed (since 8/3
is not a linearly conflict-free assignment to x anymore). The system again is
linearly conflict-free. In the next iteration we obtain a solution (4a) roughly at
(1.47, 1.63) to the new linear system, linearisation at (4a) results in linear lemma
excluding region (4b) where d ≈ 1.04. Finally, the resulting linear constraints are
unsatisfiable and therefore the original system is proven to be also unsatisfiable.
This example is based on an actual run of our system.

5 Schemes for local linearisations

A successful linearisation scheme has to fulfil two tasks: (a) deciding whether a
trail α is in conflict with a non-linear predicate P and then, if there is a conflict,
(b) finding reasonable linearisations Lα,P . We first address task (a).

5.1 Deciding non-linear conflicts

By Definition 1, P is of the form x � f(t), where f is a function symbol, t is a
vector of terms, and � ∈ {<,≤, >,≥}. In the following assume that the terms
in t use the variables (y1, . . . , yk) = y ∈ V k. So the semantical interpretation
Jf(t)K of the syntactical term f(t) is a function g : Rk → R.

In order to introduce the class FDA we use the following notion of approx-
imable function.

Definition 3. We call a partial function g : R→ R approximable if the set

�g := {(p, q, s, t) : g([p, q]) ⊂ (s, t), p, q, s, t ∈ Q}

is computably enumerable. Here, g(I) denotes the set-evaluation of g on I, that
is, {g(x) : x ∈ I ∩ dom g}.
This definition can easily be generalized to the multi-variate case by taking
boxes [p1, q1] × · · · × [pk, qk] with p, q ∈ Qk. For total continuous real func-
tions, approximability coincides with the notion of computability known from
Computable Analysis (TTE) [32,2].

Given a number d ∈ Q and a vector c ∈ Qk with d 6= g(c) we can always
decide whether d � g(c) holds if g : Rk → R is a total approximable function.
However, in general we cannot decide the premise d 6= g(c). Therefore we restrict
our considerations to a general class of functions where this problem is decidable.

Definition 4. A partial function g : Rk → R is called a function with decidable
rational approximations, denoted g ∈ FDA, if the following holds.

– dom(g) is decidable on Qk,
– graph(g) is decidable on Qk ×Q, and
– g is approximable.

The following important classes of functions belong to FDA.

Multivariate polynomials. For multivariate polynomials g with rational coeffi-
cients, rational arguments are mapped to rational results using rational arith-
metic and the relations � under consideration are decidable on Q2.

Selected elementary transcendental functions. Let g ∈ {exp, ln, logb, sin, cos, tan,
arctan}, where in the case of logb, b ∈ Q. Let us show that g ∈ FDA. Indeed, it is
well known that g : R→ R is computable [32]. Since emptiness of [p, q]\dom g is
decidable, g is also approximable. In addition,Xg := graph(g)∩Q2 either consists
of a single point, or in the case of logb, is of the form Xg = {(bn, n) : n ∈ Z} [26]
and therefore is decidable, as is the respective domain.

Selected discontinuous functions. Additionally, FDA includes some discontinuous
functions like e.g. the step-functions taking rational values with discontinuities at
finitely many rational points and more generally piecewise polynomials defined
over intervals with a decidable set of rational endpoints. Multi-variate piecewise
defined functions with non-axis-aligned discontinuities are included as well.

Lemma 5. Let P be a predicate over reals and let α be a trail assigning all
variables used in P . If P is linear or P : (x � f(t)) with Jf(t)K ∈ FDA then JP Kα
is computable.

Proof. By definition, trails α contain rational assignments. If P is linear, there is
nothing to show. Let P : (x�f(t)) with g(y) = Jf(t)K ∈ FDA where y is the vector
of free variables in terms t. The cases JyKα /∈ dom g and J(y, x)Kα ∈ graph(g)
are decidable by the definition of FDA. The remaining case is z := JyKα ∈ dom g
and J(y, x)Kα /∈ graph(g). Perform a parallel search for 1) q ∈ Q with (z, q) ∈
graph(g) and for 2) a rational interval box I×J in �g̃ with z ∈ I and JxKα /∈ J .
We now show that this search terminates. Either g(z) ∈ Q, then q = g(z) can
be found in the graph of g, or g(z) /∈ Q, then |JxKα − g(z)| > 0, thus there
is a rational interval box I × (s, t) ∈ �g with z ∈ I and s, t ∈ Q such that
JxKα /∈ (s, t). Note that I can be the point-interval [z] since z ∈ dom g.

In particular, if all predicates P : (x � f(t)) appearing in a given problem
instance are such that the function Jf(t)K used in this instance are from FDA,
we can decide if a ksmt state is conflict-free as required in Section 3.2.

5.2 Linearisations for functions in FDA

This section addresses task (b), namely finding reasonable linearisations Lα,P in
case a trail α is in conflict with a non-linear predicate P , that is, JP Kα = false.
In order to reduce the number of cases, we assume that the comparison operator
� in P : x � f(t) is from {<,≤}. The other two cases {>,≥} are symmetric.

Again let g = Jf(t)K : Rk → R be the function represented by the term f(t).
We assume that g ∈ FDA. Let cx = JxKα ∈ Q and cy = JyKα ∈ Qk be the
values assigned by α to the free variables y in t, additionally, let cy ∈ dom g.
Furthermore let cg = g(cy) = Jf(t)Kα ∈ R be the value resulting from an exact
evaluation of g. Note that cg will only be used in the discussion and will not be
added to the constraints, since in general cg /∈ Q. Then our assumption of an
existing conflict JP Kα = false can be read as cx > cg for � ∈ {≤}, and as cx ≥ cg
for � ∈ {<}. Let us note that cx and cy are rational, but cg is a real number
and usually irrational. Since g ∈ FDA we can compute approximations c̄g ∈ Q
to cg with |c̄g − cg| ≤ ε for any rational ε > 0 using Lemma 5.

We now give a list of possible linearisations of g, starting from trivial versions
where we exclude just the conflicting point (cx, cy) to more general linearisations
excluding larger regions containing this point.

Point Linearisation: A trivial (α, P)-linearisation excluding the point (cx, cy)
is

(y = cy =⇒ x 6= cx)

Half-Line Linearisation: An (α, P)-linearisation excluding a closed half-line
starting in cx is

(y = cy =⇒ x < cx)

In the following we will develop more powerful linearisations with the aim to
exclude larger regions of the search space.

For better linearisations, we can exploit additional information about the
predicate P and the trail α, especially about the behaviour of g in a region
around cy. This information could be obtained by a per-case analysis on Fnl ,
or during run time using external algebra systems or libraries for exact real
arithmetic or interval arithmetic on the extended real numbers R∪ {−∞,+∞}.
Our focus, however, is on the numerical and not the symbolical approach.

As we aim at linearisations, the regions should have linear rational bound-
aries, so we concentrate on finite intersections of half-spaces:

Definition 5. An (open or closed) rational half-space H ⊆ Rk is the solution
set of a linear predicate a ·y ≤ b or a ·y < b for some a ∈ Qk, b ∈ Q. A rational
polytope R ⊆ Rk is a finite intersection of rational half-spaces.

Any such polytope R is a convex and possibly unbounded set and can be rep-
resented as the conjunction of linear predicates over the variables y. Therefore
the complement Rk \R can be represented as a linear clause {Li : i ∈ I} denot-
ing the predicate y /∈ R. For the ease of reading, instead of writing clauses like∨
i∈I Li ∨D we will use y ∈ R =⇒ D in the following.
Since g ∈ FDA and approximable it follows that for any bounded rational

polytope R ⊆ Rk in the domain of g we can find arbitrarily precise rational
over-approximations (a, b) such that g(R) ⊂ (a, b).

Interval Linearisation: Suppose we have cx 6= cg. By approximating cg we
compute d ∈ Q with cg < d < cx. The proof of Lemma 5 provides an initial
rational polytope R ∈ Rk with cy ∈ R such that d 6∈ g(R). Then

y ∈ R =⇒ x ≤ d (5.1)

is an (α, P)-linearisation. Using specific properties of g, e.g., monotonicity,
we can extend the polytope R to an unbounded one.

This linearisation excludes the set {x : x > d} ×R from the search space which
is a polytope, now in R× Rk, containing the point (cx, cy).

Linearisations in Example 4 are of this type, there cg = 1/cy and R =
(1/d,∞) defined by y > 1/d which is the negation of y ≤ 1/d, the second literal
in the linear lemma Lα,P is the right hand side of the implication (5.1).

The univariate predicate x ≤ d corresponds to a very special half-space in
R × Rk, as it is independent from the variables in y. Usually, using partial
derivatives gives better linearisations:

Tangent Space Linearisation: Suppose we again have cx 6= cg. Assume the
partial derivatives of g at cy exist and we are able to compute a vector

g(y)

R

(cy, cg)

(cy, cx)

dd+ c∂ · (y − cy)

Fig. 3. Tangent Space Linearisation shown for univariate g. The shaded area will be
excluded from the search space.

c∂ = (c1, . . . , ck) of rational approximations, that is, ci ≈ ∂g
∂yi

(cy). As before
we construct d ∈ Q with cg < d < cx and search for a rational polytope
R ∈ Rk with cy ∈ R. But instead of just d 6∈ g(R) now R has to fulfil the
constraint

∀r ∈ R : g(r) ≤ d+ c∂ · (r − cy)

using the dot product of c∂ and (r − cy). Again, R can be found using
interval computation. Then

y ∈ R =⇒ x ≤ d+ c∂ · (y − cy)

is an (α, P)-linearisation, since the dot-product is a linear and rational op-
eration. This situation is schematically depicted in Figure 3.

Using the tangent space, we are able to get a much better ‘fit’ of d+
∑
ciyi to g

than just using the naive interval evaluations. This allows to choose d closer to
cg for given R, or to choose a bigger polytope R for a given d. Some examples
of Tangent Space Linearisations are available.4

Lemma 6. By construction, the above procedures indeed provide linearisations
as stated in Definition 2.

For the rest of this section, we briefly discuss more specific linearisations
for some important cases when we can perform a by-case analysis on g and ex-
ploit further properties like (piecewise) monotonicity, convexity or boundedness,
which cannot be deduced by naive interval arithmetic, see Section 6 for details.
– g(y) = y2n is convex, with polytope R = (−∞,+∞) for � ∈ {>,≥}.
– g(y) = y2n+1 is monotonically increasing, with polytopes R of the form

(−∞, c], similar to the linearisation in Section 4.
– Polynomials can be decomposed into monomials.
– Piecewise convex/concave functions g like sin, cos, tan allow polytopes cov-

ering a convex area in their domain.
– More direct ways of computing linearisations of the elementary transcenden-

tal functions can be obtained e.g. by bounding the distance of the image of
specific g to algebraic numbers, such bounds are given in [19, section 4.3].

6 Evaluation

We implemented our approach in the ksmt system, which is open source and
publicly available 4. The ksmt system supports a subset of QF_LRA and QF_NRA
logics as defined in the SMT-LIB standard. As with Z3, when no logic is specified
in the input script, our extended signature Rnl is the default.

Choices made in the implementation include:

– Selecting a rational value in a non-empty interval as smallest dyadic or by
continued fractions.

– The decision which clauses to resolve on conflict is guided by an internal
SAT-solver.

– Heuristic about reusing existing constraints when computing polytope R,
leading to piecewise linear approximations of g.

– Specialised linearisation algorithms for specific combinations of subclasses of
functions g ∈ FDA and cy:
differentiable: Use Tangent Space Linearisation.
convex/concave: Derive the polytope R from computability of unique in-

tersections between g and the linear bound on y.
piecewise: This is a meta-class in the sense that dom g is partitioned into

(Pi)i∈I where the Pi are linear or non-linear predicates in y, and for
each i ∈ I there is a linearisation algorithm, then the decision which
linearisation to use is based on membership of the exact rational value
cy in one of the Pi.

rational: Evaluate cg exactly in order to decide on linearisation to use.
transcendental: Bound |cx−cg| by a rational from below by approximating

cg by the TTE implementation iRRAM5 [24] in order to compute d.

We evaluated our approach over higher dimensional sphere packing bench-
marks which are available at 4. Sphere packing is a well known problem which
goes back to Kepler’s conjecture, and in higher dimensions is also of practical
importance e.g., in error correcting codes. The purpose of this evaluation is to
exemplify that our approach is viable and can contribute to the current state-
of-the-art, extensive evaluation is left for future work.

The solvers6 were compiled with GCC-8.2 according to their respective doc-
umentation (except for mathsat, which is not open-source). Experiments were
run on a machine with 32 GiB RAM, 3.6 GHz Core i7 processor and Linux 3.18.

Example 1 (Sphere packing). Let n, d ∈ N and let

Kn,d := ∃x1, . . . ,xn ∈ Rd :
∧

1≤i≤n

‖xi‖∞ ≤ 1 ∧
∧

1≤i<j≤n

‖xi − xj‖2 > 2

4 http://informatik.uni-trier.de/~brausse/ksmt
5 http://irram.uni-trier.de
6 ksmt-0.1.3, cvc4-1.6+gmp, z3-4.7.1+gmp, mathsat-5.5.2, yices-2.6+lpoly-1.7,
dreal-v3.16.08.01, rasat-0.3

http://informatik.uni-trier.de/~brausse/ksmt
http://irram.uni-trier.de

s : ‘sat’
δ : ’δ-sat’,
δ = 10−3

u: ‘unsat’
? : ‘unknown’
>: timeout

d n ksmt cvc4 z3 mathsat yices dreal rasat

2

2 s 0.01s ? 0.03s s 0.01s s 0.02s s 0.01s δ 0.01 s 0.02
3 s 0.03s ? 0.08s > 60m s 0.24s s 0.03s δ 0.02 > 8h
4 > 8h u 1474.16s > 60m u 8.11s > 17h δ 0.05 > 8h
5 u 1.43s u 0.45s > 8h u 0.28s > 8h u 3581.96 > 8h
6 u 5.00s u 0.75s > 8h u 0.40s > 166m > 8h > 8h

3
5 s 0.93s ? 465.45s > 8h s 0.12s s 0.06s > 8h > 8h
6 s 6.02s > 143m > 7h > 8h > 6h > 8h > 8h

4
5 s 0.38s ? 1544.87s s 2165.78s s 0.10s s 7.34s > 8h > 8h
6 s 0.57s > 91m > 8h s 0.23s s 0.38s > 8h > 8h
7 s 14.27s > 160m > 8h s 0.18s > 8h > 8h > 8h

Table 1. Benchmarks of Kn,d for different n, d.

r ksmt cvc4 z3 mathsat yices dReal raSAT√
37 u 0.07s u 0.76s u 510.67s u 40.55s u 0.07s u 0.01 > 8h√
49 u 0.40s u 2.46s u 23211.20s u 6307.18s u 0.11s u 0.03 > 8h√
62 u 11.61s u 5.07s u 210.16s > 14.5h u 76.82s u 2.00 > 8h√
63 u 55.84s ? 0.48s u 3925.65s > 14.5h u 0.10s u 12.38 > 8h√
64 s 0.01s ? 0.01s s 0.00s > 21.6h s 0.00s δ 0.01 > 8h

Table 2. Benchmarks of Cr for different r.

An instance Kn,d is sat iff n balls fit into a d-dimensional box of radius 2
without touching each other. In the SMT-Lib language the ‖ ·‖∞ norms in these
instances are formulated using per-component comparisons to the lower and
upper endpoints of the range, while the euclidean norms ‖s‖2 > t are expressed
by the equivalent squared variant

∑
i s

2
i > t2. Table 1 provides a comparison of

different solvers on instances of this kind.

Example 2. Let r ∈ Q, then

Cr := ∃x,y ∈ R3 : ‖x‖22 ≤ r2 ∧ ‖y‖22 ≥ 82 ∧ ‖x− y‖∞ ≤ 1
100 .

Cr is sat for some r ∈ [0, 8] iff there is a translation of the center x of the
3-dimensional ball Br(x) in a box of radius 1

100 such that it intersects the com-
plement of B8(y). Since the constraints are expressed as square-root-free expres-
sions, obviously for r ≥ 8 − 1

100 , there is a solution. Table 2 list running times
for various r of our solver and other solvers of non-linear real arithmetic.

Noteworthy about these benchmarks is the monotonicity of the running times
of ksmt in contrast to e.g. yices in conjunction with unlimited precision, which
seems to be what prevents cvc4 from deciding the instance for r =

√
63 and

even r =
√

64.

These experiments show that already in the early stage of the implemen-
tation, our system can handle high dimensional non-linear problems which are
challenging for most SMT solvers.

7 Conclusions and future work

In this paper we presented a new approach for solving non-linear constraints
over the reals. Our ksmt calculus combines model-guided solution search with
targeted linearisations for resolving non-linear conflicts. We implemented our
approach in the ksmt system, our preliminary evaluation shows promising results
demonstrating viability of the proposed approach.

For future work we are developing more precise linearisations for specific
trigonometric functions and are analyzing the complexity of deciding conflicts
in general. We are working on extending the applicability of our implementation
and a more extensive evaluation. We are also investigating theoretical properties
of our calculus, such completeness in restricted settings and δ-completeness.

Acknowledgements. We thank the anonymous reviewers and Stefan Ratschan
for their helpful comments.

References

1. F. Benhamou and L. Granvilliers. Continuous and interval constraints. In Handbook
of Constraint Programming, pages 571–603. Elsevier, 2006.

2. V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis. In
New Computational Paradigms, pages 425–491. Springer, 2008.

3. B. Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. ACM SIGSAM Bulletin, 10(3):19–29, 1976.

4. A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani. Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log., 19(3):19:1–19:52, 2018.

5. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Automata Theory and Formal Languages, pages 134–183, 1975.

6. L. M. de Moura and D. Jovanovic. A model-constructing satisfiability calculus. In
Proc. VMCAI’2013, LNCS v. 7737, pages 1–12, 2013.

7. A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic.
ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

8. I. Dragan, K. Korovin, L. Kovács, and A. Voronkov. Bound propagation for arith-
metic reasoning in Vampire. In Proc. SYNASC’ 2013, pages 169–176. IEEE, 2013.

9. P. Fontaine, M. Ogawa, T. Sturm, V. Khanh To, and X. Tung Vu. Wrapping
Computer Algebra is Surprisingly Successful for Non-Linear SMT. In SC-square
2018, Oxford, United Kingdom, July 2018.

10. M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving
of large non-linear arithmetic constraint systems with complex boolean structure.
JSAT, 1(3-4):209–236, 2007.

11. S. Gao, J. Avigad, and E. M. Clarke. δ-complete decision procedures for satisfia-
bility over the reals. In IJCAR’ 2012, LNCS v. 7364, pages 286–300, 2012.

12. M. Hladík and S. Ratschan. Efficient solution of a class of quantified constraints
with quantifier prefix exists-forall. Math. in Comp. Sc., 8(3-4):329–340, 2014.

13. D. Jovanovic and L. de Moura. Solving non-linear arithmetic. In IJCAR’2012,
LNCS v. 7364, pages 339–354, 2012.

14. D. Kapur, Y. Sun, and D. Wang. A new algorithm for computing comprehensive
gröbner systems. In Proc. ISSAC ’10, pages 29–36, New York, USA, 2010. ACM.

15. K. Korovin, M. Kosta, and T. Sturm. Towards conflict-driven learning for virtual
substitution. In Proc. CASC 2014, volume 8660 of LNCS, pages 256–270, 2014.

16. K. Korovin, N.Tsiskaridze, and A. Voronkov. Implementing conflict resolution. In
Proc. PSI’2011, volume 7162 of LNCS, pages 362–376, 2012.

17. K. Korovin, N. Tsiskaridze, and A. Voronkov. Conflict resolution. In CP’09, LNCS
v.5732, pages 509–523, 2009.

18. K. Korovin and A. Voronkov. Solving systems of linear inequalities by bound
propagation. In CADE-23, volume 6803 of LNCS, pages 369–383, 2011.

19. V. Lefévre. Moyens arithmetiques pour un calcul fiable. PhD thesis, École normale
supérieure de Lyon, 2000.

20. R. Loos and V. Weispfenning. Applying linear quantifier elimination. THE Com-
puter Journal, 36(5):450–462, 1993.

21. A. Maréchal, A. Fouilhé, T. King, D. Monniaux, and M. Périn. Polyhedral ap-
proximation of multivariate polynomials using Handelman’s theorem. In Proc.
VMCAI’2016, LNCS v. 9583, pages 166–184, 2016.

22. J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

23. K. L. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing DPLL to richer logics.
In Proc. CAV’09 LNCS v. 5643, pages 462–476. Springer-Verlag, 2009.

24. N. T. Müller. The iRRAM: Exact arithmetic in C++. In Proc. CCA’2000, LNCS
v. 2064, pages 222–252, 2001.

25. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SATmodulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM, 53(6):937–977, 2006.

26. I. Niven. Irrational Numbers. Mathematical Association of America, 1956.
27. G. O. Passmore, L. C. Paulson, and L. M. de Moura. Real algebraic strategies

for MetiTarski proofs. In AISC/MKM/Calculemus, LNCS v. 7362, pages 358–370,
2012.

28. G. Reger, N. Bjorner, M. Suda, and A. Voronkov. AVATAR modulo theories.
In C. Benzmüller, G. Sutcliffe, and R. Rojas, editors, 2nd Global Conference on
Artificial Intelligence, EPiC Series in Computing vol. 41, pages 39–52. EasyChair,
2016.

29. A. Reynolds, C. Tinelli, D. Jovanović, and C. Barrett. Designing theory solvers
with extensions. In Proc. FroCoS ’17, LNAI v. 10483, pages 22–40, 2017.

30. D. Richardson. Some undecidable problems involving elementary functions of a
real variable. J. Symb. Log., 33(4):514–520, 1968.

31. A. Tarski. A decision method for elementary algebra and geometry. In 2nd ed.
Univ. Cal., 1951.

32. K. Weihrauch. Computable analysis: an introduction. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2000.

	A CDCL-style calculus for solving non-linear constraints

