Skip to main content

Herbrand Constructivization for Automated Intuitionistic Theorem Proving

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11714))

Abstract

We describe a new method to constructivize proofs based on Herbrand disjunctions by giving a practically effective algorithm that converts (some) classical first-order proofs into intuitionistic proofs. Together with an automated classical first-order theorem prover such a method yields an (incomplete) automated theorem prover for intuitionistic logic. Our implementation of this prover approach, Slakje, performs competitively on the ILTP benchmark suite for intuitionistic provers: it solves 1674 out of 2670 problems (1290 proofs and 384 claims of non-provability) with Vampire as a backend, including 800 previously unsolved problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Considering of course the law of excluded middle for arbitrary types, not just mere propositions.

  2. 2.

    Internally, Vampire, and in general most classical provers then refute \(\lnot \varphi \).

  3. 3.

    We use the convention that the quantifiers \(\forall , \exists \) bind stronger than \(\rightarrow , \wedge , \vee \). That is, \(\forall x\, P(x) \rightarrow Q\) is the same formula as \((\forall x\, P(x)) \rightarrow Q\). Furthermore, \(\rightarrow \) is right-associative, that is, \(P \rightarrow Q \rightarrow R\) is the same formula as \(P \rightarrow (Q \rightarrow R)\).

  4. 4.

    Proof systems (for propositional logic) are typically required to be polynomial-time checkable, as certificates to the coNP-complete validity problem. Expansion proofs are coNP-checkable certificates for the undecidable first-order validity problem.

  5. 5.

    Open source, and freely available at https://logic.at/gapt.

  6. 6.

    available at http://iltp.de/download/ILTP-v1.1.2-firstorder.tar.gz.

References

  1. Baaz, M., Hetzl, S., Weller, D.: On the complexity of proof deskolemization. J. Symb. Log. 77(2), 669–686 (2012)

    Article  MathSciNet  Google Scholar 

  2. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 59–64 (2010)

    Google Scholar 

  3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development – Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

    Book  MATH  Google Scholar 

  4. Bibel, W.: Matings in matrices. Commun. ACM 26(11), 844–852 (1983)

    Article  MathSciNet  Google Scholar 

  5. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24364-6_2

    Chapter  Google Scholar 

  6. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda – a functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_6

    Chapter  Google Scholar 

  7. Buss, S.R.: On Herbrand’s theorem. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 195–209. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60178-3_85

    Chapter  Google Scholar 

  8. Cauderlier, R.: A rewrite system for proof constructivization. In: Dowek, G., Licata, D.R., Alves, S. (eds.) 11th Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. LFMTP, pp. 2:1–2:7. ACM (2016)

    Google Scholar 

  9. Claessen, K., Rosén, D.: SAT modulo intuitionistic implications. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 622–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_43

    Chapter  Google Scholar 

  10. Czajka, L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory. J. Autom. Reason. 61(1–4), 423–453 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dunchev, C., et al.: PROOFTOOL: a GUI for the GAPT framework. In: Kaliszyk, C., Lüth, C. (eds.) Proceedings 10th International Workshop On User Interfaces for Theorem Provers (UITP) 2012. EPTCS, vol. 118, pp. 1–14 (2012)

    Google Scholar 

  12. Eberhard, S., Hetzl, S.: Inductive theorem proving based on tree grammars. Ann. Pure Appl. Log. 166(6), 665–700 (2015)

    Article  MathSciNet  Google Scholar 

  13. Ebner, G.: Extracting expansion trees from resolution proofs with splitting and definitions (2018). Preprint https://gebner.org/pdfs/2018-01-29_etimport.pdf

  14. Ebner, G., Hetzl, S., Leitsch, A., Reis, G., Weller, D.: On the generation of quantified lemmas. J. Autom. Reason. 63(1), 95–126 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System description: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 293–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_20

    Chapter  Google Scholar 

  16. Gilbert, F.: Automated constructivization of proofs. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 480–495. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_28

    Chapter  Google Scholar 

  17. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Université de Paris (1930)

    Google Scholar 

  18. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014)

    Article  MathSciNet  Google Scholar 

  19. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

    Chapter  Google Scholar 

  20. Maehara, S.: Eine Darstellung der intuitionistischen Logik in der Klassischen. Nagoya Math. J. 7, 45–64 (1954)

    Article  MathSciNet  Google Scholar 

  21. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/

  22. McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the polarized inverse method. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 230–244. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_19

    Chapter  Google Scholar 

  23. Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370 (1987)

    Article  MathSciNet  Google Scholar 

  24. Mints, G.: Gentzen-type systems and resolution rules part I propositional logic. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52335-9_55

    Chapter  Google Scholar 

  25. Mints, G.: Gentzen-type system and resolution rules. Part II: Propositional logic. In: Logic Colloquium 1990 (1993)

    Google Scholar 

  26. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_26

    Chapter  Google Scholar 

  27. Negri, S.: Glivenko sequent classes in the light of structural proof theory. Arch. Math. Log. 55(3–4), 461–473 (2016)

    Article  MathSciNet  Google Scholar 

  28. Orevkov, V.P.: On Glivenko sequent classes. Trudy Matematicheskogo Instituta imeni V. A. Steklova 98, 131–154 (1968)

    Google Scholar 

  29. Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–261. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554_19

    Chapter  Google Scholar 

  30. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving in classical and intuitionistic logic (system descriptions). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_23

    Chapter  Google Scholar 

  31. Pavlov, V., Pak, V.: WhaleProver: first-order intuitionistic theorem prover based on the inverse method. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 322–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4_23

    Chapter  Google Scholar 

  32. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom. Reason. 38(1–3), 261–271 (2007)

    Article  MathSciNet  Google Scholar 

  33. Reis, G.: Importing SMT and connection proofs as expansion trees. In: Fourth Workshop on Proof eXchange for Theorem Proving, PxTP, pp. 3–10 (2015)

    Article  MathSciNet  Google Scholar 

  34. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49

    Chapter  Google Scholar 

  35. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

    Article  MathSciNet  Google Scholar 

  36. The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study (2013). https://homotopytypetheory.org/book

  37. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  38. Voronkov, A.: Proof-search in intuitionistic logic with equality, or back to simultaneous rigid E-unification. J. Autom. Reason. 30(2), 121–151 (2003)

    Article  MathSciNet  Google Scholar 

  39. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_46

    Chapter  Google Scholar 

  40. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_10

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their suggestions which have led to a considerable improvement of this paper. This work has been supported by the Vienna Science and Technology Fund (WWTF) project VRG12-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Ebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ebner, G. (2019). Herbrand Constructivization for Automated Intuitionistic Theorem Proving. In: Cerrito, S., Popescu, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2019. Lecture Notes in Computer Science(), vol 11714. Springer, Cham. https://doi.org/10.1007/978-3-030-29026-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29026-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29025-2

  • Online ISBN: 978-3-030-29026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics