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Abstract. We define a non-clausal MaxSAT tableau calculus. Given
a multiset of propositional formulas ¢, we prove that the calculus is
sound in the sense that if the minimum number of contradictions derived
among the branches of a completed tableau for ¢ is m, then the minimum
number of unsatisfied formulas in ¢ is m. We also prove that it is complete
in the sense that if the minimum number of unsatisfied formulas in ¢ is
m, then the minimum number of contradictions among the branches of
any completed tableau for ¢ is m. Moreover, we describe how to extend
the proposed calculus to deal with hard and weighted soft formulas.

1 Introduction

We can distinguish between clausal MaxSAT and non-clausal MaxSAT. Clausal
MaxSAT, usually known simply as MaxSAT), is to find an assignment that min-
imizes the number of unsatisfied clauses in a given multiset of clauses, and
non-clausal MaxSAT is to find an assignment that minimizes the number of
unsatisfied formulas in a given multiset of propositional formulas that are not
necessarily in clausal form.

Inference systems for SAT are unsound for MaxSAT, because they preserve
satisfiability but not the minimum number of unsatisfied formulas. Thus, we need
to define logical calculi meeting that condition and show that they allow one to
derive as many contradictions as the minimum number of unsatisfied formulas
in the input multiset.

We count with complete resolution, natural deduction and tableau calculi for
clausal MaxSAT [4,7,8,18]. Restrictions of MaxSAT resolution are routinely used
to propagate information in branch-and-bound MaxSAT solvers [1,2,13,16,17];
and MaxSAT resolution was used to show that there exist polynomial-size
MaxSAT resolution proofs of the pigeon hole principle (PHP) if PHP is encoded
as a Partial MaxSAT instance using the dual rail encoding [14]. Indeed, the com-
bination of the dual rail encoding and MaxSAT resolution is a stronger proof
system than general resolution [6].
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In this paper we address the problem of defining a complete calculus for
non-clausal MaxSAT. As far as we know, non-clausal MaxSAT has not yet been
considered in the community. Thus, inspired by the work on clausal MaxSAT
tableaux [4,18], we define the first sound and complete non-clausal MaxSAT
tableau calculus, and describe how it can be extended to deal with hard and
weighted soft formulas.

The paper is mainly theoretical, but it is important to highlight that MaxSAT
solving has been applied to solve problems in a range of real-world domains as
diverse as bioinformatics [11,22], circuit design and debugging [23|, community
detection in complex networks [15], diagnosis [10], FPGA routing [25], plan-
ning [26], scheduling [5] and team formation [21], among many others.

The paper is structured as follows. Section?2 reviews how tableaux solve
non-clausal SAT and clausal MaxSAT. Section 3 defines a complete non-clausal
MaxSAT tableau calculus. Section 4 describes how to extend the proposed calcu-
lus to deal with hard and weighted soft formulas. Section 5 gives the conclusions.

2 Background

A propositional formula is an expression constructed from propositional variables
by means of the propositional connectives A, V, — and — in accordance with the
following rules: (i) each propositional variable is a propositional formula; and
(ii) if A and B are propositional formulas, then so are (AAB), (AVB), (A — B),
and (—A). A non-clausal MaxSAT instance is a multiset of propositional
formulas.! A truth assignment is a mapping that assigns 0 (false) or 1 (true) to
each propositional variable. A propositional formula is satisfied by an assignment
if it is true under the usual truth-functional interpretation of the connectives and
the truth values assigned to the variables.

Given a non-clausal MaxSAT instance ¢, non-clausal MaxSAT is the problem
of finding an assignment of ¢ that minimizes the number of unsatisfied formulas.

Clauses are a particular type of propositional formulas defined as follows. A
clause is a disjunction of literals, where a literal [; is a variable z; or its negation
—z;. A clausal MaxSAT instance is a multiset of clauses. Given a clausal MaxSAT
instance ¢, clausal MaxSAT is the problem of finding an assignment of ¢ that
minimizes the number of unsatisfied clauses.

A weighted formula is a pair (A, w), where A is a propositional formula and
w, its weight, is a positive number. A non-clausal weighted MaxSAT instance is
a multiset of weighted formulas. Given a non-clausal weighted MaxSAT instance
¢, non-clausal weighted MaxSAT is the problem of finding an assignment of ¢
that minimizes the sum of weights of unsatisfied formulas.

A weighted clause is a pair (C, w), where C is a clause and w, its weight, is a
positive number. A clausal weighted MaxSAT instance is a multiset of weighted
clauses. Given a clausal weighted MaxSAT instance ¢, clausal weighted MaxSAT

! We use multisets of formulas instead of sets of formulas because duplicated for-
mulas cannot be collapsed into one formula because then the minimum number of
unsatisfied formulas might not be preserved.
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is the problem of finding an assignment of ¢ that minimizes the sum of weights
of unsatisfied clauses.

A non-clausal partial MaxSAT instance is a multiset of formulas in which
some formulas are declared to be relaxable or soft and the rest are declared to
be non-relaxable or hard. Given a non-clausal partial MaxSAT instance ¢, non-
clausal partial MaxSAT is the problem of finding an assignment of ¢ that satisfies
all the hard formulas and minimizes the number of unsatisfied soft formulas.

A clausal partial MaxSAT instance is a multiset of clauses in which some
clauses are declared to be relaxable or soft and the rest are declared to be non-
relaxable or hard. Given a clausal partial MaxSAT instance ¢, clausal partial
MaxSAT is the problem of finding an assignment of ¢ that satisfies all the hard
clauses and minimizes the number of unsatisfied soft clauses.

The weighted partial MaxSAT problem is the combination of partial MaxSAT
and weighted MaxSAT. Given a multiset ¢ composed of hard formulas (clauses)
and soft weighted formulas (clauses), non-clausal (clausal) weighted partial
MaxSAT is the problem of finding an assignment of ¢ that satisfies all the hard
formulas (clauses) and minimizes the sum of weights of unsatisfied soft formulas
(clauses).

We can group all propositional formulas of the form (A o B) and —(A o B),
where A and B denote propositional formulas and o € {V, A, —}, into two cat-
egories so that the presentation and proofs are simplified. Those that act con-
junctively, which are called a-formulas, and those that act disjunctively, which
are called fg-formulas. The different formulas in each category are displayed in
Table 1. To complete a taxonomy of propositional formulas, excluding literals,
we also need the propositional formulas of the form ——A. This notation is known
as uniform notation.

Table 1. a-formulas and S-formulas.

a ar | on B Br | Pa
ANB A B AV B A B
-(AvB) | A | -B -(AAB) | A | =B
-(A—-B)| A | -B A—-B |-A| B

Note that « is logically equivalent to a1 A asg, B is logically equivalent to
B1 V B2 and ——A is logically equivalent to A. In SAT tableaux, these equiva-
lences are used to reduce the problem of finding a satisfying assignment of « to
that of finding a satisfying assignment of both a1 and aw, of 8 to that of finding
a satisfying assignment of (3; or B and of =—A to that of finding a satisfying
assignment of A. Thus, using the expansion rules of Table2 we obtain a com-
plete tableau calculus for non-clausal SAT. We introduced the contradiction rule
(O-rule), where [ denotes a literal, because it will be necessary in MaxSAT; in
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the literature, applying this rule is usually referred to as closing the branch. Note
that uniform notation allows to define tableau rules for arbitrary propositional
formulas in a concise way.

The tableau method is used to determine the satisfiability of a given set of
propositional formulas [9,12,24]. It starts creating an initial tableau composed
of a single branch that has a node for each formula in the input set of formulas.
Then, it applies the expansion rules of Table 2 until a contradiction is derived in
each branch (in this case, the input set of formulas is unsatisfiable) or a branch is
saturated without deriving a contradiction (in this case, the input set of formula
is satisfiable). A branch is saturated in a SAT tableau when all the possible
applications of the expansion rules have been applied in that branch.

Table 2. Tableau expansion rules for SAT

e} 15 -—A l

o1 G | B2 A -l

fo% O
a-rule [-rule —-rule (-rule

The single tableau calculus for MaxSAT [18] defined in the literature limits
the input to multisets of clauses; i.e., it is a clausal tableau calculus that cannot
solve non-clausal MaxSAT. This calculus does not contain the a- and —-rule.
It consists of the (- and O-rule. In fact, as all the formulas in the tableau are
clauses and the formulas of type 3 are always disjunctions of literals of the form
Iy VIg V.-V, the previous S-rule is replaced with the following n-ary S-rule:

l1VigV--- VI,
Iy - 1,

n-ary (-rule

Note that the n-ary G-rule collapses n — 1 applications of the (-rule over the
clause [1 ViIg V- -- V ,.

In clausal MaxSAT tableaux, all the clauses in the initial tableau are declared
to be active. Clauses become inactive in a branch once they have been used as
premises of the - or O-rule, and then the added conclusions become active.
The application of expansion rules is restricted to active clauses. In this way,
the preservation of the minimum number of unsatisfied clauses is guaranteed.
Active and inactive clauses are not needed in SAT because the goal is to preserve
satisfiability and the application of rules in a branch stops once a contradiction
is detected. The application of rules in MaxSAT continues until no more tableau
rules can be applied to the formulas in the branch, because the aim is to derive
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all the possible contradictions. Thus, the saturation of branches is also different
in SAT and MaxSAT.

Figure1 shows the differences between clausal SAT and clausal MaxSAT
tableaux using the multiset of clauses is ¢ = {—x1, —xq, 23,21 V 22, 21 V 23}
In the SAT case, it is enough with applying the S-rule to z1 V x5. Since a con-
tradiction is detected in each branch, the input multiset of formulas is declared
unsatisfiable. However, in the MaxSAT case, the S-rule must also applied to
—x1 V x3 and all the possible contradictions must be detected to complete the
tableau. Note that in the leftmost branch of the clausal MaxSAT tableau there is
just one contradiction because we have just one occurrence of x1, which became
inactive after detecting the first contradiction.

X T
! |
—\{IEQ —x
X3 I
| -3
1V X2 I
I 1V X2
—x1 VI3 I
1 Zo —x1V I3
| |
U U x1 T2
| |
A AL
T r3 T x3
| |
O U

Fig. 1. Completed clausal SAT tableau (left) and completed clausal MaxSAT tableau
(right) when the input multiset of clauses is ¢ = {—z1, "2, 23,21 V x2, "1 V 3}
The left tableau proves that ¢ is unsatisfiable and the right tableau proves that the
minimum number of unsatisfied clauses in ¢ is 1.

The soundness of the previous clausal MaxSAT tableau calculus states that
the §- and O-rule preserve the minimum number of unsatisfied clauses between
a tableau and its extension; in particular, the (-rule preserves that number
in at least one branch and does not decrease it in the rest of branches. So,
once all branches have been saturated, the minimum number of contradictions
derived among the branches of a completed tableau is the minimum number of
unsatisfied clauses in the input multiset of clauses. The completeness states that
any completed tableau for a multiset of clauses ¢, whose minimum number of
clauses that can be unsatisfied in it is k, has a branch with & contradictions and
the rest of branches contain at least k contradictions [18].

If we move to deal with arbitrary propositional formulas (i.e., non-clausal
MaxSAT), the first problem we encounter is that the a-rule does not preserve the
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minimum number of unsatisfied formulas as the G-rule does for clauses. Assume
that we want to solve the non-clausal MaxSAT instance {x1,x2, @1 A —xa},
whose single optimal assignment is the one that sets x; and x5 to true, and only
falsifies —xq A—xs. If we apply the a-rule to —z1 A—xo, we add two nodes, labelled
with =21 and -, to the initial tableau. Then, we can derive two contradictions
by applying the O-rule to {x1, 21} and {x2, 722}, but the minimum number
of formulas unsatisfied by the optimal assignment is just one. Figure 2 displays
the resulting tableau. This counterexample shows that the a-rule is unsound in
MaxSAT. So, we need to define a new and sound a-rule as a first step towards
getting a sound and complete non-clausal MaxSAT calculus.

Fig. 2. Counterexample that shows that the a-rule is unsound for non-clausal MaxSAT.
The input multiset is ¢ = {x1, x2, 71 A 22}

The previous example also illustrates that the standard conversion to clausal
form is not valid in MaxSAT because it does not preserve the number of unsat-
isfied clauses. The clausal form of {x1, z9, ~2x1 A—xa} is {21, 2, 721, ~22 }. How-
ever, the MaxSAT solution of {z1,z2, 21 A 22} is 1 and the MaxSAT solution
of {x1,x2, 721, w2} is 2. Thus, it is not possible to solve non-clausal MaxSAT
by first translating to clausal form and then using clausal MaxSAT tableaux.
We refer the reader to [19] for a recent paper on clausal form transformations
for MaxSAT.

3 A Non-clausal MaxSAT Tableau Calculus

We formally define a non-clausal MaxSAT tableau calculus and prove its sound-
ness and completeness. In the rest of the section, unless otherwise stated, when
we say tableau we refer to a non-clausal MaxSAT tableau.

Definition 1. A tableau is a tree with a finite number of branches whose nodes
are labelled by either a propositional formula or a box (O). A box in a tableau
denotes a contradiction. A branch is a mazximal path in a tree, and we assume
that branches have a finite number of nodes.
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Table 3. Tableau expansion rules for non-clausal MaxSAT

« 1] -—A l
O] a Br | B A =l
a2 (]
a-rule (B-rule —-rule C-rule

Definition 2. Let ¢ = {¢1,...,¢dm} be a multiset of propositional formulas. A
tableau for ¢ is constructed by a sequence of applications of the following rules:

Initialize A tree with a single branch with m nodes such that each node is labelled
with a formula of ¢ is a tableau for ¢. Such a tableau is called initial tableau
and its formulas are declared active.

Given a tableau T for ¢, a branch b of T', and a node of b labelled with an

active formula F,

a-rule If F is of type «, the tableau obtained by appending a new left node
below b labelled with OO and a new right branch with two nodes below b
labelled with a1 and as is a tableau for ¢. Formula F becomes inactive
i b and oy and oo are declared active.

B-rule If F is of type (3, the tableau obtained by appending a new left node
below b labelled with (31 and a new right node below b labelled with Bs is a
tableau for ¢. Formula F becomes inactive in b and 31 and B2 are declared
active.

—-rule If F' is of type ——A, the tableau obtained by appending a nmew node
below b labelled with A is a tableau for ¢. Formula =—A becomes inactive
i b and A is declared active.

O-rule Given a tableau T for ¢, a branch b of T, and two nodes of b labelled with
two active complementary literals I and —l, the tableau obtained by appending
a node below b labelled with O is a tableau for ¢. Literals I and —l become
tnactive in b.

The expansion rules of the previous definition are summarized in Table 3.
Note that all the rules preserve the number of premises falsified by an assignment
I in at least one branch and do not decrease that number in the other branch
(if any). In particular, in the a-rule, we have that if I falsifies «, the left branch
contains one contradiction and «; and as cannot be used to derive any other
contradiction in that branch because they are not expanded; moreover, I falsifies
aq or ag (or both) on the right branch. On the other hand, if T satisfies a, then
I also satisfies ar; and ay on the right branch.

Definition 3. Let T be a tableau for a multiset of propositional formulas ¢. A
branch b of T is saturated when no further expansion rules can be applied on b,
and T is completed when all its branches are saturated. The cost of a saturated
branch is the number of boxes on the branch. The cost of a completed tableau is
the minimum cost among all its branches.
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As we show below, the minimum number of formulas that can be unsatisfied
in a multiset of propositional formulas ¢ is k iff the cost of a completed tableau for
¢ is k. Thus, the systematic construction of a completed tableau for ¢ provides
an exact method for non-clausal MaxSAT.

Ezample 1. We can determine the minimum number of unsatisfied formulas in
the multiset ¢ = {x1, x2, ~x1 A—xa} using the previous tableau calculus. Figure 3
displays how the tableau is constructed. We start by constructing the initial
tableau (the leftmost tableau) and then apply the a-rule to —x1 A -4, getting
as a result the second tableau in the figure. The leftmost branch is saturated and
we apply the O-rule to {x1,—x1} on the rightmost branch, getting as a result
the third tableau. Finally, we apply the O-rule to {x2, 7x2} on the same branch
and get the rightmost tableau in the figure. Since the minimum number of boxes
among the branches of the last tableau is 1, the minimum number of formulas
that can be unsatisfied in ¢ is 1.

1 X1 1 1
| | | |
T2 T2 T2 T2
| | | |
—x1 N\ X2 —x1 N\ X2 —x1 N\ T2 —x1 A\ X2

D X1 D X1 D T
| | |

X2 X2 X2
| |
- T
O

Fig. 3. A tableaux for the non-clausal MaxSAT instance {1, z2, "x1 A —x2}.

3.1 Soundness and Completeness

In this section we prove the soundness and completeness of the proposed tableau
calculus for non-clausal MaxSAT. We start by proving two propositions needed
later.

Proposition 1. A tableau for a multiset of propositional formulas ¢ is com-
pleted in a finite number of steps.

Proof. We start by creating an initial tableau and then apply rules in the newly
created branches until they are saturated. The a-, §- and —-rule reduce the
number of connectives. Since we began with a finite number of connectives, these
rules can only be applied a finite number of times. The [-rule inactivates two
literals and adds a box. Since we began with a finite number of literals and boxes
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cannot be premises of any expansion rule, this rule can only be applied a finite
number of times. Hence, the construction of any completed tableau terminates
in a finite number of steps. O

Proposition 2. An assignment I falsifies k premises of a a-, 3-, =- and O-rule
iff assignment I falsifies k conclusions in one branch of the conclusions of the
rule and at least k conclusions in the other branch (if any).

Proof. We prove the result for each rule:

— [O-rule: Any assignment I always falsifies one premise and satisfies the other.
Since the single conclusion is a box and denotes a contradiction, I falsifies
the same number of formulas in the premises and the conclusion.

— a-rule: If 7 falsifies the premise of the rule, then I falsifies at least one con-
clusion in each branch. The left conclusion is a box and is falsified by any
assignment, and [ falsifies o or as (o both) of the right conclusion. On the
other direction, if I falsifies at least one conclusion in each branch, then I
falsifies a; or g (0 both) and therefore T falsifies the premise ay A as.

— (-rule: If I falsifies the premise of the rule, then I falsifies 81 and (2, and
so the left (81) and right (82) conclusions are falsified by I. On the other
direction, if I falsifies both conclusions, then [ falsifies 5 V (5.

— The —-rule: Since any assignment [ that falsifies =—A also falsifies A, and
vice versa, I falsifies the premise iff I falsifies the conclusion.

O

Theorem 1. Soundness and completeness. The cost of a completed tableau
for a multiset of formulas ¢ is k iff the minimum number of unsatisfied formulas
m ¢ is k.

Proof. (Soundness:) T was obtained by creating a sequence of tableaux
To,..., Ty (n > 0) such that Ty is an initial tableau for ¢, T,, = T, and T;
was obtained by a single application of the a-, 8-, —=- or [-rule on an branch of
T;_1 for i =1,...,n. By Proposition 1, we know that such a sequence is finite.
Since T has cost m, T, contains one branch b with exactly m boxes and the
rest of branches contain at least m boxes. Moreover, the active formulas in the
branches of T, are non-complementary literals; otherwise we could yet apply
expansion rules and T, could not be completed. The assignment that sets to
true each active literal in b, only falsifies the m boxes and there cannot be any
assignment satisfying less than m formulas in a branch of T, because each branch
contains at least m boxes. Therefore, the minimum number of active formulas
than can be unsatisfied among the branches of T, is m.

Proposition 2 guarantees that the minimum number of unsatisfied active
formulas is preserved in the sequence of tableaux Ty, ..., T;,. Thus, the minimum
number of unsatisfied active formulas in Ty is also m. Since T} is formed by a
single branch that only contains the formulas in ¢ and all these formulas are
active, the minimum number of formulas that can be unsatisfied in ¢ is m.
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(Completeness:) Assume that there is a completed tableau T for ¢ that does
not have cost m. We distinguish two cases:

(i) T has a branch b of cost k, where k& < m. Then, T has a branch with k
boxes and a satisfiable multiset of non-complementary literals because T
is completed. This implies that the minimum number of unsatisfied active
formulas among the branches of 7" is at most k. By Proposition 2, this also
holds for Tj, but this is in contradiction with m being the minimum number
of unsatisfied formulas in ¢ because k < m. Thus, any branch of T has at
least cost m.

(ii) T has no branch of cost m. This is in contradiction with m being the min-
imum number of unsatisfied formulas in ¢. Since the tableau rules pre-
serve the minimum number of unsatisfied formulas and the branches of
any completed tableau only contain active formulas that are boxes or non-
complementary literals, 7" must have a saturated branch with m boxes. Thus,
T has a branch of cost m.

Hence, each completed tableau T for a multiset of formulas ¢ has cost m if
the minimum number of formulas that can be unsatisfied in ¢ is m. O

4 Extension to Hard and Weighted Formulas

We presented the tableau calculus for non-clausal unweighted MaxSAT (i.e,;
non-clausal MaxSAT) for ease of presentation but tableaux can be extended to
deal with hard and soft formulas, and soft formulas can be weighted as well.

In the case of non-clausal partial MaxSAT, there are three basic observations:

— The hard literals of the initial tableau, as well as any other literal derived by
the application of an expansion rule to an input hard formula or a subformula
derived from a hard formula, remain always active. In the rest of the section,
we will refer to such literals as hard literals and to the subformulas derived
from a hard formula as hard subformulas.

— If the O-rule is applied to two hard literals, then the current branch is pruned.
This means that we have found a contradiction among hard clauses. This
corresponds to an unfeasible solution.

— When the premise of the a-rule is a hard formula or subformula, the a-
rule of Table2 can be used instead of the a-rule of Table3. The calculus
remains sound and complete but branching is reduced. This is so because
hard formulas must be satisfied by any optimal assignment.

Ezxample 2. Let ¢ = HUS be a non-clausal partial MaxSAT instance, where H
is the multiset of hard formulas and § is the multiset of soft formulas. Given
the multiset of propositional formulas {x; A 23 A x3, —21, @2, ~z3}, we analyze
the different tableaux obtained when we vary the formulas declared as hard and
soft.

The first tableau of Fig. 4 displays a completed tableau when all the formulas
are soft; in this case ¢ = HUS = 0 U {x1 A z2 A x3, "1, T2, T3}
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The second tableau displays a completed tableau when x1 A xo A 3 is hard
and the rest of formulas are soft; in this case ¢ = HUS = {z1 Ax2 A x3} U
{—x1, 29, 7x3}. Notice that the input hard formulas and derived hard subfor-
mulas are in bold. We applied the a-rule of Table 2 because the premise is hard.

The third tableau displays a completed tableau when —xy, =z5 and —x3 are
hard, and 1 A 22 A @3 is soft; in this case ¢ = HUS = {—x1, ~x9, ~x3} U {21 A
29 A x3}. We applied the a-rule of Table 3 because the premise is soft.

The fourth tableau displays a completed tableau when 1 A x2 A 3 and —x;
are hard, and —z5 and —z3 are soft; in this case ¢ = HUS = {x1 AzgAxg, a1 }U
{—x2,~x3}. Notice that the single branch of the tableau is pruned as soon as
the O-rule has two hard premises (—z; and z1). We use a filled box to denote
that there is no feasible solution.

In the first case, the minimum number of unsatisfied soft formulas is 1. In
the second case, the minimum number of unsatisfied soft formulas among the
assignments that satisfy the hard formulas is 3. In the third case, the minimum
number of unsatisfied soft formulas among the assignments that satisfy the hard
formulas is 1. In the fourth case, there is no optimal solution because the subset
of hard formulas is unsatisfiable.

Table 4 displays the expansion rules for weighted formulas. The a-, 8- and
—-rule have just one premise and the weight associated to the premise is trans-
ferred to the conclusions. The O-rule has two premises and so the contradic-
tion takes as weight the minimum of the weights associated to the premises

1 ANx2 N T3 x1 N\ T2 N\ T3 b 21 xq1 N\ T2 N\ T3
I I I
T T X2 b it
| I | |
i) T2 T3 T2
| I | |
T3 -3 1 N T2 N T3 T3
I:\ T 1 D 1 1
| I | |
T2 N\ T3 o N\ 3 T2 N\ T3 o N\ 3
| I | |
/D\ T_\ /D\ "
D T2 T2 D T2
| I |
T3 T3 T3
| I |
T T T
O O O

Fig. 4. Examples of non-clausal partial MaxSAT tableaux. Input hard formulas and
derived hard subformulas are in bold.
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Table 4. Tableau expansion rules for non-clausal weighted MaxSAT

(l’wl)

(avw) (ﬂaw) (_‘_‘Avw) (_‘lvu]Q)
Oow) [ (@w)  Brw) | Bw)  (Aw) (0, min(w, w2))
(a2, w) (I, w1 — min(w1, w2))

(=, w2 — min(w1, ws2))

a-rule [3-rule —-rule [-rule

(min(wy,ws)). If the premises have different weights, the remaining weight in
the premise with the greatest weight can be used to detect further contradic-
tions. The compensation weight of the other premise is 0, and formulas with
weight 0 are removed. In the weighted case, when a branch has repeated occur-
rences of a formula A, say (A,w;),..., (4, ws), such occurrences can be replaced
with the single formula (A,w; + -+ + ws). Moreover, the cost of a saturated
weighted branch is the sum of weights of the boxes that appear in the branch,
and the cost of a completed weighted tableau is the minimum cost among all its
branches.

The expansion rules of Table4 provide a sound and complete calculus for
non-clausal weighted MaxSAT. The correctness of such rules follows from the
correctness of the unweighted tableau rules and the fact that having a weighted
formula (A, w) is equivalent to having w copies of the unweighted formula A.

Ezample 3. Let ¢ = {(—z1 — x2,3), (x1 A x3,2), (—21,5), (—-21,5), (-x3,2)} be
a non-clausal weighted MaxSAT instance. Figure 5 displays a completed tableau
for ¢. This tableau has been obtained by applying the expansion rules of Table 4.
The costs of the branches, from left to right, are 5, 7, 5 and 7. So, the minimum
sum of weights of unsatisfied formulas is 5.

Finally, we show how to solve non-clausal weighted partial MaxSAT instances
with tableaux. The first observation is that hard formulas can be considered as
weighted formulas with infinity weight, and this observation is important to
understand the [J-rule in weighted partial MaxSAT. Notice that the [l-rule is
the only rule with two premises; in the rest os cases, if the premise is hard,
we proceed as in partial MaxSAT, and if it is soft, we proceed as in weighted
MaxSAT. If the two premises of the [J-rule are hard, then the branch is pruned
because we are in front of an unfeasible solution. If the two premises are soft,
then the [J-rule of Table4 is applied. If there is a hard premise [ and a soft
premise (-, w), then (O, w) is derived, (=, w) becomes inactive and ! remains
active.
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Fig. 5. Examples of non-clausal weighted MaxSAT tableaux.

Ezample 4. Let ¢ = {(x1 A 23, (~21 — 2,3), (721,5), (m22,1), (—23,2)} be a
non-clausal weighted partial MaxSAT instance, where the first formula is hard
and the rest of formulas are soft. Figure 6 displays a completed tableau for ¢.
This tableau has been obtained by applying the expansion rules for non-clausal
weighted partial MaxSAT explained above. The cost of the left branch is 10
and the cost of the right branch is 8. Thus, the minimum sum of weights of
unsatisfied soft formulas among the assignments that satisfy the hard formula
is 8.
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Fig. 6. Example of non-clausal weighted partial MaxSAT tableau. Input hard formulas
and derived hard subformulas are in bold.

5 Conclusions

The main contributions of this paper are a non-clausal MaxSAT tableau calculus,
the corresponding proofs of soundness and completeness, and its extension to
deal with hard and weighted soft formulas. We claim that improvements defined
for SAT, like detection of contradictory subformulas instead of contradictory
literals, are also valid in our framework or can be easily adapted.

Tableaux have played a central role in automated deduction in first-order
logic, as well as in other non-classical logics [9,12], and this work might be a
first step towards dealing with optimization problems in those logics. From the
propositional perspective, tableaux might be used to find new proof complexity
results as the ones found for MaxSAT resolution [6,14], as well as to better
understand MaxSAT and the logic behind. An interesting open problem is to
find out how to define a complete tableau calculus for non-clausal MinSAT |[3,20].
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