Skip to main content

Min-Cut Segmentation of Retinal OCT Images

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1024))

Abstract

Optical Coherence Tomography (OCT) is one of the most vital tools for diagnosing and tracking progress of medication of various retinal disorders. Many methods have been proposed to aid with the analysis of retinal images due to the intricacy of retinal structures, the tediousness of manual segmentation and variation from different specialists. However image artifacts, in addition to inhomogeneity in pathological structures, remain a challenge, with negative influence on the performance of segmentation algorithms. In this paper we present an automatic retinal layer segmentation method, which comprises of fuzzy histogram hyperbolization and graph cut methods. We impose hard constraints to limit search region to sequentially segment 8 boundaries and 7 layers of the retina on 150 OCT B-Sans images, 50 each from the temporal, nasal and center of foveal regions. Our method shows positive results, with additional tolerance and adaptability to contour variance and pathological inconsistence of the retinal structures in all regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baglietto, S., Kepiro, I.E., Hilgen, G., Sernagor, E., Murino, V., Sona, D.: Segmentation of retinal ganglion cells from fluorescent microscopy imaging. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), pp. 17–23 (2017). https://doi.org/10.5220/0006110300170023

  2. Baroni, M., Fortunato, P., La Torre, A.: Towards quantitative analysis of retinal features in optical coherence tomography. Med. Eng. Phys. 29(4), 432–441 (2007). https://doi.org/10.1016/j.medengphy.2006.06.003

    Article  Google Scholar 

  3. Boyer, K.L., Herzog, A., Roberts, C.: Automatic recovery of the optic nervehead geometry in optical coherence tomography. IEEE Trans. Med. Imaging 25(5), 553–570 (2006). https://doi.org/10.1109/TMI.2006.871417

    Article  Google Scholar 

  4. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1(July), pp. 105–112 (2001). https://doi.org/10.1109/ICCV.2001.937505

  5. Cabrera Fernández, D., Salinas, H.M., Puliafito, C.A.: Automated detection of retinal layer structures on optical coherence tomography images. Opt. Express 13(25), 10200 (2005). https://doi.org/10.1364/OPEX.13.010200

    Article  Google Scholar 

  6. Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18), 19413–19428 (2010). https://doi.org/10.1364/OE.18.019413

    Article  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  8. Dodo, B.I., Li, Y., Eltayef, K., Liu, X.: Graph-cut segmentation of retinal layers from OCT images. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies. BIOIMAGING, vol. 2, pp. 35–42. INSTICC, SciTePress (2018). https://doi.org/10.5220/0006580600350042

  9. Dodo, B.I., Li, Y., Liu, X.: Retinal OCT image segmentation using fuzzy histogram hyperbolization and continuous max-flow. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 745–750. IEEE (2017)

    Google Scholar 

  10. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. J. Can. de mathématiques 8, 399–404 (1956). https://doi.org/10.4153/CJM-1956-045-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009). https://doi.org/10.1109/TMI.2009.2016958

    Article  Google Scholar 

  12. Haeker, M., Wu, X., Abràmoff, M., Kardon, R., Sonka, M.: Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 607–618. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_50

    Chapter  Google Scholar 

  13. Huang, D., et al.: Optical coherence tomography. Sci. (New York, N.Y.) 254(5035), 1178–1181 (1991). https://doi.org/10.1126/science.1957169

    Article  Google Scholar 

  14. Kaba, D., et al.: Retina layer segmentation using kernel graph cuts and continuous max-flow. Opt. Express 23(6), 7366–7384 (2015). https://doi.org/10.1364/OE.23.007366

    Article  Google Scholar 

  15. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004). https://doi.org/10.1109/TPAMI.2004.1262177

    Article  MATH  Google Scholar 

  16. Koozekanani, D., Boyer, K., Roberts, C.: Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans. Med. Imaging 20(9), 900–916 (2001). https://doi.org/10.1109/42.952728

    Article  Google Scholar 

  17. Lang, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013). https://doi.org/10.1364/BOE.4.001133

    Article  Google Scholar 

  18. Lu, S., Yim-liu, C., Lim, J.H., Leung, C.K.S., Wong, T.Y.: Automated layer segmentation of optical coherence tomography images. In: Proceedings - 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011, vol. 1, no. 10, pp. 142–146 (2011). https://doi.org/10.1109/BMEI.2011.6098329

  19. Novosel, J., Vermeer, K.A., Thepass, G., Lemij, H.G., Vliet, L.J.V.: Loosely coupled level sets for retinal layer segmentation in optical coherence tomography. In: IEEE 10th International Symposium on Biomedical Imaging, pp. 998–1001 (2013)

    Google Scholar 

  20. Salazar-Gonzalez, A., Kaba, D., Li, Y., Liu, X.: Segmentation of the blood vessels and optic disk in retinal images. IEEE J. Biomed. Health Inform. 18(6), 1874–1886 (2014)

    Article  Google Scholar 

  21. Salazar-Gonzalez, A., Li, Y., Liu, X.: Automatic graph cut based segmentation of retinal optic disc by incorporating blood vessel compensation. J. Artif. Intell. Soft Comput. Res. 2(3), 235–245 (2012)

    Google Scholar 

  22. Salazar-Gonzalez, A.G., Li, Y., Liu, X.: Retinal blood vessel segmentation via graph cut. In: International Conference on Control Automation Robotics and Vision, pp. 225–230 (2010)

    Google Scholar 

  23. Seheult, A., Greig, D., Porteous, B.: Exact maximum a posteriori estimation for binary images. J. R. Stat. Soc. 51(2), 271–279 (1989)

    Google Scholar 

  24. Tian, J., Varga, B., Somfai, G.M., Lee, W.H., Smiddy, W.E., DeBuc, D.C.: Real-time automatic segmentation of optical coherence tomography volume data of the macular region. PLoS ONE 10(8), 1–20 (2015). https://doi.org/10.1371/journal.pone.0133908

    Article  Google Scholar 

  25. Tizhoosh, H.R., Krell, G., Michaelis, B.: Locally adaptive fuzzy image enhancement. In: Reusch, B. (ed.) Fuzzy Days 1997. LNCS, vol. 1226, pp. 272–276. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62868-1_118

    Chapter  Google Scholar 

  26. Wang, C., Kaba, D., Li, Y.: Level set segmentation of optic discs from retinal images. J. Med. Syst. 4(3), 213–220 (2015)

    Google Scholar 

  27. Zhang, Y.-J. (ed.): ICIG 2015. LNCS, vol. 9217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21978-3

    Book  Google Scholar 

  28. Wang, C., Wang, Y., Li, Y.: Automatic choroidal layer segmentation using Markov random field and level set method. IEEE J. Biomed. Health Inform. 21, 1694–1702 (2017)

    Article  Google Scholar 

  29. Yuan, J., Bae, E., Tai, X.C., Boykov, Y.: A study on continuous max- flow and min-cut approaches. In: 2010 IEEE Conference, vo. 7, pp. 2217–2224 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Isa Dodo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dodo, B.I., Li, Y., Eltayef, K., Liu, X. (2019). Min-Cut Segmentation of Retinal OCT Images. In: Cliquet Jr., A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2018. Communications in Computer and Information Science, vol 1024. Springer, Cham. https://doi.org/10.1007/978-3-030-29196-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29196-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29195-2

  • Online ISBN: 978-3-030-29196-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics