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Abstract. This paper focuses on demand forecasts for parking facilities. Our 

work utilizes open parking data for predictions. Several cities in Europe already 

publish this data continuously in the standardized DATEX II format. Traffic re-

lated information will become more ubiquitous in the future as all EU-member 

states must implement real-time traffic information services including parking 

status data since July 2017 implementing the EU directives 2010/40 and 

2015/962. We demonstrate how to extract reliable and easily comprehensible 

forecast models for future-parking demand based on open data. These models 

find multiple use cases not only on a business planning level and for financial 

revenue forecasting but also to make traffic information systems more resilient 

to outages and to improve routing of drivers directing them to parking facilities 

with availability upon predicted arrival. Our approach takes into consideration 

that the data constitutes irregular time series and incorporates contextual infor-

mation into the predictive models to obtain higher precision forecasts. 

Keywords: : Parking prediction, machine learning, data mining, smart cities. 

1 Introduction 

Congestion of transport systems is a major and increasing pain point in large cities. In 

the vision of smart cities this issue is tackled with “computerized systems comprised 

of databases, tracking, and decision-making algorithms” [1] instead of brick-and-

mortar extensions of infrastructure. [2] cites multiple studies claiming that up to 30% 

of inner-city traffic can come from drivers searching for a free parking space.  

To reduce this type of traffic bigger cities typically provide stationary car-park rout-

ing systems that indicate to drivers where spaces are currently available. A more 

modern approach is additional online publication of this data. While some cities, such 

as San Francisco, already provide app-based mobile information that can travel with 

the driver. This approach also incorporates current availability information directly 

into routing. For longer distance journeys a forecast of future availability is required, 

which can be determined using predictive models trained on historical parking de-

mand information. Such predictive models are also useful in case of system outages 

providing a second means to assess the current status. 

Predictive models for demand have also a great value for parking operators and can 

be used to develop forecasts of revenue [3] or to improve prices through performance 

pricing [4]. Recommendations for variable pricing of parking are around for a long 
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time [5]. Understanding the demand of competitors is also beneficial to improve park-

ing policies [6]. 

With improved traffic management in mind, the European Commission has required 

member countries to contribute to the co-ordination of traffic management and devel-

opment of seamless pan European services through the ITS directive 2010/40/EU . 

Among many other things this directive also mandates the publishing of traffic-related 

open data including parking status information for important cities and parking areas 

along highways. 

This paper focuses on demand forecasts for parking facilities based on a continuous 

recording of the parking status updates of 42 parking facilities in Düsseldorf between 

March and August 2015. Working towards a benchmark of predictive model algo-

rithms for parking demand predictions, we show that reliable and easy to understand 

forecast models for future parking demand can be mined from this open data using 

classical statistical learning approaches. Our approach takes into consideration that 

the data constitutes irregular time series and incorporates contextual information into 

the predictive models to obtain higher precision forecasts. 

The paper is organized as follows: Section 2 describes the data set and its charac-

teristics. Section 3 details our objectives and common assumptions for predicting 

parking. Section 4 reports on our results using linear regression as a technique that 

forms a baseline for comparison. Section 5 discusses our experiment with decision 

trees. Section 6 summarizes our findings and provides citywide results. We conclude 

in Section 7 with discussion of related work and our next steps.  

2 The Data Set 

2.1 Data Format, Source and Content 

The European Commission has sponsored the development of the XML-based 

DATEX format to enable traffic-related information exchange. DATEX II version 2.3 

published in December 2014 now also provides a standard data model for parking 

information1. This parking information is published in two separate files, one of 

which provides static information (metadata) such as name, typical capacity and loca-

tion of a parking facility as well as categorization into city areas. The other file pro-

vides dynamic information that contains current status, capacity and demand, absolute 

number of parkers, as well relative occupancy and trend information both for single 

parking facilities and aggregates for city areas. 

While individual parking facilities could publish their status using this format, it is 

more common for cities to aggregate the data from several parking facilities within its 

city limits to provide drivers with an overview of current availabilities. For example, 

Tampere (Finland) publishes the current parking status since February 2015 directly 

                                                           
1 http://www.datex2.eu/news/2014/12/01/datex-ii-version-23-available-now 
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on the Web2. However, the EU delegated regulation mandates every member state to 

maintain national access points to such data that aggregates the data from various data 

providers in each country. 

 

Fig. 1. A Data flow of parking information through the MDM portal ( Legend:  Aggregation) 

In Germany this national access point is provided by the “Mobilitätsdatenmarktplatz” 

(MDM portal)3 and operated by the Bundesamt für Strassenbau (BaSt) on behalf of 

the ministry of transport. Figure 1 shows how traffic information flows from provid-

ers to subscribers and end users through this portal. Data sets of data providers are 

published on a secured URL endpoint by the MDM portal.  Currently 64 German cit-

ies are providing parking demand information for their most important parking facili-

ties. While data access may be restricted - and the MDM portal provides mechanisms 

for data providers to register data subscribers and provides access control - some cit-

ies such as Düsseldorf provide open5 data. Each data provider of the MDM portal can 

individually choose a frequency in which the data is updated. For example, Düssel-

dorf updates its dynamic parking information every minute. Each update typically 

only contains the changes of parking demand since the last update, and some parking 

facilities might not have changes in that period. Hence, subscribers must maintain 

memory of the parking status across individual updates to get a complete up-to-date 

perspective since parking facilities might provide updates at a smaller frequency than 

the city and may not be providing any updates for longer periods of time during clos-

ing times or because of technical difficulties. The updates received therefore consti-

tute highly irregular multivariate time series both at the level of single parking facili-

ties and city aggregates. Our data set is based on minutely parking data that has pro-

vided by the city of Düsseldorf for 42 parking facilities on the MDM portal in the six 

months between March and August 2015. 

2.2 Data Processing Implementation 

We receive the dynamic parking information using a scheduled job (cron job) that 

polls the MDM portal URL endpoint(s) on a minutely basis. The DATEX message is 

then parsed and its content is appended to individual CSV files to create time series 

                                                           
2 http://wiki.itsfactory.fi/index.php/Tampere_Parking_DATEX2 
3 http://www.mdm-portal.de 
4 As of September 2015: Aachen (only charging stations), Düsseldorf, Frankfurt am Main, 

Kassel, Magdeburg,  and Wuppertal 
5 Parties interested in accessing the data still need to register with the MDM portal and setup 

security certificates to receive data. 
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for each parking facility, parking area as well as one large CSV file that includes all 

updates received.  

These CSV files are then read by data analysis scripts executed by the statistical 

software R [7]. In particular we use functions packages rpart [8] for decision tree 

fitting and zoo [9] to aggregate and plot the irregular time series that are found in the 

data. 

2.3 Data Characteristics 

In total we have received 264.376 updates in 331 MB of XML data containing 2,6 

million single changes in parking status across the 42 parking facilities in our data set. 

7 of these parking facilities provide incorrect data, such as negative occupancies, or 

only a small number of data updates, for example updates that are several days apart, 

and are therefore excluded from further analysis. 

The number updates provided by the remaining 35 parking facilities in scope var-

ies greatly between 21.387 and 145.104 with a median of 75.499 observations per 

parking facility. Hence, the average parking facility provides a status update every 3 

½ minutes to the city of Düsseldorf. 

 

Fig. 2. Boxplot of parking facility occupancies (in %) in the data set 

The box plot6 Figure 2 shows that the variance of occupancy is very high and also that 

the demand characteristics vary greatly between the different parking facilities. 

Hence, a robust predictive model is easier to obtain per parking facility than for the 

city level and the city level predictive model should be computed by aggregating the 

predictions made for individual parking facilities.  

The data of individual parking facilities shows clear periodic patterns of demand, 

such as illustrated by Figure 3 for two parking facilities side by side. The periodic 

                                                           
6 A.k.a. box and whisker diagram showing from left to right: minimum, first quartile, median 

(thick line), third quartile and maximum as well as outliers (circles). 
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pattern of Kunsthalle Düsseldorf is similar every day (with an increased demand on 

Saturdays) and demand is high in late evening hours, possibly due to the fact that 

parking is possible for 24h and a reduced price is offered in the night. The parking 

facility is generally among the cheapest in the city and never really empty. Kö Galler-

ie, a prominent luxury store in the main shopping district located at Königsallee 60, 

shows a clear demand pattern centered around the afternoon and almost double de-

mand on Saturdays. Demand is neglectable when the department store is closed in the 

night or on Sundays. 

 

Fig. 3. Periodicity of parking demand with facility-specific temporal patterns (above #3 

Kunsthalle (black) and below #39 Kö Gallerie (red)) 

3 Predicting Parking Demand 

3.1 Objectives of our approach 

Since our dataset is novel and the data has become publicly available just recently we 

want to establish a baseline with linear regression, a classical statistical supervised 

learning technique, and successively benchmark our results with other more recent 

machine learning and data mining approaches. In scope of this paper we will compare 

our linear regression baseline with decision trees, another well-known and broadly 

implemented regression technique. 

The two main reasons for choosing those approaches is that both predictive mod-

els are very easy to comprehend for decision makers and can be implemented with 

few effort and computational demand either by a linear equation (linear regression) or 

nested if-else conditions (decision tree) in consumer apps or car information systems.  
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3.2 Decomposing date and time 

As we have seen in Figure 3 parking demand is typically periodic but exposes com-

plex seasonality. The periodicity of different parking facilities is highly individual due 

to differences in opening and closing times and different intervals between data up-

dates. System outages that can occur at any party involved in the data chain (see Fig-

ure 1) create an additional source of irregularities in the data. Additionally, the 

timestamps of parking status have millisecond precision. 

We therefore decompose the date and time information provided by the timestamp 

of each parking status update into variables for each component of time. Additionally, 

we determine the corresponding weekday for each date. Hour and Weekday are then 

used as input to the statistical learning algorithms, while all other components of time 

are ignored. We do not aggregate the data by hour to avoid biases.  

3.3 Adding contextual information 

[10] show that weather conditions influence parking demand. We therefore add hour-

ly rainfall (in mm) and temperature (in degrees C°) data as recorded by the German 

national weather service (DWD) in its downtown Düsseldorf weather station. Hourly 

weather data is freely available7 as part of the public mandate of DWD throughout 

Germany and world-wide from various data providers. 

[11] discuss that public holidays influence electricity demand significantly. We there-

fore add binary information to the data set whether a given day is a public holiday, 

school holiday or a Brueckentag8. 35% of the observations in our data set are recorded 

on either one of these special days. 

Both contextual data sets are available ahead of making predictions as 24h weath-

er forecasts and averaged historical weather observations as well as holiday calendars 

that are planned many years ahead (school holidays) or regulated by legislature (pub-

lic holidays). We will compare how our predictive models perform with and without 

this contextual data. 

3.4 Identifying the dependent variable 

Parking facilities provide information on their status by transmitting both relative 

occupancy and absolute occupied spaces as well as vacant (available) spaces and their 

current capacity that fluctuates, for example due to ongoing renovations or by sys-

tematically opening and closing levels based on demand. Obviously, this information 

is redundant9 and highly correlated.  

                                                           
7 http://www.dwd.de/WESTE (free registration of user account required) 
8 A Brueckentag is a single working day that fall between a public holiday and a weekend 

where many Germans take a day off from work 
9 Occupancy = occupied / capacity and vacant = capacity – occupied. 

http://www.dwd.de/WESTE
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Since the capacities of the parking facilities vary greatly, we choose to predict the 

absolute number of occupied spaces. capacity and the number of long-term parkers, 

that some garages report, are also independent variables in the predictive models. 

3.5 Splitting Training and Test Data 

We subset all 2.6 million observations into separate smaller data sets that single out 

observations per parking facility. Splitting the data sets into training and test data sets 

by months as often found in related work will lead to biases due to the different num-

ber of weekdays, length of months and occurrence of holidays. We therefore split the 

facility-specific data sets into 75% training and 25% test data in an algorithmic fash-

ion10 that preserves the relative ratios of the dependent variable in both data sets. The 

same training and test data sets are used to benchmark our approaches. 

3.6 Assessing predictive model quality and comparing models 

We assess the coefficient of determination R2 for each predictive model on the train-

ing and test data. We indicate how well the models fit to the training data, and ob-

serve whether this fit deteriorates when making predictions on the unknown test data 

(indicated by a lower R2).  

To assess the overall quality of the model and compare model quality between ex-

periments as well as between parking facilities we define the relative root mean-

square deviation (𝑟𝑅𝑀𝑆𝐷), which normalizes the well known 𝑅𝑀𝑆𝐷 by capacity. The  

𝑟𝑅𝑀𝑆𝐷𝑖  is calculated for each parking facility 𝑖 based on the predicted values 𝑦̂𝑡 for 

times t of the dependent variable 𝑦 (occupied) for all 𝑛 different predictions as the 

square root of the mean of the squares of the deviations and normalized by the capaci-

ty of the parking facility 𝑘𝑖 (1). 

 𝑟𝑅𝑀𝑆𝐷𝑖 =
√∑

(𝑦̂𝑡−𝑦𝑡)
2

𝑛
𝑛
𝑡=1

𝑘𝑖
 (1) 

The rRMSD allows comparing parking facilities with different capacities and denotes 

the relative prediction error of a predictive model (in % of capacity). rRMSD is an 

unbiased estimator like RMSD. 

4 Linear Regression Models 

We build similar linear regression models with (𝑦̂+) and without (𝑦̂− ) contextual data 

for every parking facility. The regression model without context predicts the number 

of occupied parking spaces 𝑦̂− based on the independent variables occurring in the 

linear equation 𝑣, where factor variables hour ℎ⃗  , weekday 𝑤⃗⃗ , and numeric variables 

                                                           
10 Using sample.split function offered by caTools (Tuszynski 2014). 



8 

of current capacity 𝑘 and number of long-term parkers 𝑙 are used as inputs, adjusted 

by the intercept 𝑐−. 

 
𝑦̂− = 𝑣 + 𝑐−

𝑣 = 𝑐 ℎℎ⃗ + 𝑐 𝑤𝑤⃗⃗ + 𝑐𝑘𝑘 + 𝑐𝑙𝑙
 (2) 

The model with context predicts occupied parking spaces 𝑦̂+ in a similar fashion and 

adds numeric variables for temperature 𝑡, rainfall 𝑟 as well as binary variables for 

Brueckentage 𝑏, school holidays 𝑠, and public holidays 𝑓, adjusted by the intercept 

𝑐+. 

 

 
𝑦̂+ = 𝑣 + 𝑎 + 𝑐+

𝑎 = 𝑐𝑡𝑡 + 𝑐𝑟𝑟 + 𝑐𝑏𝑏 + 𝑐𝑠𝑠 + 𝑐𝑓𝑓
 (3) 

All coefficients 𝑐𝑖 in equations (2) and (3) are determined by the supervised learning 

task based on the training data, where factorial coefficients c 𝑗will take different values 

for every factor. The coefficients will be different for every predictive model and 

adjust to the specific parking facility data. 

For example, Table 1 shows the coefficients learned for parking facility Kö-

Gallerie ( #39 ) to occupied spaces ŷ+  with the contextual information. The basic 

estimate c+ of occupied parking spaces at 2 pm is 121. Thus, we expect 121 more 

cars to be present, while at 11 pm only a total of 121 − 28 = 93 cars are expected.  

Table 1. Excerpt of the linear regression model with context predicting occupied spaces 𝑦̂+ for 

parking facility Kö-Gallerie (#39) 

(Factorial) coefficient Estimate Std. Error t value 

c+ 121.06 4.10 29.55 

c h 

hour3 16.92 24.91 0.68 

… 

hour14 121.12 3.10 39.12 

… 

hour23 -28.13 8.79 -3.20 

c w 

weekday1 56.45 0.90 62.71 

… 

weekday6 134.28 0.88 152.03 

𝑐𝑘 -0.21 0.00 -60.13 

𝑐𝑡 0.49 0.03 15.81 

𝑐𝑟 0.63 0.39 1.62 

𝑐𝑓 -63.42 1.77 -35.87 

𝑐𝑠 -10.17 0.36 -28.40 

𝑐𝑏 120.63 2.21 54.70 



9 

Similarly, on Saturdays11 we generally expect 134 more cars. Both higher temper-

atures ct and rainfall cr increase occupancy by one car for every 2°C and 3 cars for 

every 2 mm of rain. 63 cars less can be expected on a public holiday and 10 cars less 

on school vacations while 120 more cars are parking on Brueckentage.The predictive 

model for Kö-Gallerie is robust and has a 𝑅2  of 0.68 (without context) and 0.71 (with 

context) on the training data and 0.69 / 0.71 on the test data with a 𝑟𝑅𝑀𝑆𝐷 of 6.9% 

(without context) and 6.4% (context). Adding context provides a 4% improvement in 

prediction. 

Table 2 reveals that R2 the predictive models are generally robust on the test data. 

By comparing contextual and context-free predictions and excluding both best and 

worst models, it displays large deviations between 22% and 6.2% prediction error 

(𝑟𝑅𝑀𝑆𝐷) for models without context that only slightly improve when context is add-

ed to 21% and 5.6%. In particular, context does not make bad models much better nor 

good models any worse. Overall adding contextual data provides 5.2% improvement 

in predictive quality on the capacity-weighted average of all linear regression models. 

Table 2. Overall quality of linear regression models across 35 parking facilities 

 𝑦̂− (without context) 𝑦̂+ (with context) 

 Training 𝑅2 Test 𝑅2 𝑟𝑅𝑀𝑆𝐷 Training 𝑅2 Test 𝑅2 𝑟𝑅𝑀𝑆𝐷 

2nd Worst 𝑦̂−/𝑦̂+ 0.06 0.06 22% 0.17 0.17 21% 

Median ŷ− 0.54 0.54 13.4% 0.56 0.57 13.1% 

Median ŷ+ 0.56 0.56 13.9% 0.57 0.57 13.7% 

2nd Best ŷ−/ 𝑦̂+ 0.85 0.85 6.2% 0.88 0.88 5.6% 

5 Decision Trees 

The decision tree models [12] are trained with the same data set and input as the line-

ar regression models, in particular we train two variants without (2) and with (3) con-

textual information. Whether input variables are used in the model depends on the 

results of the tree-fitting algorithm for the particular parking facility. Across all park-

ing facilities, we obtain fits with the same parameters. To avoid overfitting to the data 

a minimum number of 30 observations must be in any terminal leaf node of the deci-

sion tree. We additionally avoid additional tree splits when the overall 𝑅2 does not 

increase by at least 
1

1000
.  

The decision trees fitted from the training data for each parking facility are easy to 

understand but cumbersome to read and best-fitted for automated decision support. 

This is due to the fact that an average of 67 (maximum of 120) decision criteria are 

involved for trees trained on data with context. Figure 4 therefore only shows a sam-

ple tree that demonstrates important characteristics that are shared among the actual 

trees fitted to the training data. Top-level distinctions are typically made based on 

                                                           
11 Saturday is day 6 counting from 0 as Sunday, etc. 



10 

hour c h and weekday c w variables. Without considering any input variables, evaluat-

ing the tree would predict 107 occupied parking spaces. The first binary distinction is 

made based on whether the hour c h is either before 10 am after 6 pm. If so, we should 

assume only 61 occupied spaces. If not, we can assume 137 occupied spaces. 

 

Fig. 4. Sample binary decision tree for Kö Gallerie parking facility (#39) 

These decisions are recursively refined while walking towards the leaves of the 

tree turning left when a condition is met and right if not until a leaf node is reached. 

For example, we assume 293 occupants between 1 pm and 4 pm on Saturdays, if our 

capacity is below 888 parking spaces. 

Table 3 shows that the 𝑅2 of the decision trees are also generally robust on the test 

data. We again exclude the best and worst models and observe smaller deviations 

between 14.6% and 5.7% prediction error (𝑟𝑅𝑀𝑆𝐷) for models without context. Add-

ing context generally improves the models and can observe between 12.8% and 4.3% 

prediction error. Adding contextual data provides a 15.6% improvement in predictive 

quality on the capacity-weighted average of all decision tree models. 

Table 3. Overall quality of decision tree models across 35 parking facilities 

 𝑦̂− (without context) 𝑦̂+ (with context) 

 Training 𝑅2 Test 𝑅2 𝑟𝑅𝑀𝑆𝐷 Training 𝑅2 Test 𝑅2 𝑟𝑅𝑀𝑆𝐷 

2nd Worst 𝑦̂−/ 𝑦̂+ 0.53 0.53 14.6% 0.70 0.69 12.8% 

Median 𝑦̂− 0.8 0.8 10.4% 0.87 0.87 8.3% 

Median 𝑦̂+ 0.42 0.41 11.2% 0.58 0.57 9.64% 

2nd Best 𝑦̂−/ 𝑦̂+ 0.79 0.79 5.7% 0.88 0.88 4.3% 
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6 City-wide predictions and overall results 

We define the citywide prediction error 𝑟𝑅𝑀𝑆𝐷𝑐𝑖𝑡𝑦  as a capacity-adjusted aggregate 

that normalizes the aggregated 𝑟𝑅𝑀𝑆𝐷𝑖 by the total capacity 𝑘𝑖 across all 𝑛 parking 

facilities: 

 𝑟𝑅𝑀𝑆𝐷𝑐𝑖𝑡𝑦 =
∑ 𝑘𝑖∙𝑟𝑅𝑀𝑆𝐷𝑖

𝑛
𝑖=1

∑ 𝑘𝑖
𝑛
𝑖=1

 (4) 

Table 4 compares the overall prediction error 𝑟𝑅𝑀𝑆𝐷𝑐𝑖𝑡𝑦 across all 21.381 parking 

spaces in the data set. We can observe that contextual data generally improves predic-

tion models in both approaches and provide a greater improvement to decision trees. 

Likewise, we can observe that decision tree models outperform linear regression 

models by 27.6% on the citywide level. 

Table 4. Citywide prediction error rRMSDcity 

 Linear Regression Decision Tree Improvement 

𝑦̂− (without context) 8.9% 7.2% 18.7% 

𝑦̂+ (with context) 8.4% 6.1% 27.6% 

Improvement 5.2% 15.6% 31.4% 

 

We can generally confirm these improvements for every single predictive model alt-

hough the improvements vary significantly across the individual parking facilities. 

Since 𝑟𝑅𝑀𝑆𝐷𝑐𝑖𝑡𝑦  is smaller than the median prediction error we can conclude that our 

predictive models generally perform better for large parking facilities. 

7 Conclusion 

We have shown that robust predictive models for demand of parking facilities can be 

obtained from open parking status data and that classic regression techniques readily 

generate predictions with acceptable error rates while providing easy to understand 

models for decision makers and easy to implement equations and rules to implement 

decision-making algorithms. We have seen that contextual data related to (public and 

school) holidays and weather data can decrease prediction errors significantly and 

also show higher coefficients of determination 𝑅2. 

We are currently pursuing several directions to expand our results. First, we intend 

assessing the stability of the models with more data. This does include (a) stabiliza-

tion with data of other cities with published DATEX II parking status and (b) address-

ing the challenges of irregularities by compensating failures in data provision with 

similar data providers.  

We are currently benchmarking our results with other algorithms for multivariate 

time series with complex seasonality from the statistical community such as multivar-
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iate volatility models [13] as well as other supervised algorithms from the machine 

learning community that have been proposed for parking predictions such as wavelet 

neural networks [14]. 

Another direction for future research will be to develop an approach for short-term 

demand forecasts that considers the last known status as well as expected progres-

sions from this status into the next couple of hours. 

We will publish the data set after the anonymous review of this paper in an open 

data repository to provide a benchmark for parking prediction models since prior 

work on parking demand forecasts is based on proprietary data sets and our data set is 

the largest generally available dataset encompassing data from several parking facili-

ties. 

 

Acknowledgements: We thank the city of Düsseldorf to provide the data set 

openly and an anonymous company for providing technical assistance with the 

DATEX II format and providing us with access to the MDM portal.  
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