N

N

Esquisse: Using 3D Models Staging to Facilitate the
Creation of Vector-based Trace Figures

Axel Antoine, Sylvain Malacria, Nicolai Marquardt, Géry Casiez

» To cite this version:

Axel Antoine, Sylvain Malacria, Nicolai Marquardt, Géry Casiez. Esquisse: Using 3D Models Staging
to Facilitate the Creation of Vector-based Trace Figures. 17th IFIP Conference on Human-Computer
Interaction (INTERACT), Sep 2019, Paphos, Cyprus. pp.496-516, 10.1007/978-3-030-29384-0_30 .
hal-02293837

HAL Id: hal-02293837
https://inria.hal.science/hal-02293837

Submitted on 22 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-02293837
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Esquisse: Using 3D Models Staging to Facilitate
the Creation of Vector-based Trace Figures

Axel Antoine!, Sylvain Malacria?, Nicolai Marquardt®, and Géry Casiez!

! Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France
{axel.antoine, gery.casiez}Quniv-lille.fr
2 TInria Lille - Nord Europe, France
sylvain.malacria@inria.fr
3 University College London, UK
n.marquardt@ucl.ac.uk

Abstract. Trace figures are contour drawings of people and objects that
capture the essence of scenes without the visual noise of photos or other
visual representations. Their focus and clarity make them ideal represen-
tations to illustrate designs or interaction techniques. In practice, creat-
ing those figures is a tedious task requiring advanced skills, even when
creating the figures by tracing outlines based on photos. To mediate
the process of creating trace figures, we introduce the open-source tool
FEsquisse. Informed by our taxonomy of 124 trace figures, Esquisse pro-
vides an innovative 3D model staging workflow, with specific interaction
techniques that facilitate 3D staging through kinematic manipulation,
anchor points and posture tracking. Our rendering algorithm (including
stroboscopic rendering effects) creates vector-based trace figures of 3D
scenes. We validated Fsquisse with an experiment where participants
created trace figures illustrating interaction techniques, and results show
that participants quickly managed to use and appropriate the tool.

Keywords: Trace figures - 3D models staging - Vector graphics - Blender

1 Introduction

Trace figures are static illustrative figures created to capture the essence of a
situation, removing unnecessary details by limiting the graphical representation
to the most important contours/outlines of the shown objects and people (for
example, the visual abstract of our Figure 1 includes several trace figures). Trace
figures, even when augmented with graphical annotation overlays (such as text,
arrows or circles), minimize visual clutter and are effective at describing the
essence of an interactive scenario.

Likely because of their clarity and focus, trace figures are gaining popularity
in the HCI community, especially for illustrating a novel interaction technique

2 Antoine et al.

Esquisse 3D Modelling Workflow B Vector-based Trace Figures
. Optimized Extracting object contours Vi
Open-source & templates /arious postures,
Blender add-on camera views, and

easy corrections

%

Tools: anchor

points, Ul import,

object manipulation ‘Computing contour visibility
Anchors

Easy kinematic
manipulation and
automated posture W

traking

Leap moton tracking

|

Fig.1: Workflow of Esquisse: (left) facilitating staging of 3D scenes with
templates, anchor points, direct UI import, kinematic manipulation and
automated posture tracking, (center) Esquisse’s algorithm rendering the
tracing images, and (right) final vector-based trace figures.

or interactive systems. As a result, they can be found in many papers, presenta-
tions or posters: over three years of UIST proceedings [1,2,3] for instance, more
than 25% of the published papers used trace figures, often used to demonstrate
gestures, provide an overview of a system setup or illustrate a design space.

Producing trace figures from scratch without a model requires very good
drawing skills. Therefore, many users have to rely on manual photo tracing in
order to produce the outlines of devices and people shown in the illustrations
[9]. This manual tracing is a time-consuming and tedious task and eventually
results in a limited workflow where even small changes of the drawn people,
postures or devices might require starting again the manual tracing process from
scratch. This is even more of a problem in cases where several hand postures
must be produced or when users are required to change the point of view of
the illustration. So far, research on the production of illustrations has been
mostly focused on facilitating the production of new types of illustrations such
as animated or interactive illustrations [19,18], whether they illustrate interactive
scenarios or not. However, despite the frequent use of trace figure to illustrate
interactive scenarios, and the challenges of the process to produce them, we are
lacking software tools that are targeted at facilitating their production.

In this paper, we support the hypothesis that 3D staging is a good alternative
to mediate the production of static trace figures to illustrate interactive scenar-
ios. More precisely, we present Esquisse, an open-source tool implementing an
innovative 3D staging workflow for producing trace figures (Figure 1). In partic-
ular, the underlying idea behind FEsquisse is to capitalize on the flexibility of a
3D modeling software for staging 3D scenes that are subsequently rendered as a
trace-figure vector file that can still be post-edited in a vector-graphics software
afterwards. We provide 3D models, tools and techniques to make this workflow
accessible to every people even if they do not have previous experience with 3D
modeling software.

The workflow implemented by Fsquisse works as follows. Users open a 3D
scene using one of the provided templates. If needed, they can directly modify
the position and pose of the objects using interaction techniques provided by

Esquisse - Author’s version 3

Esquisse that simplify the manipulation of these 3D objects. For instance, users
can easily specify a hand posture using a Leapmotion hand tracking camera®, or
by adding a contact point anchor which will snap a desired finger to this contact
point and modify the hand pose according if the point is moved on the display.
They can also add other avatars and objects to the scene if required. Users then
position the camera in the 3D space according to their needs. They can also
integrate interface screenshots in various displays. Optionally they can add a
stroboscopic effect to illustrate the motion of a finger or object. A simple click
to a Render button then calls Esquisse’s rendering algorithm which generates a
trace figure of the scene, integrating all added interface images, and outputs a
vector-based file (examples of trace figures produced with Fsquisse can be seen
in Figure 1 and other figures throughout the paper; further renderings can be
found in the Supplementary Material).

In summary, Esquisse’s workflow facilitates the rapid production of trace
figures, as well as the adaptation of existing figures. Our work makes the following
contributions: (i) introducing a novel workflow for quickly creating vector based
trace figures; (ii) presenting the design of interaction techniques to facilitate
this workflow; (iii) developing an innovative rendering pipeline, adapted from
existing techniques; (iv) implementing this workflow into a Blender add-on. To
allow members of the HCI community to create trace figures with Esquisse, it is
released as a free open-source® add-on for the 3D modelling software Blender [14].

The remainder of the paper is structured as follows. After presenting a taxon-
omy of illustrative figures for HCI scientific contribution, we discuss the existing
workflows for creating trace figures. We then describe details of Esquisse’s inter-
action techniques and its implementation, before discussing the evaluation and
figures created by participants.

2 Taxonomy of Trace Figures

We define trace figures as graphical representations of the most essential features
of a scene by using contours/outlines of objects, people and the environment.
In this section, we will introduce a classification of different kinds of trace fig-
ures and discuss typical characteristics. To better understand the use of trace
figures within the HCI community, we analysed the use of trace figures in the
papers published over three years (2015-2017) of UIST proceedings [1,2,3]. Many
publications at UIST include details on gestural interaction techniques, use of
interaction techniques and technical details on device use, and are a subset of the
spectrum of publications published in the HCI community. Our initial sampling
of proceedings indicated a common use of photo tracing in UIST papers, but
our analysis below similarly translates to other HCI publications (e.g., Interact
or ACM CHI), though the overall counts and percentages would probably differ.

Overall, we found 124 trace figures (often multiple per paper) in the 222
accepted UIST papers of these three years (trace figures in 29% of the papers).

4 LeapMotion — https://www.leapmotion.com/
5 Github Esquisse — http://ns.inria.fr/loki/esquisse/

https://www.leapmotion.com/
http://ns.inria.fr/loki/esquisse/

Antoine et al.

We constrained our search so that all trace figures included in our sample set
need to include at least one part of a person’s body (e.g., a person’s fingers,
hand or full body), and therefore we did not include pure technical line drawing
of components or devices. By following a systematic coding (by two researchers)
and iterative thematic analysis of the figure sample set we identified the following
five categories:

1.

Demonstration of gestures (64): this most common type of trace figure
illustrates a hand or body gesture (e.g., swiping, pressing, turning). Trace
figures work well to clearly illustrate the accurate postures of hands or a
person’s body ([13, fig 13], [29, fig 1]).

. Overview of system setup or assembly (26): these illustrations show,

for example, the setup of tracking cameras, the setup of hardware (e.g., [9,
fig 1d]) or the technical assembly of a wearable device.

. Interaction sequences (14): these sequences show multiple frames of an

interaction with a system (e.g., key steps of the interaction with a screen
interface).

. Design space illustrations (13): this can be a technical design space

(e.g., variations of a tangible form factor) or a design space of gestures (e.g.,
a collection of 8 different hand postures).

. Other (7): this includes any other uses of trace figures, for examples as part

of tables, flow diagrams, etc.

By continuing our analysis and coding, we further identified the following

characteristics of trace figure illustrations:

— C1 — Person’s body, hands or fingers: the most common drawn element

across all figures was a person’s hand (total of 218 drawings of a person’s
hand, often multiple per figure, in 43 papers). This corresponds to the high
number of figures in HCI papers demonstrating gestures ([9, fig 1d]). A
person’s body (or most of the body, like the upper torso) was drawn as part
of figures 158 times across 22 papers. Individual fingers were drawn 51 times
in 7 papers ([13, fig 13]) and a person’s head (without rest of the body) 16
times (in 5 papers).

C2 — Devices and objects: phones/tablets (32) and wearable devices
such as smartwatches (20) were the most commonly drawn devices in our
sample. 37 of the trace figures included some kind of tangible devices or
other physical objects (e.g. active tokens, door handles). Other less frequently
drawn objects and devices included: white boards and interactive tabletops
(12), VR/AR headsets (7), tracking cameras (4), and car interiors (2) for
automotive Ul interaction.

C3 — Screen user interfaces: 31 of the trace figures included screenshots
of graphical user interfaces. For example, screenshots show the interface el-
ements on mobile phones or smartwatch screens (see screenshots embedded
in [13, fig 13] and [16, fig 3]).

— C4 — Environment: most photo traces (116) do not include any drawn

details of the physical environment (e.g., background, furniture). Only 8

Esquisse - Author’s version 5

figures (e.g., [22, fig 1]) include traces lines delimiting the size of a room, or
showing furniture and other objects in the environment. Since an important
goal of photo traces is to reduce visual clutter, it seems that most figures
strictly limit the traced details.

— C5 — Use of colour: photo traces can be pure black-and-white line draw-
ings (34) but many include colour: 45 drawings used coloured areas within
the drawing (e.g., solid fill of a person’s hand in a skin-coloured tone), and
58 drawings used colour for making annotations and labels that stand out
against the black and white trace figure (e.g., coloured arrows on top of the
drawing, or coloured text labels).

— C6 — Annotations: most of the trace figures (121) include meta anno-
tations such as labels, text descriptions, arrows or motion path lines. Most
common annotations (besides text labels) are arrows (63) and touch contact
point visualisations (37), for example by showing a coloured circle at the
position where a person’s fingers are touching the screen ([13, fig 13] and
[16, fig 3]).

— C7 — Static vs dynamic: most figures depict a static scene (e.g., a single
moment in time, a static setup), but a small number of figures (6) were de-
signed for illustrating motion or movement (e.g., moving arms for a body ges-
ture). Those usually used stroboscopic effect, where previous states/positions
are drawn in different colours or line styles. McAweeney et al. made the
same observation in their taxonomy focused on how gestures can be repre-
sented [26].

— C8 — Use of perspective: 55 trace figures in 43 papers use some sort
of perspective (e.g., [25, fig 2] and [22, fig 1]) , which can be required to
illustrate specific interactive scenarios (e.g. users around a table top, device
tilting).

Our categorization and identified characteristics are of course depending on
our sample and the kind of publications at UIST, and it is likely that further
categories and properties can be identified when widening the sample. However,
our categories and characterizations are a first-order approximation of the kind
of interaction technique trace figures created for publications within the HCI
community.

We used this characterisation of trace figures to directly inform the design
of Esquisse. We decided to support various hand gestures and full-body mod-
els in the application to capture much of the use cases for trace figures we
found in the literature. Commonly used device types (such as phones, tablets
and smartwatches) became part of our template library (explained shortly). We
also decided to directly integrate different colouring and tracing mechanisms
(e.g., see through lines, coloured areas), and to simplify the use of human body
representations in the visualisations (through templates and automated hand
tracking).

6 Antoine et al.
3 Practices for Creating Trace Figures

3.1 Model-based Methods

While producing trace figure is a common practice, especially for HCI researchers,
surprisingly little work has been devoted to ease the production of such mate-
rials. The most commonly used method remains manual photo-tracing [9,33]
which can be described as follows. First, users stage the situation they want to
illustrate using physical devices and other people standing in as actors, and take
a photo of it. Then, they transfer this photo to a computer or a tablet, and
open it as a background layer in an image editing software. Third, they sketch
traces on top of the photo using their favourite input device and graphics editing
software (usually Inkscape or Adobe Illustrator). Once the sketch is complete,
they may add visuals such as overlaying an interface over a display or adding
arrows, texts or contact points. Finally, they export the trace figure, most of the
time as a vector graphic file so it can be resized at will.

This manual photo-tracing workflow still suffers from several limitations.
First, it is time consuming and relatively tedious. It also requires users to have
devices as well as friends or colleagues available that can be used as models. It
may also require users to build physical props, for instance to illustrate inter-
action with devices they do not actually own or that exist only as 3D models.
Another limitation is that some “minor” modifications (for instance a change
in hand posture) might require users to start the whole process from the begin-
ning. Similarly, changing the angle of the illustration requires users to repeat the
process with a new photo.

Some of the vector graphics editing software provide tools to convert a photo
into a drawing-like vector figure. However, these methods rely on juxtapositions
of colour fills and result in a different visual quality than trace figures. Typically
for a hand, the skin will result in several colour fills to recreate the gradient
resulting of the lightning condition. Moreover, such an approach will vectorize the
entire image, including background or elements that will ultimately be removed
from the trace figure. A method letting the user perform local adjustment has
thus been proposed [34].

Edge detection algorithms, based on the seminal work by John Canny [6],
seem an alternative solution for tracing the contours of a model photography,
but these algorithms usually fill pixels rather than producing a vector path, and
may result in low-quality results depending on lighting conditions and quality of
the source image. Mixed initiative [28,30] lets the human lead the edge detection,
but still suffers from lighting conditions and blurry objects.

Specifying the contours of an object is also typical from rotoscoping tech-
nique® used in animation, which consists in drawing on top of consecutive images
(typically a video). The traditional workflow for rotoscoping however differs from
the manual photo-tracing as it still consists in creating several closed shapes for
each object in order to ease subsequent manipulation [24]. As a result, tools

5 Rotoscoping — https://en.wikipedia.org/wiki/Rotoscoping

https://en.wikipedia.org/wiki/Rotoscoping

Esquisse - Author’s version 7

specifically designed for easing rotoscoping, such as Roto++ [24], are less suit-
able for producing trace figures.

The comic book drawing tool ClipStudio Paint” could facilitate the produc-
tion of trace figure when a photo model cannot be provided, since it provides
3D avatars that can be used as support to manually photo trace on top of them.
However, this tool is mostly targeted at drawing characters and is not adapted
to the illustration of HCI scenarios . Finally, DemoDraw [9] captures whole body
movements from a user through a Microsoft Kinect and produces a minimalist
illustration that can be overlaid with arrow annotations or using stroboscopic
effects. Fsquisse extends beyond this earlier related work by supporting the easy
creation of vector-based photo tracings of both body movements, gestures and
input devices.

3.2 Staging-based Methods

2D staging can be used to produce illustrations similar to trace figures, typi-
cally by using cliparts found online or suggested by Google AutoDraw® (a tool
based on machine learning that retrieves clipart images based on approximate
sketches drawn by the user) to rapidly produce trace figures without relying on a
photo model. Those approaches require the appropriate cliparts (which are not
necessarily available in vector format), and the 2D nature of clipart does not
allow changes to correct the perspective of the figure which can be essential for
illustrating interactive scenarios involving multiple users in a smart living room,
or interaction techniques on a smartphone based on device tilting (for example,
see Figures 1 in [22] and [31]).

SketchStudio is a 2.5D staging tool for prototyping animated design scenar-
ios, based on body avatars and graph nodes that depict the journey of that
avatar in space and time [21], scenes that can be played back through a dedi-
cated viewing interface. There are, however, limitations when using this tool for
the creation of photo traces. First, it is focused on large scale interactive scenar-
ios involving a user that moves around devices, making it more difficult to use
for fine interactions such as touch-based interaction on a smartphone. Further-
more, all interactive devices and interfaces must still be sketched, thus requiring
drawing skills from the user, and the tool does not produce a vector-graphics
rendering of the scene. Finally, several participants in an experiment conducted
with SketchStudio mentioned that it becomes limited for ideas that need to be
illustrated in 3D form, which is why Kim et al. suggest to improve their system
to support the use of 3D models.

Finally, ComiPo! ? is a design tool that relies on 3D models to make it possible
to design manga-like comic books. 3D staging to produce 2D renderings here
solves many problems associated with perspective. However besides the type of
rendering, this tools could not be used for the production of trace figures for HCI

" ClipStudio Paint — https://www.clipstudio.net/en/
8 AutoDraw — https://www.autodraw.com/
9 ComiPo! — https://www.comipo.com/

https://www.clipstudio.net/en/
https://www.autodraw.com/
https://www.comipo.com/

8 Antoine et al.

because of the lack of support for aspects like the inclusion of interfaces or the
production of vector format. Moreover, it does not use a camera system, which
means that changing the perspective of a scene requires users to independently
rotate all the objects of that scene.

4 Esquisse Workflow and Interaction

To use Esquisse the user starts Blender with the Esquisse add-on'® previously
installed. We chose Blender as it is a free and cross-platform software widely
used to model, animate and render 3D scenes. However, as a complete 3D mod-
elling environment, Blender provides controls with many degrees of freedom that
are not needed for illustration production, which is why we overrode most de-
fault controls with simpler interaction techniques specifically implemented for
FEsquisse. These techniques are located in a dedicated panel located on the left
side of the Blender interface (see Figure 2, left). To create a vector graphics
illustration with Esquisse, users stage a 3D scene using one of the pre-existing
templates as starting point or manually adding 3D objects to the scene. For ob-
jects featuring a screen (e.g. a smartphone) they can optionally load an external
file with a screenshot image of the interface, which gets automatically rendered
as part of the screen of the selected device. They then position and align the
objects using the specific interaction techniques of Esquisse built to ease the
manipulation of articulated objects (and in particular simplifying the modifica-
tion of hand postures), but they can still use default Blender controls if they
prefer. Next they orient the viewport to the desired point of view. If wanted,
they can add a stroboscopic effect to illustrate the motion of a finger, for ex-
ample. Last they render the scene to create the trace figure as a vector-based
SVG file. Optionally, they can tweak or add graphical elements using any vector
graphics editing software like Inkscape or Illustrator. Note that these steps do
not necessarily have to be performed in that specific order. In the following we
detail each step of this workflow.

4.1 Choosing a Template and Objects

We identified in our taxonomy (C1 and C2) that many trace figures only vary
in details, which is why FEsquisse provides TEMPLATES with pre-arranged sets
of people and objects used in these typical scenarios. Each TEMPLATE defines a
3D scene in Blender whose objects are loaded in the scene currently opened, for
example two hands holding a phone, a person interacting with a smartwatch, or
two people around an interactive tabletop. TEMPLATES can be easily selected
from the gallery of thumbnail images of all currently available templates (Figure
2, (1) Esquisse Library tab). We created TEMPLATES based on the most com-
monly used postures and devices from our taxonomy, but new templates can be
easily added by saving a scene and adding it to the Esquisse library.

10 Esquisse on GitHub — http://ns.inria.fr /loki/esquisse/

http://ns.inria.fr/loki/esquisse/

Esquisse - Author’s version 9

0 R PRI slenderRender +

II] Camera Persp

(1) Ha

© ObjectMode +| @+ || O %l / Global

Fig. 2: Blender with the Esquisse add-on. All controls specific to Esquisse
are located in a dedicated panel located on the left side of the interface (1).
The right side shows the 3D view of the scene with several objects from the
Esquisse library such as a SmartWatch with its GUI (2) and hand models
(3)), and the frame of the current camera view (4).

In a similar way, users can complete a 3D scene by adding new objects (e.g.,
phones, avatars) from the object library of Esquisse. Custom 3D objects can
obviously also be added to the scene using the import feature from Blender.

4.2 Adding GUIs in the Scene

Esquisse allows users to insert Uls (which was the case of 31 figures from our
taxonomy, see C3) on 3D objects featuring a screen. A screen is a 3D plane
object with a specific tag on which a user interface (defined in an external file)
can be imported and displayed on.

Common objects with displays (smartphones, tablets, TVs, smartwatches
and tabletops) are already provided in Esquisse with a defined screen area. It
is also possible to add a screen to any other 3D object directly in Esquisse, by
adding a screen object to the scene and setting the corresponding 3D object as
its parent.

4.3 Facilitating Object Positioning

Simple objects like smartphones or tabletops can be positioned in the 3D scene
easily using the 3-axis manipulator already available in Blender for translating,
rotating and scaling the objects. However, when it comes to complex objects like
a person’s hand or body, manipulating the global position, rotation and scale
of the combined object is not enough as these models are more complex and

10 Antoine et al.

the position and orientation of each of their sub-objects (e.g., bones for a hand
model) need to be modified. Esquisse provides rigged models that take into
account child-parent relationships between bones. That being said, modifying
a body or hand posture while keeping a coherent visual appearance can be a
difficult and a time-consuming process for novice users [4,32]. In the following,
we introduce techniques to simplify this task.

=

2
=
e TN
\\

,/ / “¢;,,

S =
7 \4,«4\\\

; - =
‘ / —SX N

QU QY QS

Fig.3: 1) A red anchor is added to the screen of the tabletop. 2) The index
of the right hand is linked to the anchor. 3) The anchor is moved and the
arm follows.

Anchors. We define an ANCHOR as a point on an object that can be used to
constrain the posture of another 3D object (e.g. a hand model). For example,
ANCHORS allow users to specify a contact point on a display, attach a specific
finger of a hand model to it, and then to modify the location of this contact while
preserving the kinematic constraints of the hand (i.e., Esquisse makes sure that
the fingers are touching the ANCHOR points with a realistic hand posture when
reachable).

Once in ANCHOR mode, anchors can be added on any object (e.g. a screen)
by clicking on the desired locations on the object. The user then links anchors
to parts of another another object (e.g. fingertips of a hand). The anchors define
constrains between the two objects that are then used by the Blender inverse
kinematic solver to compute the position and orientation of the armature when
the anchors are moved in 3D. Esquisse also provides a mode to move a linked
object with the anchors, to avoid changing the current pose of the armature.

Fingers Flexion and Extension. The manipulation of non-anchored fingers may
remain difficult [4,32], therefore Esquisse provides two specific controls for mod-
ifying hand poses. Inspired by Achibet et al. who control the pose of a virtual
hand using sliders on a tablet [4], we added slider controls to manipulate the
flexion of every finger of our hand model. Changing the value of a slider updates
the flexion of the corresponding finger in the 3D scene in real time by adjusting
the orientation of each bone of the finger. This method allows users to rapidly
modify hand poses, for instance to describe a mid-air gestural vocabulary.

Esquisse - Author’s version 11

We also implemented a LeapMotion integration so the hand posture can be
demonstrated. Similarly, body postures could be demonstrated using a Kinect
like in DemoDraw [9].

4.4 Snap to Camera Point of View

In Blender cameras can be moved and rotated like any other object. As rotations
can be difficult to perform, we implemented a feature to snap the camera object
to the current viewport position. In this way the user can simply move the
viewport to the desired point of view and then ’teleport’ the camera so it matches
its location and orientation.

4.5 Stroboscopic Effect

Esquisse allows users to generate stroboscopic figures, used to convey the move-
ment of objects over time [27], by rendering each step with an increasing amount
of transparency (C7 in our taxonomy). Once the scene is set up (Figure 4, top
left), the user can enter in stroboscopic mode by clicking on the appropriate but-
ton in the interface. This allows users to define different keyframes, each saving
the positions of all the current objects in the scene. Fsquisse uses keyframes to
detect the objects that moved and create a version of the corresponding objects
(i.e. a copy of the objects displayed in wireframe) as illustrated Figure 4, top
right (a keyframe version of the anchor and the linked hand are created when
the anchor is moved). Keyframe objects can also be manipulated in the scene
if necessary. Additional frames can be defined between keyframes in FEsquisse
using linear interpolation (see Figure 4, bottom left, where two steps are defined
using interpolation).

All of the presented techniques in this section are designed to allow users
inexperienced with 3D modelling softwares to rapidly stage a scene with 3D
models. Most importantly, the techniques allow rapid iteration and experimen-
tation (e.g., quickly changing the posture of a hand or camera view of the scene),
something that is not possible to do when manually creating trace figures.

5 Esquisse Rendering Process

From the 3D scene, FEsquisse is rendering vector images focusing on the contours
of the objects. One important requirement of our rendering approach is to create
closed contours only, so users can modify if they want the rendered objects in
a vector graphics editing software afterwards (e.g. moving objects or modifying
the colour or opacity of an object).

A first possible approach consists in propagating virtual points along the
edges of an object mesh, by considering their visibility, to form the contours of
the 3D object [17]. Unfortunately, this technique requires a high mesh density
to accurately compute meshes’ visibility, which yields to time consuming render-
ings. A second approach [12] consists in building a view map assigning properties

12 Antoine et al.

Fig. 4: 1) The index of the right hand is linked to a red anchor. 2) As soon as
the hand moves in stroboscopic mode (a), a wireframe version of the object
is created (b). 3) Esquisse rendering of the scene. 4) Esquisse rendering of
the scene when 2 additional frames are defined by interpolation between
the two keyframes.

to edges and then extracting contours by selecting specific edges based on their
nature and visibility in order to chain them to form strokes. Unfortunately, ex-
tracted contours are split in several strokes which can be problematic to produce
accurate polygons filling in a vector-based format. A third approach consists in
creating layers containing full objects with the most effective cuts [10]. This fa-
cilitates the edition of SVGs in a graphics editing software but at a cost of longer
rendering times to compute the depth order of the different layers.

As a result we chose to adapt the approach proposed by Eisemann et al. [11]
which provides fill regions support by using the 2D arrangement package of the
CGAL! library to extract 2D regions formed by 2D strokes. In that way, it is
possible to extract at the same time line contours and fill polygons.

5.1 Esquisse 3D to SVG Rendering

This section explains how paths are calculated and how the final SVG rendering
is performed.

From 3D to 2D paths We adapted the two approaches introduced in [11,12] to
our needs and implemented them in Blender as follows.

" https://www.cgal.org

Esquisse - Author’s version 13

Step 1: Computing a view map for the scene
Similarly to [11,12], the first step iterates over all the edges of the objects to
build a view map of the scene, by characterizing the nature of each edge (crease,
silhouette, etc.) as well as its wvisiblity (visible or hidden). We use the Freestyle
implementation already available as an extension in Blender.

Step 2: Selecting and grouping edges of interest
Second step consists in organizing the edges by selecting all the edges that corre-
spond to a SILHOUETTE, CONTOUR or a CREASE, and to group them depending
on their visibility. Note that keeping hidden edges is crucial as it can be required
to illustrate some interactive scenarios (typically instances of back-of-device in-
teraction).

Step 3: Computing and associating filling regions
Once all the edges of interest of the different objects have been grouped, we
compute the regions formed by the 2D projection of the visible ones. As [11], we
use the 2D arrangement package provided by CGAL, which provides the regions
formed by the 2D projection of the edges.

Step 4: Associating 2D regions to their corresponding 3D objects
We associate a region to its corresponding object in the scene by picking for a
random point inside the region (using the GPC library'?) and raycasting this
point to the 3D scene to identify the corresponding 3D object. This step is used
to group regions of a same object, as well as select a default filling colour for
each region.

From Paths to SVG rendering The SVG file produced by Esquisse comprises two
main layers, one for fillings and visible strokes, and a second for hidden strokes
(which must be drawn on top of fills to be visible). The first layer contains one
sub-layer per object grouping all its fillings and visible strokes, which eases the
post-editing using other softwares. The line style used for each type of contour,
as well as the colour of each object can also be specified by the user in the
Esquisse interface. Filled contour layers are produced to avoid stroke layers from
overlapping.

Generating filled contours containing holes. To appear as a hole, the points of the
inside contour have to be oriented counter-clockwise while the points of the outer
contour should be clockwise!3 for a non-zero fill rule. As CGAL 2D arrangement
package returns regions under a hierarchy, regions inside other regions can be
considered as holes and thus, be drawn in a counter-clockwise way.

Projecting Uls on screens. Our algorithm also needs to project possible images of
graphical user interfaces on their corresponding screens in the 3D scene. For that,
we use numpy linear algebra solver to compute the planar homography from the
four corners of the user interface to the four corners of the screen object in the
scene. However, considering SVG does not currently support perspective matrix

12 http://www.cs.man.ac.uk/~toby/gpc/
13 https://www.w3.org/TR/SVG /painting.html

http://www.cs.man.ac.uk/~toby/gpc/
https://www.w3.org/TR/SVG/painting.html

14 Antoine et al.

transformations, we apply the homography to all the geometric objects of the
user interface by computing the new coordinates. Some elements like ellipses,
arcs or text first need to be discretized into segments or Bezier curves in order
to be projected. All the projected elements are then grouped and a clipping path
is applied to this group using the visible contours of the screen object, in order
to avoid overlapping artefacts (e.g. a finger in front of the smartphone’s display).

Rendering a stroboscopic figure. To render a stroboscopic figure, we adapt the
rendering pipeline as follows. First, it computes the four rendering steps for each
keyframe. Then it iterates over these keyframes and computes the SVG rendering
for an object only if it has moved since the previous keyframe.

Doing multiple renderings implies having multiple contours for some of the
objects (keyframes and final), and thus, requires to carefully choose the z-index
of each object in the SVG file.

First, all objects that did not move in the scene are positioned with a low
z-index. Then, we iterate over each keyframe and draw its objects with increased
transparency and z-index .

Note that these modifications marginally deter rendering time, which remains
below 5 seconds for the Figures 3 and 4, when running on the i7 4GHz computer
described in the study section.

6 Study: Illustrating Interactions

We evaluated Fsquisse by asking HCI students and researchers to produce visual
illustrations of interaction techniques from the literature using our tool.

6.1 Method

Participants and apparatus. We recruited 8 participants (z=33, 0=10), all re-
searchers in HCI. Three were academic researchers, three PhD students and two
Post-graduate students. None of these participants had previous experience with
the Blender software. The experiment was conducted with Blender v2.79 with
the Fsquisse add-on installed, running on an iMac 27’ 5K display with i7 4Ghz.
Three input devices were available: a Logitech G9 Laser computer mouse, an
Apple Magic Trackpad 2 and a LeapMotion. Adobe Illustrator and Inkscape
were also installed and available to use at anytime if the participants wanted to
complete the vector graphics file produced with Esquisse.

Procedure. Participants were invited to sit in front of the computer and were
instructed that the experiment consisted in producing trace figures. We first
showed them a set of trace figures extracted from the taxomony to clearly ex-
plain what trace figures are. After this introduction, we introduced the main
task which consisted in illustrating one interaction technique from a set of four
published in the HCI community (AuraSense [37], Put-that-there [5], TiltReduc-
tion [7] and Stitching [15]) that were described using the original accompanying

Esquisse - Author’s version 15

videos. We chose these interaction techniques because they rely on a variety
of devices (e.g. smartphone, smartwatch, large display) and input modalities
(device motion, touch, skin and speech input).

Participants were first presented with a 10 minutes long video explaining
Blender basic controls and Esquisse features, and were then given 30 minutes
to illustrate one interaction using Esquisse. They were also told that they could
edit the produced SVG file afterwards with a graphics editing software.

Since the experiment’s main focus was not the production of 2D interfaces,
we provided a set of 2D interfaces associated to the 4 interaction techniques,
to be used as screen interfaces. We measured the time it took participants to
create the tracing figure (up to 30 minutes) and made observer notes about
the strategy used by each participant. This experiment employed a think aloud
protocol [23] encouraging participants to comment on Esquisse while producing
the illustration. Figures produced by the participants can be found as additional
material to this paper.

6.2 Interaction and Strategy in Esquisse

Templates. All participants but two started their illustration using one of the
predefined templates. Interestingly, the two participants who did not [P3, P§]
were producing illustrations for Stitching which consists of a pen gesture span-
ning over two interactive tablets, a situation for which Fsquisse does not provide
a template for. Both P3 and P8 manually added two mobile devices and one right
hand with a stylus and placed them in the scene. In the other cases, Esquisse
provides predefined templates close enough to the interactions to illustrate.

Anchors. As for templates, all participants used anchors except the two par-
ticipants who had to illustrate Stitching [P3, P8]. In this case, all participants
adopted a similar workflow: they simply moved the right hand with the stylus
over the two devices on an axis without using anchors. Interestingly, one of these
participants wanted to anchor the stylus [P8], which is not available in Esquisse
but could be quickly implemented. His idea was to put an anchor on the tablet
screen, then link the anchor to the stylus tip, and so, moving the stylus and
the hand at the same time when moving the anchor. Overall, all participants
understood and adopted the use of anchors very quickly.

Stroboscopic effect. All participants but one used the stroboscopic feature of
Esquisse in order to illustrate motion. Two of them [P1,P2] who had to illustrate
AuraSense used the interpolation feature in order to generate additional frames
between the two defined keyframes. Once again, these participants exhibited a
similar workflow, positioning the right hand with an anchor, adding a keyframe,
moving the right hand to a different position and then set the interpolations.
The participant who did not use the stroboscopic effect [P5], considered himself
as figure expert, and did it intentionally to build instead a storyboard-like figure
for TiltReduction using 3 distinct illustrations.

16 Antoine et al.

8D manipulations. All participants but two used the anchoring system and the 3-
axis translation manipulator to make all the displacements they wanted, without
expressing difficulties. The only two participants [P5,P6] who rotated objects
during staging had to illustrate TiltReduction, which involves a rotation from the
wrist to tilt a smartphone. One of them [P6] was the only participant who had
difficulties with Esquisse and failed to create what he wanted, commenting that
”8D manipulations are too difficult for me”. That being said, he ignored easier
alternative strategies that could be used to rotate objects, such as anchoring all
the fingers to force the hand pose, only move the camera to a different point of
view, or to use the Leap Motion. The latter was adopted by [P5] to more easily
change the hand orientation. Overall, only two participants used the Leap Motion
for changing the hand posture, the other one [P2] was illustrating AuraSense and
used it to define an index pointing posture for the right hand. Finally, all the
participants used the camera snapping functionality and no one moved using the
3-axis manipulator.

SVG post-editing. While all participants were invited to do so, only three par-
ticipants [P4,P5,P7] post-edited the figure produced with Esquisse in a vector-
grahics editing software. While two performed only minor adjustments, [P5] built
a 3 images storyboard and overlaid an arrow depicting motion over one figure.

6.3 Participants Subjective Feedback.

Learning and use. Overall, participants appreciated Esquisse, reporting that it
was “easy to use and fun” [P4, P5, P8] and “fast” [P5, P7, P§]|, even if Esquisse
requires a learning phase for objects manipulation and Blender interface [P1,
P3, P8|. Participants quickly understood all the functionalities by just watching
the 10 minute tutorial video [P1, P3, P4, P5]. Even better, [P1] was “impressed”
and said it was “fast to learn and master the different functionalities”, making
Esquisse “interesting considering [his] poor artistic skills”.

Post editing. Globally, participants were satisfied with the Fsquisse rendering
results, but some still prefer to refine the figure afterwards in a graphics editing
software [P4, P5, P7]. More importantly, participants saw Esquisse as a rapid
prototyping tool “for making quick illustrations using complex objects to be mod-
ified afterwards” [P5, P7].

Improvements. Participants were enthusiastic with Fsquisse and commented on
several additional features that could enrich its functionalities. [P2] commented
that the capacity to control any object of the scene using motion sensing (as
Yoon et al. did with a smartphone [35]) could be useful to make 3D staging
even easier. [P4] would have liked to identify the keyframes objects in the scene,
for example by using a different colour or a number associated to the keyframe
index. [P8] commented that the ability to modify a User Interface file within
Esquisse directly in the scene would optimize the workflow. Finally, two partici-
pants [P5, P8] commented that the capacity to overlay arrows “between here and

Esquisse - Author’s version 17

there” directly within Esquisse, either using the anchors or optionally displaying
arrows between the keyframes, would remove the need to open the produced SVG
file in a graphics-editing software afterwards. These suggested improvements are
not challenging and will be implemented in the future versions of Esquisse.

7 Discussion and Conclusion

Trace figures are powerful and frequently used materials for illustrating HCI re-
search papers. Based on a characterization of trace figures used in the HCI com-
munity, we designed Esquisse, a tool that implements a novel workflow based
on 3D objects manipulation to stage a 3D scene and export it as a vector trace
figure. We contributed interaction techniques to facilitate this workflow (includ-
ing the use of anchor points to help the manipulation of complex articulated
objects such as hands and the integration of stroboscopic effects) and a ren-
dering pipeline to extract the different contours, fill them and finally generate
a vector-based SVG file. We implemented Esquisse as an add-on for the open
source 3D modelling software Blender and evaluated its usability in a qualita-
tive experiment with 8 participants. The results of this experiment suggest that
users, even when not familiar with Blender nor used to produce trace figures,
managed to quickly produce trace figures illustrating interaction techniques from
the literature with little to no experience in the production of trace figures or
use of a 3D modelling software.

Esquisse thus provides an alternative workflow to produce trace figures, that
can be used by users who believe they do not have the skills required to per-
form manual photo-tracing. Fsquisse can also benefit users who usually rely on
manual photo-tracing, for instance, as a rapid-prototyping tool as reported by
participants in our experiment. A 3D scene staged with Fsquisse can also be
exported as is as a model for manual photo-tracing, which could be useful in
situations where one has to illustrate a “complex and heavy” interactive scenario
(for instance involving tabletops, large displays, several users, etc.) without hav-
ing to prepare the physical setup required to take a photo of the scene.

There are limitations when using Fsquisse. Typically, while adding models
to Esquisse is as easy as adding a scene to its template sub-folder, designing
these templates still need basic 3D modeling and staging skills. We anticipate
that in the future, progress in computer vision and computer graphics research
will allow to extract 3D objects from a photography to automatically create
templates [36,8,20].

An aspect of Fsquisse that can be seen as both an advantage or a draw-
back is that it has been implemented as a Blender add-on. We made this deci-
sion because Blender provides a solid environment for 3D modelling and object
manipulation that Esquisse benefits from, as well as because it simplifies its
distribution and maintenance. Because of this, however, the interaction with
Esquisse is constrained by what the Blender environment allows add-ons to do
(e.g., the design of the user interface for add-ons is limited). In that respect, we
designed Esquisse by trying to provide the best user experience and interaction

18 Antoine et al.

that Blender allowed us to design. For example, we added dedicated slider con-
trols to ease the definition of hand and body poses and implemented a direct
LeapMotion integration to help users to manipulate hand poses. Similarly, in-
spired by DemoDraw [9], we plan to implement a Microsoft Kinect integration
to ease the manipulation of body poses.

Most trace figures overlay meta annotations (such as texts or arrows). Besides
contact points, Esquisse does not currently support a way to add these annota-
tions and the user still has to open the produced SVG file in a graphic editing
software to add them afterwards. However, meta annotation are usually simple
geometric shapes or text layers that should be straightforward to integrate in
the add-on. Adding meta-annotation support to Esquisse could be added by
mimicking how anchors are currently added: the meta-annotation would be a
shape or text that would be positioned over an invisible plan that would not be
rendered when the SVG file is produced.

We hope our open-source release of Esquisse will help the production of trace
figures that are gaining popularity in the HCI community as they are effective
in capturing the essence of interactive scenarios.

References

1. UIST ’15: Proceedings of the 28th Annual ACM Symposium on User Interface
Software and Technology. ACM, New York, NY, USA (2015)

2. UIST ’16: Proceedings of the 29th Annual Symposium on User Interface Software
and Technology. ACM, New York, NY, USA (2016)

3. UIST ’17: Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. ACM, New York, NY, USA (2017)

4. Achibet, M., Casiez, G., Lécuyer, A., Marchal, M.: Thing: Introducing a
tablet-based interaction technique for controlling 3d hand models. In: Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems. pp. 317-326. CHI ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2702123.2702158

5. Bolt, R.A.: "put-that-there”: Voice and gesture at the graphics interface. In: Pro-
ceedings of the 7th Annual Conference on Computer Graphics and Interactive
Techniques. pp. 262-270. SIGGRAPH ’80, ACM, New York, NY, USA (1980).
https://doi.org/10.1145/800250.807503

6. Canny, J.: A computational approach to edge detection. In: Readings in Computer
Vision, pp. 184-203. Elsevier (1987)

7. Chang, Y., L’Yi, S., Koh, K., Seo, J.: Understanding users’ touch behavior on
large mobile touch-screens and assisted targeting by tilting gesture. In: Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems. pp. 1499-1508. CHI ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2702123.2702425

8. Chen, T., Zhu, Z., Shamir, A., Hu, S.M., Cohen-Or, D.: 3-sweep: Extracting ed-
itable objects from a single photo. ACM Transactions on Graphics (TOG) 32(6),
195 (2013)

9. Chi, P.Y.P., Vogel, D., Dontcheva, M., Li, W., Hartmann, B.: Authoring il-
lustrations of human movements by iterative physical demonstration. In: Pro-
ceedings of the 29th Annual Symposium on User Interface Software and

https://doi.org/10.1145/2702123.2702158
https://doi.org/10.1145/800250.807503
https://doi.org/10.1145/2702123.2702425

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Esquisse - Author’s version 19

Technology. pp. 809-820. UIST ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2984511.2984559

Eisemann, E., Paris, S., Durand, F.: A visibility algorithm for converting
3d meshes into editable 2d vector graphics. In: ACM SIGGRAPH 2009 Pa-
pers. pp. 83:1-83:8. SIGGRAPH ’09, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1576246.1531389

Eisemann, E., Winnemdller, H., Hart, J.C., Salesin, D.: Stylized vector art from 3d
models with region support. In: Computer Graphics Forum. vol. 27, pp. 1199-1207.
Wiley Online Library (2008)

Grabli, S., Turquin, E., Durand, F., Sillion, F.X.: Programmable style for npr line
drawing. In: Proceedings of the Fifteenth Eurographics Conference on Rendering
Techniques. pp. 33-44. EGSR’04, Eurographics Association, Aire-la-Ville, Switzer-
land, Switzerland (2004). https://doi.org/10.2312/EGWR/EGSR04/033-044
Han, J., Lee, G.: Push-push: A drag-like operation overlapped with a page transi-
tion operation on touch interfaces. In: Proceedings of the 28th Annual ACM Sym-
posium on User Interface Software & Technology. pp. 313-322. UIST ’15, ACM,
New York, NY, USA (2015). https://doi.org/10.1145/2807442.2807457

Hess, R.: The Essential Blender: Guide to 3D Creation with the Open Source Suite
Blender. No Starch Press, San Francisco, CA, USA (2007)

Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P., Smith, M.: Stitching: Pen
gestures that span multiple displays. In: Proceedings of the Working Conference
on Advanced Visual Interfaces. pp. 23-31. AVI '04, ACM, New York, NY, USA
(2004). https://doi.org/10.1145/989863.989866

Huang, D., Zhang, X., Saponas, T.S., Fogarty, J., Gollakota, S.: Leveraging
dual-observable input for fine-grained thumb interaction using forearm emg. In:
Proceedings of the 28th Annual ACM Symposium on User Interface Software
& Technology. pp. 523-528. UIST ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2807442.2807506

Karsch, K., Hart, J.C.: Snaxels on a plane. In: Proceedings of the ACM
SIGGRAPH /Eurographics Symposium on Non-Photorealistic Animation and
Rendering. pp. 35-42. NPAR ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2024676.2024683

Kazi, R.H., Chevalier, F., Grossman, T., Fitzmaurice, G.: Kitty: Sketching dynamic
and interactive illustrations. In: Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology. pp. 395-405. UIST ’14, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2642918.2647375

Kazi, R.H., Chevalier, F., Grossman, T., Zhao, S., Fitzmaurice, G.: Draco:
Sketching animated drawings with kinetic textures. In: ACM SIGGRAPH 2014
Posters. pp. 5:1-5:1. SIGGRAPH ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2614217.2614221

Kholgade, N., Simon, T., Efros, A., Sheikh, Y.: 3d object manipulation in a single
photograph using stock 3d models. ACM Transactions on Graphics (TOG) 33(4),
127 (2014)

Kim, H.J., Kim, C.M., Nam, T.J.: Sketchstudio: Experience prototyping with 2.5-
dimensional animated design scenarios. In: Proceedings of the 2018 Designing In-
teractive Systems Conference. pp. 831-843. DIS ’18, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3196709.3196736

Lander, C., Gehring, S., Kriiger, A., Boring, S., Bulling, A.: Gazeprojector: Ac-
curate gaze estimation and seamless gaze interaction across multiple displays.

https://doi.org/10.1145/2984511.2984559
https://doi.org/10.1145/1576246.1531389
https://doi.org/10.2312/EGWR/EGSR04/033-044
https://doi.org/10.1145/2807442.2807457
https://doi.org/10.1145/989863.989866
https://doi.org/10.1145/2807442.2807506
https://doi.org/10.1145/2024676.2024683
https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2614217.2614221
https://doi.org/10.1145/3196709.3196736

20

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

Antoine et al.

In: Proceedings of the 28th Annual ACM Symposium on User Interface Soft-
ware & Technology. pp. 395-404. UIST ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2807442.2807479

Lewis, C., Rieman, J.: Task-centered user interface design. A Practical Introduction
(1993)

Li, W., Viola, F., Starck, J., Brostow, G.J., Campbell, N.D.F.: Roto++: Acceler-
ating professional rotoscoping using shape manifolds. ACM Trans. Graph. 35(4),
62:1-62:15 (Jul 2016). https://doi.org/10.1145/2897824.2925973, http://doi.acm.
org/10.1145/2897824.2925973

Lo, J., Torres, C., Yang, 1., O’Leary, J., Kaufman, D., Li, W., Dontcheva, M., Pau-
los, E.: Aesthetic electronics: Designing, sketching, and fabricating circuits through
digital exploration. In: Proceedings of the 29th Annual Symposium on User Inter-
face Software and Technology. pp. 665-676. UIST ’16, ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2984511.2984579

McAweeney, E., Zhang, H., Nebeling, M.: User-driven design principles for gesture
representations. In: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. pp. 547:1-547:13. CHI ’18, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3173574.3174121

McCloud, S.: Understanding Comics: The Invisible Art (1993)

Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In:
Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques. pp. 191-198. SIGGRAPH ’95, ACM, New York, NY, USA (1995).
https://doi.org/10.1145/218380.218442

Nancel, M., Vogel, D., De Araujo, B., Jota, R., Casiez, G.: Next-point prediction
metrics for perceived spatial errors. In: Proceedings of the 29th Annual Symposium
on User Interface Software and Technology. pp. 271-285. UIST ’'16, ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2984511.2984590

Neufeld, E., Popoola, H., Callele, D., Mould, D.: Mixed initiative interactive edge
detection. In: Graphics Interface. pp. 177-184 (2003)

Ruiz, J., Li, Y.: Doubleflip: A motion gesture delimiter for mobile interac-
tion. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. pp. 2717-2720. CHI ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1978942.1979341

Wu, Y., Huang, T.S.: Hand modeling, analysis and recognition. IEEE Signal Pro-
cessing Magazine 18(3), 51-60 (2001)

Xie, J., Hertzmann, A., Li, W., Winnemdller, H.: Portraitsketch: Face sketching
assistance for novices. In: Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology. pp. 407-417. UIST ’14, ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2642918.2647399

Xie, J., Winnemoller, H., Li, W., Schiller, S.: Interactive vectorization. In:
Proceedings of the 2017 CHI Conference on Human Factors in Comput-
ing Systems. pp. 6695-6705. CHI ’17, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3025453.3025872

Yoon, D., Lee, J.H., Yeom, K., Park, J.: Mobiature: 3d model manipula-
tion technique for large displays using mobile devices. In: 2011 IEEE Interna-
tional Conference on Consumer Electronics (ICCE). pp. 495-496 (Jan 2011).
https://doi.org/10.1109/ICCE.2011.5722702

Zheng, Y., Chen, X., Cheng, M.M., Zhou, K., Hu, S.M., Mitra, N.J.: Interactive
images: cuboid proxies for smart image manipulation. ACM Trans. Graph. 31(4),
99-1 (2012)

https://doi.org/10.1145/2807442.2807479
https://doi.org/10.1145/2897824.2925973
http://doi.acm.org/10.1145/2897824.2925973
http://doi.acm.org/10.1145/2897824.2925973
https://doi.org/10.1145/2984511.2984579
https://doi.org/10.1145/3173574.3174121
https://doi.org/10.1145/218380.218442
https://doi.org/10.1145/2984511.2984590
https://doi.org/10.1145/1978942.1979341
https://doi.org/10.1145/2642918.2647399
https://doi.org/10.1145/3025453.3025872
https://doi.org/10.1109/ICCE.2011.5722702

Esquisse - Author’s version 21

37. Zhou, J., Zhang, Y., Laput, G., Harrison, C.: Aurasense: Enabling ex-
pressive around-smartwatch interactions with electric field sensing. In: Pro-
ceedings of the 29th Annual Symposium on User Interface Software and
Technology. pp. 81-86. UIST ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2984511.2984568

https://doi.org/10.1145/2984511.2984568

	Esquisse: Using 3D Models Staging to Facilitate the Creation of Vector-based Trace Figures

