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Abstract. Machine Teaching (MT) is an emerging practice where people, without
Machine Learning (ML) expertise, provide rich information beyond labels in order
to create ML models. MT promises to lower the barrier of entry to creating ML
models by requiring a softer set of skills from users than having ML expertise. In
this paper, we explore and show how end-users without MT experience success-
fully build ML models using the MT process, and achieve results not far behind
those of MT experts. We do this by conducting two studies. We first investigated
how MT experts build models, from which we extracted expert teaching patterns.
In our second study, we observed end-users without MT experience create ML
models with and without guidance from expert patterns. We found that all users
built models comparable to those built by MT experts. Further, we observed that
users who received guidance perceived the task to require less effort and felt less
mental demand than those who did not receive guidance.

Keywords: Interactive Machine Learning · Machine Teaching · User Studies.

1 Introduction

Over the past decades, the Machine Learning (ML) field has devoted its attention to
the study of algorithms that extract knowledge from data. It is common to hear today
about solutions where machines can make predictions with almost, or better-than, human
precision. This success comes at a cost: building these ML models requires an expert
model builder with knowledge of the underlying learning algorithm. Further, creating
such solutions often requires large amounts of pre-labeled data, which might be easy or
practical to obtain for certain problems (e.g., Google Photo’s image labeling), but not
others (e.g., face detection in a personal photo collection).

As the ML field considers addressing an emerging set of problems, it faces the
challenge of meeting a growing demand of being an accessible tool for creating models.
For example, a paralegal may want to sift through and classify tens of thousands of
legal documents according to a concept unique to a case; or a developer may want to
create an app that classifies and filters news feeds according to the user’s preferences.
Instead, access to the specialists who can build ML models like the one described above
is limited by their scarcity and cost.
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In addition to the above challenges, there is a growing demand [16] for explainable
[11] or intelligible models [35] to not only enable accountability, but also to facilitate
model inspection and debugging [27]. To address some of these issues, interactive
machine learning (iML) has emerged as a field at the intersection of HCI and ML that
focuses on ML model-building interactive processes with a human-in-the-loop [1].

Machine Teaching (MT) [34] is an emerging perspective on iML that is comple-
mentary to the discipline of ML. It aims to address the aforementioned challenges by
extending iML’s notions of interactivity, and by focusing on information exchange be-
tween a human (teacher) as a non-ML expert who has rich, useful knowledge beyond
labels. In particular, a machine teacher can be an active participant choosing elements to
populate the training set, labeling them, and choosing when and how to fix prediction
errors by creating semantically meaningful features influenced by what they have seen.
As teachers are active protagonists in this teaching process, they can take different paths
to teach a model. This is akin to the many ways there are for a programmer to implement
a function. For the scope of this paper we will use the term machine teacher or teacher
to denote the subject-domain expert who trains an ML model using MT’s process.

While MT has not yet been widely adopted, we believe it is a promising approach to
help subject-matter experts build ML models that are accessible, scalable, and intelligible.
Part of its appeal is that building a model using the MT process requires from the teacher
expertise about a subject-domain, and no knowledge about the details, such as type and
parameters, of the underlying learning algorithm. This set-up leads to a process requiring
a softer skillset than traditional ones that require ML knowledge. In this paper, we focus
on exploring and showing how the MT process enables end-users (MT and ML novices)
to construct ML models comparable to those built by MT experts through two studies in
which participants construct binary classification models of text documents.

This work makes the following contributions. First, we conduct a qualitative study
in which we characterize MT phases and expert patterns by studying how current MT
experts teach. Second, we encode these patterns and practices into an MT system to
guide end-users. Third, we conduct an experiment that shows (a) that given minimal
prior training in ML and MT, novices are able to construct models of similar quality
to those built by experts, and (b) that guiding novices with the aforementioned expert
practices helps them to approach expert teacher behavior and build models with less
effort than novices without such guidance. Fourth, to our knowledge, this is the first
paper that presents a study of end-users engaging in a MT process or loop, through a
system that instantiates MT as stated by [34]. Finally, we discuss additional MT teaching
patterns and design considerations for MT systems, as next-steps for researchers and
designers to consider.

2 Background and Related Work

Interactive Machine Learning and Teaching. Our work takes place in the context of
a supervised iML workflow where people build ML models by providing knowledge
in an interactive loop [1, 12]. In this flow, it is worth noting three main activities where
people can actively express knowledge: choosing what to label (sampling), labeling, and
featuring. Sampling can help the learning system see an example of something it has
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not seen before, and thus can learn from; labeling taps into a person’s subject-domain
knowledge to provide the learning system with sources of truth; and featuring enables
people to identify or select the properties that can help the learning system improve its
internal representation of the concept one is trying to teach. Most prior work has focused
on the latter two activities in isolation, where people either (1) label while keeping
features constant [13, 14, 17], or (2) feature while keeping labels constant [5, 8, 24].
Others have evaluated alternative strategies within the iML loop [4]. Only a few works
have looked into systems where people provide both labels and features [3, 10]; even
fewer have looked into people choosing a sampling strategy to interactively build and
refine the training set [7]. Our work looks at the iML loop holistically where the above
three activities occur in concert, and with a deeper emphasis on human interaction. We
do this within the framing of machine teaching, as defined by [34], a point of view we
will expand in the next sections.

In addition to the above, the term machine teaching has been used in different
contexts. Zhu et al. [38] refer to machine teaching as the inverse problem to machine
learning. In this definition, the problem is about finding the optimal training set, given a
particular learning algorithm and a target model. This non human-in-the loop definition
addresses a different problem from the one we are trying to solve. Our focus is about
facilitating the interactive extraction of knowledge from a human teacher, towards the
building of a model, while not knowing details about the learning algorithm under the
hood.

Democratizing ML. The promises and enthusiasm around ML fuel the desire to make
it a tool that everybody can either create or use. Many efforts actively pursue and address
these goals. We group these efforts to make ML accessible into two schools of thought:
(1) making it easier to become an ML expert, or (2) giving end-users access to tools that
hide the complexities of interacting with an ML algorithm. In the former category, places
like Udacity 3 provide courses to train individuals into ML engineers, but these solutions
address a different form of democratization. We are not interested in a subject-domain
expert having to go to school in order to solve an immediate problem, or one that happens
rarely. Instead, we focus on changing the curricula of what an end-user needs to know to
create an ML model, by abstracting the complexities of ML algorithms.

There are too many tools and experiences to enumerate that claim to lower the barrier
for the general public of problem-owners to use ML solutions. Places like Amazon’s Web
Services ML, Microsoft’s Azure ML, or Google’s Cloud AI provide visual front-end
solutions for the “easy” creation and deployment of ML models. Other tools hide the
complexity of ML trainers in the form of end-user libraries such as Scikit-Learn [33],
ml5.js 4, or turicreate 5; or visual tools such as prodi.gy 6 or lobe.ai 7. Some tools exist
to support model-building including both data and coding capabilities [32]. Many of
these tools succeed in different ways at reducing the amount of detailed ML knowledge

3 https://www.udacity.com
4 https://ml5js.org/
5 https://github.com/apple/turicreate
6 https://prodi.gy/
7 https://lobe.ai/
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needed in order to use them, but do not fully remove the need to be familiar with the
underlying ML algorithms or theory.

Automated Machine Learning (AutoML) is a time-saving alternative designed to
automate parts of the ML pipeline, including hyperparameter selection [21], feature
engineering [25], and so on. Some work has begun to combine parts of this process [30,
31], and while AutoML can lower the barrier to building ML models, it is still subject to
the same struggles of training ML models in the traditional way. For example, automated
feature engineering can come at the cost of model interpretability, since features may
not be semantically meaningful. Furthermore, AutoML still requires significant labeled
data, not readily available for many problems, and is hence not a catch-all solution to
democratizing ML. In contrast, our efforts seek to combine the above efforts: to educate
and guide subject-domain experts to be good machine teachers, and do so within a tool
that hides the need to know the learner algorithm’s details.

Helping Novices Use (Complex) Software. Fraser et al. [15] provide a good summary
of the different strategies that can be used to help novices effectively use software. In
particular, this work discusses the pros and cons of (online) tutorials, enabling expert
functionality over time, and command, or task-level action suggestions. Our work is
inspired by this last approach of a system providing task-level action suggestions, but
applied to a different context than the aforementioned work.

Notifications are a common way to push timely information (like suggestions) to
users across a wide range of applications. When designing a notification system, many
factors need to be taken into consideration. Horvitz [18] presented twelve principles for
mixed-initiative user interfaces that guide the ways systems balance human and machine
efforts. For us, principles such as considering a user’s goals and attention, minimizing
cost of guesses, and maintaining working memory are particularly relevant to our thinking
for notifications to help novice teachers. A significant number of works also look into
identifying the proper time to show notifications by building statistical and ML models
of users engaged in particular task flows [19, 22, 23]. We choose to use notifications
to guide novice teachers utilizing heuristics based on moments around specific actions
teachers take, as we wanted a first approximation to a reasonable solution.

3 Machine Teaching

Our introduction underlines how ML’s current renaissance is also accompanied by
significant challenges. MT as described in [34] is an emerging discipline that has
the promise to address many such challenges. As a form if iML, MT is inherently a
supervised learning process that can be applied to classification and entity extraction
problems for different types of data such as text, structured documents, or images. We
have not consider the MT process’s suitability to address regression problems, a topic that
falls outside the scope of this paper. MT sits at the intersection of HCI and ML, focusing
on the exchange of knowledge between a (human) teacher and a (computer or algorithm)
learner. According to Simard et al.’s [34] vision, MT systems are at their core iML
systems, and follow a process and philosophy of incremental iteration, stating a point-of-
view about how teaching (transferring human knowledge) to a learning algorithm should
be done. MT’s aim is not only making the process of creating an ML model accessible
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Fig. 1: Machine Teaching Loop. One often starts this loop by exploring the sampling set.

and efficient for the teacher, but also producing models that are intelligible by design.
MT targets domain-subject experts as its users by abstracting the complexities of the
interface of the ML algorithm and its parameters.

Teachers express their domain knowledge through decisions they make while teach-
ing. They do so in ways that hide and abstract the parameters of a learning algorithm.
At a fundamental level, all teachers need to know how to do, is to explain why they
have labeled a document as a member of a certain class. For MT to be effective, some
conditions need to be met. First, having a consistent, underlying learning algorithm
guarantees that teachers will only encounter three types of errors (mislabeling errors,
learner errors, and representation errors), each with a known remedy [29]. Second, a
person should be able to articulate the relevant concepts that explain why an example is
(or is not) a member of a class. Third, the teacher has access to a searchable and large
set of unlabeled data (sampling set). As teachers use this process to build an ML model,
they are participating in a teaching loop.

During this MT loop, there is no predetermined test or ground-truth set a teacher
can use to assess the quality of their model. Evaluation in this case can happen by
judging the number of correct predictions in a dynamically-generated set of positively
predicted documents. This type of context is where MT shows the most promise, and
it is not uncommon. ML services such as LUIS 8 are an example of MT in the wild
where examples, labels, and features come incrementally from a subject-domain expert.
The above context stands in contrast to cases where one has access to a large set of
pre-labeled documents, such as images labeled through a CAPTCHA service. These
later cases can be best-served with unsupervised ML methods and are not something
MT aims to solve.

Figure 1 illustrates the teaching loop, and the types of teacher knowledge exchange
that take place. This teacher knowledge comes in the form of choosing what example to
label next; labeling an example; creating features; and detecting training errors, assessing
them, and fixing them. For example, following this loop, a teacher creating a Sports
news classifier from scratch (no labels or features) can (1) search for articles containing
the name “Lionel Messi”, (2) label them positive or negative according to their content

8 http://luis.ai
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Fig. 2: MATE’s main screen. (1) Model tracker. (2) Sampling interface. (3) Labeling
interface. (4) Featuring interface. (5) Notifications (added after Study 1).

(i.e., add to the training set), (3) (after the system retrains a new model) see if articles’
labels coincide (or not) with the current model’s predictions (i.e., detecting prediction
errors), (4) create a feature or explanation to the system the concept of “soccer” as
articles containing the word “soccer”, and (5) (after the system retrains a new model)
see that the training set is predicted correctly. This loop showcases how teachers can be
more [1] than just a source of labels.

MATE System. We created a system, MATE (MAchine TEaching), that implements the
above MT flow. This implementation of MATE supports binary classification, multi-class
classification, and entity extraction for text documents. However, for the purposes of
our study, we scope our description of the system and subsequent studies to binary
classification of text documents, as such models often form the building blocks of more
complex predictive models. The details of this implementation fall outside of the scope of
this paper, hence we will only focus on its main functionality and interface. The MATE
system’s interface is divided into three areas. Its center area has a sampler selector
(Figure 2-2) that lets teachers decide how to get the next document to label. MATE
provides six sampling or exploration strategies for teachers, described in Table 1. These
strategies are a representative set of the different ways of identifying useful examples to
show to the learning algorithm.

The center area also displays documents and lets teachers label them as a positive
(yes) or negative (no) example of the main class (Figure 2-3). Teachers can postpone
their decision by “deciding later” (i.e., to support concept evolution when the teacher
is uncertain about whether a document should be positive or negative [26]). On the
left side, teachers can examine and review training errors using a model tracker-like
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control [2] which displays all positive (green), negative (red), and undecided (blue)
labels (Figure 2-1) sorted vertically by prediction score. This panel lets teachers select
and review previously labeled (or undecided) documents. The right side of the interface
allows teachers to create or edit explanations (features) by defining lists of keywords
(Figure 2-4). When teachers see a document, the system highlights the words within that
document that match keywords contained in each feature. Hovering over a highlight lets
teachers see what features fire on a particular keyword or phrase.

Sampler Description

KS: Keyword Search Get a document containing one or more keywords.
RS: Random Get a random document.
US: Uncertainty Get a document near the decision boundary.
EBS: Explanation-Based Given a feature (explanation), get a document where it

activates.
PES: Possible Errors Get a document the model is likely predicting incorrectly,

when contrasted with a bag-of-words model.
PPS: Predicted Positives Get a document the model predicts as positive.

Table 1: Sampling Strategies supported by the MATE system.

Teaching Skills as Problem-Solving Skills. There are interesting parallels between the
practice of MT and programming. For example, a predictor is a function that a person
ideates (main concept), codes (sampling, labeling, and featuring), and debugs (detect
and fix training errors). These similarities underline that good teachers need to have a
certain mindset to problem solving, e.g., how they decompose and explain a concept
using a determined language. Problem-solving skills are not something one is born with;
one develops such skills over time through training and experience. Unlike programming
or software engineering, MT expert patterns are yet to be codified and evaluated; i.e.,
there is no unique way to move through the flow defined in Figure 1. In the next section
we describe how we seek to encode these expert patterns.

4 Study 1: Modeling Expert Patterns

We aim to improve and accelerate the practice of MT by helping ML and MT novices
become good machine teachers. In order to do that, we first seek to understand teaching
practices among MT experts. In this qualitative study, we observe MT experts building
ML models using the MATE system and analyze the rationale for their teaching decisions.

Participants. One of the challenges of this study is to encode expert behavior and
decision making in an emerging area whose known expert user population is small. For
our studies, we had access to a group at a research institution that developed the MT
principles and has experience using them for the past four years. The ML models built
by this group are used internally in a large software company. For our study, we recruited
six individuals (two female) from the above pool of experts, who have more than 1 year
of experience building ML models following the MT process. The average age for the
participants is 37. We compensated participants with a $10 cafeteria credit and gave
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the incentive that the person who built the best model (according to an F-score) would
receive an additional $25 Amazon gift card.

Materials. Participants used the MATE tool, described in Section 3, loaded with a
dataset containing 90,000 documents scraped from recent news articles and blog posts
from a data-aggregation service. 9 The documents belonged to sources classified as
finance, health, sports, movies & TV, music, politics, travel, and undefined.

Procedure. We conducted the study in two separate one-hour long sessions. In the first
session, participants used the MATE tool, which they were already familiar with from
significant prior use, to build an ML model using the MT process. Participants spent
35 minutes building a binary classifier for articles about movies & TV. We observed
and collected screen and audio recordings, in order to avoid interrupting or altering the
experts’ teaching flow. After the first session, we codified the videos on a data sheet
marking important moments in each participant’s teaching process. This included when
they changed their method of sampling and labeling the data, when they chose to review
training errors, when they created or modified features, or when their process seemed to
have otherwise shifted, etc.

We interviewed each participant for a second session that took place 2-3 days after
the first one, to permit time for us to codify the session video and so that the expert
participants could reflect on their process while their teaching experience was fresh
on their minds. During this session, we used our notes from the codified videos of the
first session to ask participants about their rationale for a particular teaching decision or
apparent change in behavior. To assist participants with this activity, we replayed the
corresponding video from the first session to jog their memory as needed.

5 Study 1: Results

Participants (expert teachers) generated an average of 69 labels (SD=27) during their
35-minute sessions. They created an average of 76 keywords (SD=98) across 7 features
(SD=4). The high standard deviation in keywords was due to participant S6 who searched
the web for a list of 248 recent movie titles. Figure 3 summarizes experts’ interactions
over time, including the samplers used (colored rectangles), when they reviewed labeled
documents, including errors (in red), from the model tracker (+ and - symbols), and
when they created or modified features (circle symbols). In the following, we highlight
the key teaching phases and expert practices we found in the study.

Machine Teaching Phases. From this study, we observed four high-level phases that
experts went through during their teaching process: Cold Start phase, Boundary phase,
Challenge phase, and Testing phase . These phases are non-overlapping stages of the
MT process. Experts begin in the Cold Start phase, after which they iteratively cycle
through the other three phases. The phases can be characterized as follows.

In the Cold Start phase (CSP), experts begin by using a Keyword Search to find and
label positive examples of the classifier (S1-S5). Then, they use a Random sampling
strategy to find and label diverse negative examples of the classifier (S1, S3, S6). During

9 webhose.io

webhose.io
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Fig. 3: The teaching actions experts went through over time, including samplers used
(Table 1), creation or modification of features, and documents reviewed (false positives
(FP), false negatives (FN), true positives (TP), and true negatives (TN)).

this phase they create features to roughly capture the positive class (S-all); they are not
particularly concerned with training errors at this point. After they initialize a model
with a minimum amount of positive and negative labels plus some basic features, experts
transition into Boundary or Challenge phase.

The Boundary phase (BP) is characterized by a lack of clear boundary separating
positive and negative labels in the training set. Experts use Uncertainty sampling to find
and label documents that the model does not predict confidently (S-all), i.e., documents
with a prediction score around 0.5. The main goal during this phase is refining the
boundary or improving the separation between the positive and negative labels. Based
on the labels and features they create, experts transition from this phase to Challenge.

The Challenge phase (CP) is characterized by a training set where there is a clear
boundary separating positive and negative labels. Experts use a variety of sampling
strategies to (1) label diverse data and (2) attempt to challenge or ‘break’ the model. For
example, some experts indicated they would try to frequently change sampling strategies
to increase the diversity of the labeled data (S1-S3, S5), but the main task during this
phase was to find documents that the model does not predict correctly (S-all). This
involved particular focus on the Possible Errors (S1, S3, S5-S6) and Predicted Positives
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(S-all) sampling strategies (Table 1). Based on the labels and features they create, experts
can transition to from this phase to Testing or back to Boundary.

The Testing phase (TP) is characterized by the explicit activity of evaluating the
quality of the model on unseen data. This phase can occur periodically throughout the
teaching process, most commonly transitioning from CP. Experts test their model by
looking at the documents fetched using the Predicted Positives sampling strategy, and
counting how many predictions out of a batch are correct; no new labels or features are
created in this phase. For example, if nine out of ten documents are correctly predicted
as positive, the teacher feels more confident of the model’s behavior on unseen data.
In our study, only one subject (S2) performed this task. However, all experts indicated
it is an important part of the MT process but neglected this phase due to the session’s
35-minute time constraint.

Machine Teaching Expert Patterns. In addition to the four MT phases, we were
also able to observe a number of expert patterns throughout the different teaching
phases. Experts went through a state of flow where they alternated between labeling
and featuring; sometimes adding features based on relevant keywords they saw in
documents and sometimes adding other features whenever they came to mind (S-all).
In this context, teachers added and refined features to try to generalize them and make
them representative of a relevant concept. Occasionally, some experts would also look
to feature suggestions (a list of potential keywords provided by MATE that could fix
training errors) for inspiration on relevant keywords to include (S5).

Experts tended to review errors whenever the model tracker visualization on the left
side of the MATE interface appeared to change significantly (S-all), e.g., after a transition
from CSP to BP. No one immediately addressed every training error that appeared. Each
expert had a different threshold of the acceptable amount of errors to have, generally
< 20% of labels.

To fix False Positive errors, experts would create features that explain a negative
label (e.g., if the document was a White House press release and thus not about movies
and television, they might create a feature to describe the concept of politics) (S-all).
Conversely, to fix False Negative errors, they would create features that explain a positive
label (e.g., a document talking about movie studios) (S-all).

After creating a new feature, some experts would ‘test’ the feature using the Explanation-
Based sampling strategy (S2-S3, S5-S6). MATE showed in context the feature’s key-
words in the document’s view and let experts assess whether the feature was working as
desired. This practice happened during all phases (except Testing).

Sometimes experts faced a document that was too rare, or difficult to explain with
the provided teaching language of keyword lists. Sometimes experts were just not sure
how to label a document. In either of these cases they used the “decide later” option so
that the document would not be used to train the model, or until they were certain how
to label it.

6 Study 2: Guiding Novice Teachers

While the MT loop is something that can be straightforward for someone to learn, its
effective use requires insight in terms of when and how to sample, label, and fix errors.
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At a different level, problem solving skills such as breaking a larger problem or concept
into smaller ones are also valuable for MT. As these are not innate skills, it follows that
becoming a proficient machine teacher can require practice and experience.

In Study 1, we manually extracted expert teacher patterns within the MT loop based
on our observations of expert behavior. In our second study, we synthesized guiding
notifications from these expert practices. In addition to observing how successfully
end-users apply the MT process, we want to explore whether guiding novice machine
teachers with these expert practices could help them to become better machine teachers.
As a tool, MATE sits in a class of its own in terms of user prerequisites and functionality,
hence we do not aim to compare it with other ML-building tools. Rather, our goal is
to observe how successfully end-users apply the MT process under different guiding
conditions, and see how similarly they perform compared to expert teachers. We design
this guidance to help teachers by unblocking them in their teaching progress. We did not
design or consider this type of guidance to serve as a tutoring system and hence we do
not focus on retention of expert practices.

Translating Expert Practices into Notifications. Our goal of adding a notification
system to MATE is to provide guidance throughout the MT process to novice teachers, in-
cluding sampling, featuring, and labeling guidance. When synthesizing our observations
from experts’ teaching strategies into actionable guidance, we sought to characterize
prescriptive actions as well as conditions for when such actions are useful. Table 2
summarizes the guiding notifications we produced from our observations.

The timing of the guidance notifications is an important factor in their effectiveness.
Of the four types of interruption strategies [28], we follow a naïve mediated approach
that chooses moments between tasks (a strategy supported by work like [9]), or situations
of apparent inactivity. There are several such moments during a teaching session:

1. after submitting a label,
2. after closing the review of a labeled document,
3. (while reading a new document) after 30, or 60 seconds of inactivity10,
4. after getting a document with the same sampler without labeling 10 times in a row,
5. after creating/editing a feature, and
6. after creating/editing features for 5 consecutive minutes.

The basic mechanics of our desired notifications work as follows: whenever an
interruptible moment happens, the system chooses the proper notification to show based
on the system’s current state. If there is ambiguity as to which notification to show, the
system picks one at random. The chance of a notification significantly decreases if the
notification has been seen (and acknowledged) within the past 10 minutes.

In this study, we are inspired by [20]’s wizard-of-oz methodology and adopt a
similar strategy to both observe the significant interactions (such as hovering, clicking
on a particular UI element/area) and to emulate the system’s decision about when to
present suggestions. In our implementation of the guidance functionality, we dispatch
notifications through a ‘Wizard of Oz’ who follows the above heuristics in a consistent
way. The wizard is able to work by being able to see a live-feed of the MATE system’s

10 a proxy for reading: hovering over, or scrolling a document.



12 E. Wall et al.

Name Guidance Heuristic

CSP: Positive Use KS to find and label 10 positive
examples.

At the start of the MT process.

CSP: Negative Use RS to find and label 10 negative
examples.

After 10 positive examples have been
labeled.

BP Use US to find and label 10 examples. Predictions are not well-separated.
CP Change samplers often and find di-

verse documents to label.
Predictions are well-separated.

TP Use PPS to see how accurately the
model predicts 10 unseen documents.

After every 50 labels; predictions are
well-separated.

Tip: Create Fea-
ture

Create a feature that explains a posi-
tive label.

Reviewing a false negative.

Tip: Test Feature Use EBS to see if a feature captures
documents in the context the teacher
expects.

After creating or modifying a feature,
during BP or CP. Do not show during
CSP.

Tip: Possible Er-
rors

Use PES to find documents the model
is likely predicting incorrectly.

After CSP; predictions are well-
separated.

Tip: Review Er-
rors

Review training errors. Predictions are not well-separated;
the number of errors is high.

Tip: Feature Sug-
gestion

Check if the system suggests any sen-
sible feature.

The tool suggests features; number
of errors is high; predictions are not
well-separated.

Tip: Decide Later Use “decide later” if the teacher is
not sure how to label; or they cannot
ideate a feature to explain a label.

Reviewing a document for ≥ 30 sec-
onds, or revisiting the same document
≥ 3 times.

Tip: Negative Fea-
ture

Create a feature to describe why a
label is negative.

Reviewing a false positive.

Table 2: The guidance provided to participants along with heuristics for when noti-
fications can be dispatched. We say predictions are well-separated when ≤ 10% of
prediction scores are between 0.3-0.7. We say the number of errors is high when ≥ 20%
of documents are predicted incorrectly in the model. The full text of each notification
can be found in supplemental materials.

screen and the teacher’s actions within, including interactions such as mouse movements
and clicks. We chose this implementation for a number of reasons: first, it let us add
functionality into a complex code base quickly and with ease; second, it allowed us to
fine tune policies quickly through pilot studies; and last, it let us monitor our heuristics
while opportunistically discovering important state signals to consider in the future.

While it would be feasible to implement an automated version of this guidance
system, it is not our focus and remains a topic of future work.

Participants. In this study, we recruited 24 [6] MT novices (9 female), which we
screened as individuals who self reported having little or no familiarity with either ML
and MT. The average age was 31. We also recruited an additional 3 MT experts (2
female). The MT experts served as a performance benchmark in our data analysis.
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Materials. We randomly assigned novice participants to either the Non-Guided (NG)
or the Guided (G) condition. Experts (E) performed the task under the same conditions
as Non-Guided participants. In both conditions participants built models using the same
90K article dataset from Study 1. In the Non-Guided condition, participants used MATE
as described in Section 3. In the Guided condition, participants used a version of MATE
that was modified with guidance notifications, as described above, that appeared at the
bottom right of the interface (Figure 2-5).

For both conditions, we prepared three short training videos (totaling approximately
15 minutes) to introduce fundamentals of ML, MT, and the MATE system, respectively.
We also gave participants reading materials in the form of an MT diagram (Figure 1)
and a summary description of sampling strategies in the MATE system (Table 1). The
purpose of these training materials was to provide a minimal common ground language
and knowledge for all novices participating in our experiment.

Earlier work points out that despite having basic knowledge, novice ML practitioners
can struggle with notions such as features, or negative concepts [1, 37]. Because of
this, while these off-line tutorials can help the progress from novice to expert, we still
hypothesize that the addition of in-situ guidance can accelerate even further the adoption
of MT expert practices.

Procedure. We divided our study into two stages. After passing an initial screening
for selecting ML and MT novices, participants took part in the first stage of our study,
in which we sent them our training materials. To verify that participants studied the
materials, we asked them to complete an on-line quiz that tested the fundamental
concepts they needed to know to use the MATE system and teach a binary classifier with
it. Only participants with a score ≥ 80% were allowed to proceed to stage two of our
study. Participants could re-take the quiz as many times as necessary. We compensated
participants that completed this stage with a $15 Amazon gift card.

We scheduled participants that passed the quiz to complete stage two of our study:
building a binary classifier for articles about travel and tourism. Sessions took place
within one week of passing the quiz. During this session we gave participants 5 minutes
to ask questions regarding the learning materials they studied beforehand. Afterward,
we gave a 2-minute interactive tour of the MATE system and allowed them to use it for
another 5 minutes in a sports classifier demonstration. When ready, we gave participants
45 minutes to build the classifier.

We did not want to test participants’ memory on the details of the system or their
quality as labelers. Instead, we sought to observe their teaching process. Hence, we
encouraged participants to ask questions about MATE as needed (e.g., where to click
to sample data, or how to label a document as “decide later”). Further, they could ask,
if in doubt, if a document belonged to the travel and tourism class. We demonstrated
the notifications to participants in the Guided condition, and told them that they were
designed to help them build a better model. We instructed them to follow their guidance
whenever possible, and that not dismissing them will give the system the impression that
they did not see the notification, leading to the system ’insisting’ on showing them again.

Upon completion of this second stage, we compensated participants with a $35
Amazon gift card. The novice participant in each condition who achieved the highest
F1-score (described next) was awarded an additional $50 Amazon gift card.
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Measuring a Model’s Performance. We measured the quality of the model each
participant created by computing the F1-Score over the same sampling set used during
the teaching session. As participants only labeled less than 0.2% of the set, the amount
of overlap is negligible, thus we consider these measures good estimates of each model’s
performance. While having access to these measurements will allow us to have a sense
of how novices’ output compares to the experts’, we do not expect the overall quality of
the models to be high after 45 minutes of teaching.

7 Study 2: Results

Non-Guided novices generated an average of 64 labels (SD = 23) and 70 keywords
(SD = 34) across 12 features (SD = 6). Guided novices generated an average of 72
labels (SD = 24) and 61 keywords (SD = 25) across 11 features (SD = 3). Experts who
participated as a performance baseline generated an average of 91 labels (SD = 37) and
131 keywords (SD = 114) across 11 features (SD = 5). One expert (E2) differed from
others and focused a large portion of time creating keywords by searching the web for a
list of 198 countries. The distributions of these results can be seen in Figure 4.

Fig. 4: Summary of models produced by participant groups Experts (E), Non-Guided
(NG), and Guided (G) in Study 2, including F1-Scores in the top-left, number of labels
produced in the top-right, number of features or explanations produced in the bottom-left,
and number of keywords across features in the bottom-right.

Model Quality. We computed the F1-Score from the model that each participant built,
as described in Section 6. After confirming that the sample variances were the same
using Levene’s test (W = 0.0425, p = 0.8385), we conducted an independent samples
t-test to determine if Guided novices performed better than Non-Guided. We found
t =−0.9812, p = 0.3373 and were unable to reject the null hypothesis.

While we do not see a significant difference between the groups’ model quality, we
see a trend by examining their distributions (Figure 4). We observed that experts built
better models, with a median F1-Score of 0.2938, followed by Guided novices with a
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median F1-Score of 0.2403, and lastly by Non-Guided novices with a median F1-Score
of 0.2238.

Qualitative Observations.
Besides looking at the effects of guidance on the model’s quality, we also wanted to

see how guidance affected participants’ overall user experience. After they completed
the task, participants rated their experience across 5 dimensions (perceived success level,
frustration, mental demand, pace, and effort) on a 7-point Likert scale. For success level,
1 = worst and 7 = best, while for the other four dimensions 1 = best and 7 = worst.

To see if there was a difference between Non-Guided and Guided novices, we
conducted a Mann-Whitney U test for each of the 5 dimensions. We found the following
results: success (U = 71, p = 0.9762), frustration (U = 74.5, p = 0.9059), demand
(U = 101.5, p = 0.0866), pace (U = 69, p = 0.8818), and effort (U = 81.5, p = 0.5824),
none of which indicate statistically significant differences.

Despite these results, we do see qualitative patterns among the distributions of ratings
(Figure 5). All conditions perceived a median success level of 4.

For three dimensions, Guided novices perceived a lower median {mental demand,
rushed pace, effort level}. Guided and Non-Guided novices rated a median rush of
pace of 4, compared to Expert median rating of 5. Guided novices rated a median
mental demand of 3.5 compared to Non-Guided novice and Expert median ratings of 5.
Similarly, Guided novices rated a median effort level of 4.5 compared to Non-Guided
novice and Expert median ratings of 5. Guided novices rated a median frustration level
of 3, Non-Guided novices rated a median frustration level of 2.5, and Experts rated a
median frustration level of 4. While Non-Guided novices rated a lower frustration level
(median 2.5) than Guided novices (median 3), both groups rated this dimension fairly
low, possibly due to the general perception that MT is an enjoyable process. For example,
one participant indicated that it “feels like a game” (P20), while another indicated he
“would play this all day if it were a game” (P30). When creating features to fix training
errors, another participant indicated it’s like a “word association game” (P24).

Fig. 5: Likert ratings (1-7) for Non-Guided (NG) and Guided (G) conditions in Study 2.
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Fig. 6: Summary of Likert ratings (1-7) about the guidance notifications in Study 2, for
helpfulness, timeliness, confusion, and frustration. Higher values for helpfulness and
timeliness are good, while lower values for confusion and frustration are desired.

Experts tended to feel higher levels of frustration, mental demand, rushed pace, and
effort level, possibly due to a common perception that with more time, they could have
had a much higher quality model.

In addition to these 5 dimensions, participants in the Guided condition also rated
the helpfulness, timeliness, confusion, and frustration specifically with respect to the
guidance notifications (Figure 6). Most participants expressed that the notifications
were helpful (median rating of 5) and they were largely receptive to the help. For
example, when presented a notification to move on to the next phase of training, one
participant indicated “sure, I’ll switch samplers; thank you” (P15). Some participants
indicated dissatisfaction with the timing of the notifications. One participant indicated
that notifications “don’t give me enough time to focus on one aspect before telling me to
do something else” (P01). Despite feedback about the timing, participants overall found
the notifications to be timely (median rating of 5). Similarly, participants experienced
low levels of confusion (median rating of 2) and frustration (median rating of 3).

8 Discussion and Future Work

Study Limitations. The low number of expert participants in both studies was a function
and challenge of the relatively small population of machine teaching expert participants.
From a total of around 10 experts, 6 and 3 for Studies 1 and 2, respectively, were what
was possible without having overlapping subject pools. Nonetheless, the presence of
expert participants in Study 2 served only as an anecdotal baseline to put novice results
in context. Furthermore, because of the relatively short duration in Study 1, experts
did not fully evaluate their models. However, MATE’s model tracker provided always
up-to-date information regarding model performance on the training set.

Optimal Teaching Process. We started our research looking for a gold standard teach-
ing playbook, that could lead novices on the path to teaching good models every time.
More than a single playbook, we found expert patterns which we can take as current best
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practices. What we learned by observing experts and novices alike, is that even though
the MT loop provides a sensible path to good teaching, there are still several ways to
combine teaching patterns to build a good model.

For example, the Cold Start phase pattern we encouraged consisted of adding positive
labels, then negative labels, and later a feature. However, these activities could have
occurred in any order. In fact, we observed that many participants (e.g., P15) tended to
review false positive errors, and hence created features describing “negative” concepts.
Because of this, these teachers often neglected to create features describing positive
examples. To address this, an alternative starting point during CSP could be to prompt
users to first create a feature describing the positive concept of the classifier.

The Importance of Features. In addition, one of the fundamental observations we took
from our studies, is that a model is only as good as the knowledge a teacher puts in it,
regardless of the process or order of actions. In particular, the quality or generalizability
of the features that teachers ideate affected the quality of their model, and thus the
teaching phase one could be in. While some participants showed some understanding of
the concept of overfitting (e.g., while training P08 indicated “it’s probably super overfit”)
and the importance of precise features (e.g., P12 indicated “this is a bad word to use, I
think [it’s] too generic”), many participants still struggled to come up with good features.
A guidance notification reminding users of the important balance between precise yet
generalizable features could have been helpful.

Similarly, many novices frequently asked us about how to create negative features, or
to see how positively or negative correlated an existing feature was (e.g., P04). A feature
in MATE becomes negatively or positively correlated to a label depending on that feature
’firing up’ on positive or negative examples. This suggests a common mental model that
novices think about keywords as either positively or negatively associated with a concept.
We also observed that the number of features teachers produced is negatively correlated
with F1-Score (r =−0.4700, p = 0.0205). This is likely caused by models overfitting
the training data. These observations underscore the importance of tooling during the
MT loop supporting the creation and evaluation of good features.

Model Quality. Our studies showed that the performance of models built by Guided
and Non-Guided novices was not significantly different. While considerable in terms of
effort for a user study, 45 minutes was not sufficient to teach a model of high quality,
and perhaps see differences between the two guiding conditions. Even though our
quantitative results do not show statistically significant differences, our study clearly
highlights that with minimal on-boarding, novice machine teachers are not too far behind
from experienced teachers. This reinforces the benefits of MT requiring a softer set of
skills than processes that require ML or Data Science expertise. This underlines further
the potential of MT as a way to democratize ML. In future research, we want to observe
teaching sessions longer than 45 minutes where the nuanced effects of different teaching
patterns might emerge.

Activities’ Cadence. Our results suggest that the novices’ qualitative experience ben-
efited from guidance. We also saw how the absence of guidance affected some. For
example, it was common to see Non-Guided novices spend time thinking about what to
do after the model perfectly fit the training data. We also observed moments of significant
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focus where a Non-Guided teacher would do only one thing, such as refining features, or
use a single sampler for a long time. In the absence of guidance other participants found
some tasks just fun to do, and saw feature creation/refinement as a “word association
game” (P24).

This is a behavior hinted at during our pilot, and our notification triggers accounted
for some of these “sticky” behaviors by suggesting teachers change what they are doing.
Nonetheless, we only had an opportunity to observe these behaviors in full during the
study, which reinforced our view that characterizing the proper cadence of labeling,
sampling and featuring activities is important future work.

Automating Guidance. Participants never realized that the system’s notifications were
driven by a Wizard-of-Oz. Having a consistent set of rules to follow allowed investigators
to simulate this behavior, in a believable and affordable way. Part of our future efforts
is to refine and automate the notification system so that it can run without a wizard’s
oversight. While we focused on proactive guidance in this study, future work might also
compare the effectiveness of proactive guidance to reactive [36] or on-demand guidance
in the context of the MT process.

9 Conclusions

In this paper we build onto the promise for Machine Teaching as a way to widen access
to the use of ML by end-users and domain experts to solve problems. We look at how
users without experience in the MT process apply it to create a binary classifier. Further,
we look into lowering the barrier of entry to MT, by identifying and synthesizing MT
expert patterns, and presenting them to novices at appropriate times during different
teaching sessions. While our results on the effects of this guidance are statistically
inconclusive, we see a trend that Guided novices’ produce better models as well as
perceive a better overall teaching experience (less effort and less mental demand) than
Non-Guided novices. Chief among the results from our studies is the observation that
people without special ML knowledge can successfully engage in a teaching loop to
create ML classification models, and that those models are not far behind the ones
created by MT experts. MT is a process that arguably requires a person’s full attention,
including making richer decisions than simply labeling. We believe that this apparent
cost is actually low, as we observed that the proper experience and interaction loop can
make it an engaging activity end-users are not only willing, but also happy, to participate
in. In particular we are encouraged by feedback from users who expressed a willingness
to participate in a “fun” problem-solving process. We believe there are many areas to
explore in the context of MT, and we see a green field of opportunity at the intersection
of HCI and ML to advance the discipline and adoption of this form of end-user ML.
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