arXiv:1806.08547v1 [cs.NE] 22 Jun 2018

Analysis of Evolutionary Algorithms in Dynamic
and Stochastic Environments

Vahid Roostapour Mojgan Pourhassan Frank Neumann

Optimisation and Logistics

School of Computer Science

The University of Adelaide
Australia

June 25, 2018

Abstract

Many real-world optimization problems occur in environments that
change dynamically or involve stochastic components. Evolutionary al-
gorithms and other bio-inspired algorithms have been widely applied to
dynamic and stochastic problems. This survey gives an overview of major
theoretical developments in the area of runtime analysis for these prob-
lems. We review recent theoretical studies of evolutionary algorithms and
ant colony optimization for problems where the objective functions or the
constraints change over time. Furthermore, we consider stochastic prob-
lems under various noise models and point out some directions for future
research.

http://arxiv.org/abs/1806.08547v1

Contents

1 Introduction

2 Preliminaries

2.1
2.2

2.3
24
2.5
2.6

Dynamic ONEMAX Problem
Linear Pseudo-Boolean Functions Under Dynamic Uniform Con-

straints Lo Lo
Dynamic Vertex Cover Problem
Dynamic Makespan Scheduling Problem
Stochastic Problems and Noise Models
Evolutionary algorithms

3 Analysis of Evolutionary Algorithms on Dynamic Problems

3.1
3.2

3.3
3.4
3.5

ONEMAX Under Dynamic Uniform Constraints
Linear Pseudo-Boolean Functions Under Dynamic Uniform Con-

straints Lo
The Vertex Cover Problem
Makespan Scheduling
The MAZE Problem

4 Analysis of Evolutionary Algorithms on Stochastic Problems

4.1
4.2

4.3

Influence of The Population Size
Influence of Different Noise Distributions on The Performance of
Population Based EAs oL
Resampling Approach for Noisy Discrete Problems

5 Ant Colony Optimization

5.1
5.2

Dynamic Problems 0oL
Stochastic Problems

6 Conclusions

1 Introduction

Real-world problems are often stochastic and have dynamic components. Evo-
lutionary algorithms and other bio-inspired algorithmic approaches such as ant
colony optimization have been applied to a wide range of stochastic and dy-
namic problems. The goal of this chapter is to give an overview on recent
theoretical developments in the area of evolutionary computation for stochastic
and dynamic problems in the context of discrete optimization.

Stochastic problems occur frequently in real-world applications due to un-
predictable factors. A good example is the scheduling of trains. Schedules give
precise timing when trains arrive and depart. However, the actual departure
and arrival times may be subject to delays due to various factors such as weather
conditions and interfering schedules of other trains. Using evolutionary com-
putation for the optimization of stochastic problems, the uncertainty is usually
reflected through a noisy fitness function. The underlying fitness function for
these problems is noisy in the sense that it produces different results for the
same input. Two major noise models, namely prior noise and posterior noise,
have been introduced and investigated in the literature. In the case of prior
noise, the solution is changed prior to the evaluation of the given fitness func-
tion, whereas in the case of posterior noise the solution is evaluated with the
given fitness function and a value according to a given noise distribution is added
before returning the fitness value.

Dynamic problems constitute another important part occurring in real-world
applications. Problems can change over time due to different components be-
coming unavailable or available at a later point in time. Different parts of the
problem that can be subject to a change are the objective function and possi-
ble constraints of the given problem. In terms of scheduling of trains, trains
might become unavailable due to mechanical failures and it might be necessary
to reschedule the trains in the network in order to still serve the demands of the
customers well.

The area of runtime analysis has contributed many interesting studies to
the theoretical understanding of bio-inspired algorithms in this area. We start
by investigating popular benchmark algorithms such as randomized local search
(RLS) and (1+1) EA on different dynamic problems. This includes dynamic ver-
sions of ONEMAX, the classical vertex cover problem, the makespan scheduling
problem, and problem classes of the well-known knapsack problem. Afterwards,
we summarize main results for stochastic problems. Important studies in this
area consider the ONEMAX problem and investigate the runtime behavior of
evolutionary algorithms with respect to prior and posterior noise. Moreover,
the influence of populations in evolutionary algorithms for solving stochastic
problems is analyzed in the literature, and we place a particular emphasis on
those studies. Furthermore, we review the performance of the population based
algorithms on different posterior noise functions.

Ant colony optimization (ACO) algorithms are another important type of
bio-inspired algorithms that has been used and analyzed for solving dynamic and
stochastic problems. Due to their different way of constructing solutions, based

on sampling from the underlying search space by performing random walks on a
so-called construction graph, they have a different ability to deal with dynamic
and stochastic problems. Furthermore, an important parameter in ACO algo-
rithms is the pheromone update strength which allows to determine how quickly
previously good solutions are forgotten by the algorithms. This parameter plays
a crucial role when distinguishing ACO algorithms from classical evolutionary
algorithms. At the end of this chapter, we present a summary of the obtained
results on the dynamic and stochastic problems in the context of ACO.

This chapter is organized as follows. In Section[2] we summarize the dynamic
and stochastic settings that have been investigated in the literature. We present
the main results obtain for evolutionary algorithms in dynamic environments
and stochastic environments in Section [Bland Ml respectively. We highlight the-
oretical results on the behavior of ACO algorithms for dynamic and stochastic
problems in Section[fl Finally, we finish with some conclusions and outline some
future research directions.

2 Preliminaries

This section includes the formal definitions of dynamic and stochastic optimiza-
tion settings that are investigated in this chapter.

In dynamically changing optimization problems, some part of the problem
is subject to change over time. Usually changes to the objective function or
the constraints of the given problem are considered. The different problems
that have been studied from a theoretical perspective will be introduced in the
forthcoming subsections. In the case of stochastic optimization problems, the
optimization algorithm does not have access to the deterministic fitness value
of a candidate solution. Different types of noise that change the actual fitness
value have been introduced. The most important ones, prior noise and posterior
noise, will be introduced in Section 2.5

The theoretical analysis of evolutionary algorithms for dynamic and stochas-
tic problems concentrates on the classical algorithms such as randomized local
search (RLS) and (1+ 1) EA. Furthermore, the benefit of population-based ap-
proaches has been examined. These algorithms will be introduced in Section 2.6l

2.1 Dynamic OneMax Problem

Investigations have started by considering a generalization of the the classical
ONEMAX problem. In the ONEMAX problem, the number of ones in the solution
is the objective to be maximized. Droste [9] has interpreted this problem as
maximizing the number of bits that match a given objective bit-string. Based
on this, he has introduced the dynamic ONEMAX problem, in which dynamic
changes happen on the objective bit-string over time. An extended version of
this problem is defined by Kotzing et al. [27] where not only bit-strings are
allowed. Here each position can take on integer values in {0,...,r — 1} for
7 € N>o. The formal definition of the problem follows.

Let [r] = {0,...,r—1} for r € N>y, and z,y € [r]. Moreover, let the distance
between x and y be

d(z,y) =min{(x —y) mod r,(y —xz) mod r}.

The extended ONEMAX problem, ONEMAX, : [r]* — R, where a is the
objective string defining the optimum, is given as:
ONEMAX,(z) = Z d(a;, x;).
i=1

The goal is to find and maintain a solution with minimum value of ONEMAX,,.

Given a probability value p, the dynamism that is defined on this problem is
to change each component i, 1 < i < n, of the optimal solution a independently
as:

a; —1 mod r; with probability p/2

{ a; +1 mod r; with probability p/2
a; =
ag; with probability 1 — p

2.2 Linear Pseudo-Boolean Functions Under Dynamic Uni-
form Constraints

Linear pseudo-Boolean functions play a key role in the runtime analysis of evo-
lutionary algorithms. Let x = zix2...x, be a search point in search space
{0,1}", and w;, 1 < i < n positive real weights. A linear pseudo-Boolean
function f(z) is defined as:

fl@) =wo + szxl
i=1

For simplicity and as done in most studies, we assume wy = 0 in the follow-
ing. The optimization of a linear objective function under a linear constraint is
equivalent to the classical knapsack problem [26]. The optimization of a linear
objective function together with a uniform constraint has recently been inves-
tigated in the static setting [15]. Given a bound B, 0 < B < n, a solution x is
feasible if the number of 1-bits of the search point x is at most B. The bound
B is also known as the cardinality bound. We denote the number of 1-bits of
z by |z)s = Y i, z;. The formal definition for maximizing a pseudo-Boolean
linear function under a cardinality bound constraint is given by:

max f(x)
s.t. |z|1 < B.

The dynamic version of this problem, referred to as the problem with a
dynamic uniform constraint, is defined in [39]. Here the cardinality bound

changes from B to some new value B*. Starting from a solution that is optimal
for the bound B, the problem is then to find an optimal solution for B*. The
re-optimization time of an evolutionary algorithm is defined as the number of
fitness evaluations that is required to find the new optimal solution.

2.3 Dynamic Vertex Cover Problem

The vertex cover problem is one of the best-known NP-hard combinatorial op-
timization problems. Given a graph G = (V, E), where V = {vy,...,v,} is the
set of vertices and E = {ey, ..., e} is the set of edges, the goal is to find a min-
imum subset of nodes Vo C V that covers all edges in F, i.e. Ve € E,eNVg # 0.
In the dynamic version of the problem, an edge can be added to or deleted from
the graph.

As the vertex cover problem is NP-hard, it has been mainly studied in terms
of approximations. The problem can be approximated within a worst case
approximation ratio of 2 by various algorithms. One standard approach to
obtain a 2-approximation is to compute a maximal matching and take all nodes
adjacent to the chosen matching edges for the vertex cover. Starting from a
solution that is a 2-approximation for the current instance of the problem, in the
dynamic version of the problem the goal is to obtain a 2-approximate solution
for that instance of the problem after one dynamic change. The re-optimization
time for this problem refers to the required time for the investigated algorithm
to find a 2-approximate solution for the new instance. This dynamic setting has
been investigated in [36].

2.4 Dynamic Makespan Scheduling Problem

The makespan scheduling problem can be defined as follows. Given n jobs and
their processing times p; > 0, 1 < i < n, the goal is to assign each job to one of
two machines M; and M5 such that the makespan is minimized. The makespan
is the time that the busier machine takes to finish all assigned jobs. A solution
is represented by a vector x € {0,1}" which means that job i is assigned to
machine M; if x; = 0 and it is assigned to My if x; = 1, 1 < ¢ < n. With this
representation, the makespan of a given solution x is given by

f(z) = max {Zpi(l — xz),Zplxl}

and the goal is to minimize f. In the dynamic version of this problem, the
processing time of a job may change over time, but stays within a given interval.
In [34], the setting p; € [L,U], 1 < i < n, where L and U are a lower and
upper bound on each processing time, have been investigated. The analysis
concentrates on the time evolutionary algorithms need to produce a solution
where the two machines have discrepancy at most U. Dynamic changes to the
processing times of the jobs have been investigated in two different settings. In
the first setting, an adversary is allowed to change the processing time of exactly

one job. In the second setting, the job to be changed is picked by an adversary
but the processing time of a job is altered randomly.

2.5 Stochastic Problems and Noise Models

We consider stochastic optimization problems where the fitness function is sub-
ject to some noise. Two different noise models have mainly been studied in
the area of the theoretical analysis of evolutionary computation. Noises that
affect the solution before the evaluation are called prior noise. In this case, the
fitness function returns the fitness value of a solution that may differ from the
given solution because of the noise. Droste studied the effect of a prior noise
which flips one randomly chosen bit of the given solution with probability of p,
before each evaluation [II]. Note that the noise does not change the solution,
but it causes the fitness function to evaluate a solution with a noisy bit flip.
Other kinds of prior noises have also been considered. For example, a prior
noise which flips each bits with the probability of p or a prior noise which sets
each bit independently with probability of p to 0 [22].

Another important type of noise is where the fitness of the solution is changed
after evaluation. This type of noise is called posterior noise or additive posterior
noise. The noise which commonly comes from a defined distribution D, adds
the value of a random variable sampled from D to the value coming from the
original fitness function [20, [I3] 22].

In the noisy environment, the problem of finding the optimal solutions is
harder as the noise is misleading the search. The goal is to find an optimal
solution for the original non noisy fitness function by evaluating solutions on
the fitness function affected by noise. However, it has been proven that sim-
ple evolutionary algorithms behave considerably well when facing this kind of
problems. In addition to this, properties of stochastic settings that are hard for
evolutionary algorithms to deal with have also been studied in [13].

We concentrate on stochastic problems with a fixed and known solution
length that are subject to noise. We would like to mention that there are also
studies investigating the performance of evolutionary algorithms with unknown
solution length. This poses a different type of uncertainty which we will not
capture in this chapter. We refer the interesting reader to [3] [6].

2.6 Evolutionary algorithms

Analyzing evolutionary algorithms often starts by investigating a standard ran-
domized local search approach and a simple (1 4 1) EA. Here we present these
algorithms in addition to a population-based (1 + \) EA for which results are
summarized in Section [l

A standard RLS (see Algorithm[I]) starts with a bit-string as the initial solu-
tion, makes a new solution by flipping one bit of the current solution uniformly
at random at each iteration, and replaces the current solution with the new
solution if the new one is better in terms of fitness. The algorithm repeats these
steps, while the stopping criterion is not met.

Algorithm 1: RLS

1 The initial solution «x is given;
2 while stopping criterion not met do

3 y < flip one bit of = chosen uniformly at random;
4 if f(y) > f(z) then
5 Ty

Algorithm 2: (1+1) EA

1 The initial solution z is given;

2 while stopping criterion not met do

3 y < flip each bit of z independently with probability 1/n;

it /(y) > f(x) then
| =y

SN

The (1+1) EA (see Algorithm[2)) is a simple evolutionary algorithm in which
the population consists of only one solution and only one solution is generated
at each time step. This algorithm is quite similar to RLS, except that multiple
bit flips are allowed at each iteration. Instead of flipping one bit uniformly
at random, in this algorithm all bits of the current solution are flipped with
probability 1/n, where n is the size of the solution.

A classical question in the area of evolutionary computation is whether pop-
ulations help to achieve better results compared to algorithms working at each
time step with a single solution. The (u+) EA (Algorithm B) is the population
based version of (1 + 1) EA. In this algorithm, x denotes the size of the parent
population. In each iteration, the algorithm creates A offspring by mutating A
parents which have been chosen uniformly at random from the parent popu-
lation. Finally all the solutions from parents and offspring are evaluated and
i best ones (in terms of fitness function) survive. They constitute the parent
population of the next generation.

One of the questions raised by using the population is the effect of crossover
operator in the robustness. This has been investigated by Friedrich et al.in [16].
To this end, they considered a framework consists of one wide and many narrow
parallel paths, with equal distances, for solutions to achieve the highest fitness
value. Moreover, the fitness grows more quickly along narrow paths and a
solution which is not located in one of the paths does not survive. It is shown
that algorithms with higher recombination rate optimize through the wide path
while narrow paths are more favored by algorithms with zero recombination
rate. A change that moves the framework along x-axis will cause the extinction
of solutions on the narrow paths, however, solutions on the wide path may
survive. This shows the benefit of crossover operation for the robustness of the
algorithms using population.

Algorithm 3: (u+) EA

1 P is a set of y uniformly chosen solutions;

2 while stopping criterion not met do

3 O + 0

4 fori=1to A do

5 pick x u.a.r. from P;

6 y < flip each bit of x independently with probability 1/n;
7 O+ OUy;

8 for x ¢ PUO do
9 L evaluate f(z);

10 | P+ p f-maximal elements from P U O;

Analyzing evolutionary algorithms with respect to their runtime behavior,
one considers the number of solutions that are produced until a solution of
desired quality has been achieved. The expected time to reach this goal refers
to the expected number of such solutions. The expected optimization time refers
to the expected number of solutions that are produced until an optimal search
point has been produced for the first time. Considering dynamic problems,
we are often interested in the expected re-optimization time of an algorithm.
Starting with a good (or even optimal) solution for the considered problem, the
expected number of constructed solutions required to obtain a solution of the
same quality after a dynamic change has occurred is analyzed.

3 Analysis of Evolutionary Algorithms on Dy-
namic Problems

In this section, we summarize recent theoretical analyses that have been per-
formed on evolutionary algorithms dealing with dynamic optimization problems.
In [39, 40], the efficiency of evolutionary algorithms for solving linear pseudo-
Boolean functions with a dynamic linear constraint has been investigated. Par-
ticular attention has been paid to the ONEMAX problem. ONEMAX has been
the center of attention in some other related works as well [9] 27]. We first
present the investigations that have been performed on this problem, then we
give a summary of the results that have been obtained for linear pseudo-boolean
functions under dynamic uniform constraints. Furthermore, in this section we
explain the analysis that has been carried out for the dynamic vertex cover
problem and the makespan scheduling problem. Another problem which has
been investigated in the context of dynamic optimization is the MAZE problem
for which evolutionary algorithms as well as ant colony optimization algorithms
have been theoretically studied [28] [32, [33]. The results of evolutionary algo-
rithms and ACO algorithms for this problem are presented in Section and
Section [respectively.

3.1 OneMax Under Dynamic Uniform Constraints

The first runtime analysis of evolutionary algorithms for a dynamic discrete
problem has been presented by Droste [9]. In that article, the ONEMAX prob-
lem is considered and the goal is to find a solution which has the minimum
Hamming distance to an objective bit-string. A dynamic change in that work
is changing one bit of the objective bit-string, which happens at each time step
with probability p’ and results in the dynamic changes of the fitness function
over time. Droste has found the maximum rate of the dynamic changes such
that the expected optimization time of (1 + 1) EA remains polynomial for the
studied problem. More precisely, he has proved that (1+1) EA has a polynomial
expected runtime if p’ = O(log(n)/n), while for every substantially larger proba-
bility the runtime becomes super polynomial. It is worth noting that the results
of that article hold even if the expected re-optimization time of the problem is
larger than the expected time until the next dynamic change happens.

Using drift analysis, Kotzing et al. [27] have reproved some of the results
in [9]. Furthermore, they have carried out theoretical investigations for the
extended dynamic ONEMAX problem (see Section [2]), in which each variable
can take on more than two values. They also carried out an anytime analysis
(introduced in [24]) and show how closely their investigated algorithm can track
the dynamically moving target over time.

The optimization time of evolutionary algorithms for ONEMAX and the gen-
eral class of linear pseudo-Boolean function, under a dynamic uniform constraint
given in Section has been analysed in [39, [40]. For now, we concentrate on
ONEMAX with with dynamic uniform constraint. The authors have analysed
a standard (1 + 1) EA (Algorithm [Z) and three other evolutionary algorithms
which are presented in Algorithms[to6l The results of their investigations are
summarised in Table[Il The (1+ 1) EA analysed in this paper, uses the fitness
function

fasn() = f(2) = (n+ 1) - max{0, |z}, — B"}

already introduced in [I5]. It gives a large penalty to infeasible solutions by
subtracting for each unit of constraint violation a term of (n + 1). This implies
that each infeasible solution is worse than any feasible one. The penalty of this
fitness function, guides the search towards the feasible region and does not allow
the (14 1) EA to accept an infeasible solution after a feasible solution has been
found for the first time.

Shi et al. [39, 40] have used multiplicative drift analysis [§] for investigating
the behavior of the studied algorithms. The potential function that they have
used for analyzing (14 1) EA on ONEMAX with a dynamic uniform constraint
is |x|op, when B < B*. Here, the initial solution, denoted by xorq, is feasible,
and the algorithm needs to increase the number of ones of the solution, until the
cardinality bound B* is reached. In this situation, the drift on |z|o is Q(|z]o/n)
for (1 + 1) EA. Using multiplicative drift analysis, the expected number of

10

1T

(1+1) EA MOEA MOEA-S MOGA

O(nlog(Z:B*)) O(nD log(Z:g*)) O(nlog(z:g*)) O(min{\/ﬁD%,D2 n_"B*) if B < B*

O(n log(£.) 0(nD log(£.) O(nlog(%)) O(min{ynD} D*\/F}) it B> B

Table 1: Upper bounds on the expected re-optimization times of evolutionary algorithms on the ONEMAX problem with a

dynamic uniform constraint.

Algorithm 4: MOEA; Assuming B < B* [39]

1 P < an initial solution;
2 while stopping criterion not met do
3 Choose x € P uniformly at random;
Obtain y from x by flipping each bit of x with probability 1/n;
if (B*>|y|1>B) A (Bw € P: w =mo0Ea y) then
| P+ (PU{y})\{z € P|y~moEa 2};

[N B

generations to reach a solution z* with |x*|g = n — B* is

o(om(528) ~o(m(:5)

For the situation where B > B*, the initial solution is infeasible and the
number of ones of the solution need to decrease (and possibly increase again,
in case the last move to the feasible region has decreased |z|; to less than B*).
The considered potential function in this situation is |z|; and the drift on that
is Q(|z[1/n), giving an expected re-optimization time of O (n log(£)).

The second algorithm that the authors have investigated is the Multi-Objective
Evolutionary Algorithm (MOEA) (see Algorithm [). Here dominance of solu-
tions is defined with respect to the vector-valued fitness function

fyoea(x) = (|21, f(x)).

A solution y dominates a solution z w.r.t. fmoma (y = 2) iff |yl = |21
and f(y) > f(z). Furthermore, y strictly dominates z (y > z) iff y > z and
f(y) > f(z). The algorithm keeps at most one individual for each Hamming
weight between B and B*. Let D = |B* — B, then the size of population P is
at most D + 1. The analysis shows that this population size slows down the re-
optimization process for the ONEMAX problem. For the case where B < B* and
B > B*, the potential function that Shi et al. [39] have used for analyzing this
algorithm is M = mingep |x|o and M = max,cp |z|1, respectively. The analysis
is similar to their analysis of (14 1) EA, except that the drift on M is Q(-24;).
The D in the denominator comes from the fact that selecting the individual x
with minimum |z|o for B < B* (minimum |z|; for B > B*) from the population,

happens at each iteration with probability at least ﬁ. Using multiplicative

drift analysis, they obtained an upper bound of O(nD 1og("_B)) for B < B*

n—B*
and an upper bound of O(nD log(g*)) for B > B*.

The third investigated algorithm is a variant of MOEA named MOEA-S
shown in Algorithm Bl In this algorithm only single-bit flips are allowed and a
different definition for dominance is used. The new notion of dominance does
not let the population size grow to a size larger than 2. If B < B*, for two bit

strings y, z € {0,1}™ we have:

12

Algorithm 5: MOEA-S; Assuming B < B* [39]

1 P < an initial solution;

2 while stopping criterion not met do

3 Choose x € P uniformly at random;

4 Obtain y from x by flipping bit one bit x;, ¢ € {1,...,n} chosen u.a.r.;
5

6

if Vz€ P: y ||MoEa—s z then
L P+ PU{y}

if (B* > |y|1 > B) A (32 € P: Yy =MOEA-S Z) then
8 L 24y

~

e y dominates z, denoted by y =nmora—s z if at most one value among |y|;
and [z[1 equals B* or B* —1, and (lyl1 > [z[1) V (lyh = [2h A f(y) = f(2))

e y dominates z, denoted by y =mora—s z if both |y|1, |21 € {B*, B* — 1},
and |yl1 = |z[1 A f(y) = f(2)

This implies that y and z are incomparable, denoted by vy ||Mora—s z, iff |y|1 =
B* and |z|; = B* — 1 or vice versa.

For B > B*, a similar definition of dominance is given by switching the
dependency of |y|; > |z|1 on the number of 1-bits to |y|1 < |z|1. The results
of MOEA-S are obtained by observing that this algorithm behaves like RLS on
ONEMAX. It is shown that the expected re-optimization time for ONEMAX with

a dynamic uniform constraint is O(n 1og(z:g*)) if B < B* and O(n log(%))
if B > B*.

Shi et al. [39] have also introduced a multi-objective variant of the (14 (A +
A)) GA [5], which is the fourth algorithm that they have analyzed for ONEMAX
with a dynamically changing uniform constraint. In this algorithm, the same
notion of dominance as MOEA is used, and the population size can grow to
D + 1. Having a solution z, at each iteration A offspring are generated by the
mutation operator, which flips I = Bin(n,p) random bits of x, where p is the
mutation probability. The offspring that have a 0 flipped to 1 (a 1 flipped to 0)
are considered to be valid for B* > B (for B* < B). One of the valid offspring
(if exists), #, is then used in the crossover phase, in which it is recombined
with the parent solution A times. For a crossover probability ¢, the crossover
operator creates a bit-string y = y1y2 - - yn, where each bit y;,1 < i < n is
chosen to be x; with probability ¢, and x} otherwise. The algorithm selects the
best solution y with Hamming weight one larger than the Hamming weight of z.
The solution y is added to the population if it meets the cardinality constraint
and is not dominated by any other solution in the population.

It is proved that this algorithm solves the ONEMAX problem with a dynam-
ically changing uniform constraint in expected time

O(min{\/ﬁD%,D2 n })
n — B*

13

Algorithm 6: MOGA; Assuming B < B* [39], Concept from [5].

N =

[=2 B B]

© W

10

11
12

13
14
15

16

17
18

P + {z}, z an initial solution;
while stopping criterion not met do

/* Mutation phase.
Choose x € P uniformly at random;
Choose ¢ according to Bin(n, p);
fori =1 to A do
L () « mutatey(z);
V = {z® | 29 is valid};
if V £ () then
L Choose ' € V uniformly at random;

else 7/ «+ x;

/* Crossover phase.

for i=1to A do

L y) < cross.(x,z');

M = {yD |y is =popa-maximal A |y®|; = |z|; +1};
if M = {y} then

| v <

else 1/ + z;

/* Selection phase.

if (B* > |y'|1 > B) A (Bw € P: w =nm0EaA ¢') then
| P (SU{yH\{z€8 |y ~nora 2};

*/

*/

*/

14

ifp=2,c=1% X=/n/(n—|z|)) for B* > B, and in expected time

0 (min {\/ED%,D2 ;‘* })

if X\ = y/n/|z|1 for B* < B [40]. The key argument behind these results is
to show a constant probability of producing a valid offspring in the mutation
phase, and then show a constant probability of generating a solution y in the

crossover phase that is the same as x except for one bit, which is flipped from
0 to 1 for B* > B and from 1 to 0 for B* < B.

3.2 Linear Pseudo-Boolean Functions Under Dynamic Uni-
form Constraints

The classical (14 1) EA and three multi-objective evolutionary algorithms have
been investigated in [39] for re-optimizing linear functions under dynamic uni-
form constraints. The general class of linear constraints on linear problems leads
to exponential optimization times for many evolutionary algorithms [I5][43]. Shi
et al. [39] considered the dynamic setting given in Section and analyze the
expected re-optimization time of the investigated evolutionary algorithms. This
section includes the results that they have obtained, in addition to the proof
ideas of their work.

The algorithms that are investigated in their work, are presented in Algo-
rithms 2] to [of Section Bl and the results are summarized in Table The
(1 +1) EA (Algorithm [2)) uses the following fitness function which has been
introduced by Friedrich et al. [I5] (similar to the fitness function for ONEMAX
in Section B.Tl):

fa+n (@) = f(x) — (nWmax + 1) - max {0, |z|y — B*}

Here, wmax = max} ; w; denotes the maximum weight, and the large penalty
for constraint violations guides the search towards the feasible region.

Shi et al. [39] have investigated this setting similar to the analysis of ONEMAX
under dynamic uniform constraints (Section BI). The main difference is that
for a non-optimal solution with B* 1-bits, an improvement is not possible by
flipping a single bit. A 2-bit flip that flips a 1 and a 0 may be required, resulting
in an expected re-optimization time of O(n2 log(B* wmax)).

The second investigated algorithm, MOEA, uses the fitness function fyoma
and the notion of dominance defined in Section Bl Unlike the re-optimization
time of this algorithm for the ONEMAX problem, whose upper bound is worse
than the upper bound of (1 + 1) EA; for the general linear functions the upper
bounds obtained for MOEA are smaller than the ones obtained for (1 + 1) EA.
The reason is that the algorithm is allowed to keep one individual for each
Hamming weight between the two bounds in the population. This avoids the
necessity for a 2-bit flip. To reach a solution that is optimal for cardinality
A+1, the algorithm can use the individual that is optimal for cardinality A and

15

(1+1) EA MOEA MOEA-S MOGA

O(n?log(B*wmax)) OMmD?) O(nlogD) O(nD?)

Table 2: Upper bounds on the expected re-optimization time of evolutionary
algorithms on linear functions with a dynamic uniform constraint.

flip the 0-bit whose weight is maximal. This happens in an expected number
of at most en(D + 1) iterations, where D = |B* — B|. As there are D + 1
different cardinality values between the two bounds, the expected time to reach
the optimal solution with cardinality B* is O(nD?).

MOEA-S (Algorithm [) has also been analyzed for linear functions with a
dynamically changing uniform constraint. It uses single bit-flips and the popu-
lation includes at most 2 solutions: one with Hamming weight at most B* — 1
and one with Hamming weight B*. With this setting, long waiting times for se-
lecting a certain individual of the population are avoided. The algorithm starts
with one solution in the population. It has been shown that in time O(nlog D)
the population consists of one solution with Hamming weight B* — 1 and one
with Hamming weight B*. Then the authors use a potential function to measure
the difference of the current population to an optimal solution with Hamming
weight B*. The potential is given by the number of 0-bits in the two solutions
that need to be set to 1 in order to obtain an optimal solution. Using multi-
plicative drift analysis with respect to the potential function, they have proved
that the expected re-optimization time of the algorithm is O(nlog D).

The fourth algorithm that is analyzed in [39] is MOGA (Algorithm [6 of
Section B)). The authors have shown that, choosing an optimal solution of
Hamming weight A < B* for reproduction, an optimal solution for Hamming
weight A + 1 is produced with probability Q(n~'/2) in the next generation, if
p= %, c= % and A\ = y/n. Since there are D + 1 different Hamming weights
to consider, and each iteration of the algorithm constructs O(\) = O(y/n) solu-
tions, the expected re-optimization time is upper bounded by O(nD?).

3.3 The Vertex Cover Problem

The common representation for solving the vertex cover problem by means of
evolutionary algorithms is the node-based representation [12] 35, 29, 37]. A
different representation, the edge-based representation, has been suggested and
analyzed in [23] for the static vertex cover problem. In this representation a
search point is a bit-string « € {0,1}™, where m denotes the number of edges
in the given graph G = (V, E). For a given search point z, E(z) = {e; € E |

16

x; = 1} is the set of chosen edges. The cover set induced by z, denoted by
Vo (x), is the set of all nodes that are adjacent to at least one edge in E(z).
Three variants of RLS and (14 1) EA have been investigated. This includes
one node-based approach and two edge-based approaches. The node-based ap-
proach and one of the edge-based approaches use a standard fitness function,

f(s) = Va(s)[+ (VI+1)- {e € ElenVo(s) = 03],

in which each uncovered edge obtains a large penalty of |V|+ 1. In [23],
an exponential lower bound for finding a 2-approximate solution for the static
vertex cover problem with these two approaches using the fitness function f
has been shown. Furthermore, considering the dynamic vertex cover problem,
Pourhassan et al. [36] have proved that there exist classes of instances of bipar-
tite graphs where dynamic changes on the graph lead to a bad approximation
behavior.

The third variant of an evolutionary algorithm that Jansen et al. [23] have
investigated, is an edge-based approach with a specific fitness function. The
fitness function f. has a very large penalty for common nodes among selected
edges. It is defined as

fe(s) = Ve(s)|+ (V|+1)-{e€ E|enVa(s) =0}
+ (VI+1)-(m+1)-[{(e,¢) € E(s) x E(s) | e £ ¢ ene # 0}

This fitness function guides the search towards a matching, and afterwards to
a maximal matching. In other words, whenever the algorithms find a matching,
then they do not accept a solution that is not a matching, and whenever they
find a matching that induces a node set with k& uncovered edges, then they do
not accept a solution with & > k uncovered edges. It is well known that taking
all the nodes belonging to the edges of a maximal matching for a given graph
results in a 2-approximate for the vertex cover problem.

The variant of RLS and (1+1) EA work with the edge-based representation
and the fitness function f.. Note that search points are bit-strings of size m, and
the probability of flipping each bit in (1+ 1) EA is 1/m. Jansen et al. [23] have
proved that RLS and (1 4 1) EA with the edge-based approach find a maximal
matching which induces a 2-approximate solution for the vertex cover problem
in expected time O(mlogm), where m is the number of edges.

The behavior of RLS and (1 + 1) EA with this edge-based approach has
been investigated on the dynamic vertex cover problem (see Section [23)) in [36].
It is proved in [36] that starting from a 2-approximate solution for a current
instance of the problem, in expected time O(m) RLS finds a 2-approximate
solution after a dynamic change of adding or deleting an edge. The authors
of that paper have investigated the situation for adding an edge and removing
an edge separately. For adding an edge, they have shown that the new edge is
either already covered and the maximal matching stays a maximal matching, or
it is not covered by the current edge set and the current edge set is a matching
that induces a solution with one (only the new edge) uncovered edge. Since the

17

number of uncovered edges does not grow in this approach and the algorithm
selects the only uncovered edge with probability 1/m, a maximal matching is
found in expected m steps. This argument also holds for (1 4+ 1) EA, but the
probability of selecting the uncovered edge and having no other mutations with
this algorithm is at least 1/(em). Therefore, the expected re-optimization time
for (14 1) EA after a dynamic addition is also O(m).

When an edge is deleted from the graph, if it had been selected in the
solution, a number of edges can be uncovered in the new situation. All these
uncovered edges had been covered by the two nodes of the removed edge, and
can be partitioned into two sets U; and Us, such that all edges of each set share
a node. Therefore, if the algorithm selects one edge from each set (if any exist),
the induced node set becomes a vertex cover again. It will again be a maximal
matching and therefore a 2-approximate solution. On the other hand, no other
one-bit flips in this situation can be accepted, because they either increase the
number of uncovered edges, or make the solution become a non-matching. With
RLS, in which only one-bit flips are possible, the probabilities of selecting one
edge from U; and U, at each step are % and %, respectively. Therefore, in
expected time O(m) one edge from each set is selected by the algorithm.

The analysis for (1 + 1) EA dealing with a dynamic deletion is more com-
plicated, because multiple-bit flips can happen. In other words, it is possible
to deselect an edge and uncover some edges at the same step where an edge
from U; or U, is being selected to cover some other edges. An upper bound of
O(mlogm) is shown in [36] for the expected re-optimization time for (1+1) EA
after a dynamic deletion, which is the same as the expected time to find a 2-
approximate solution with that algorithm, starting from an arbitrary solution.

3.4 Makespan Scheduling

Makespan scheduling is another problem which has been considered in a dy-
namic setting [34]. It is assumed that the processing time of job i for 1 <i < mn,
is p; € [L, U], where L and U are lower and upper bounds on the processing time
of jobs respectively. In addition, the ratio between the upper bound and the
lower bound is denoted by R = U/L. The runtime performance of (1 + 1) EA
and RLS is studied in terms of finding a solution with a good discrepancy and it
is assumed that there is no stopping criteria for the algorithms except achieving
such a solution. The discrepancy d(z) of a solution x is defined as

(Ber=ea) - ()

Note that a solution that has a smaller discrepancy also has a smaller makespan.
Moreover, the proofs benefit from an important observation about the fuller
machine (the machine which is loaded heavier and determines the makespan).
The observation is on the minimum number of jobs of the fuller machine in
terms of U and L. :

d(z) =

18

e Every solution has at least [(P/2)/U]| > [(nL/2)/U] = [(n/2)(L/U)] =
[(n/2)R~1)] jobs on the fuller machine, where P =" | p;

Two dynamic settings are studied for this problem. The first one is called
the adversary model in which a strong adversary is allowed to choose at most
one arbitrary job ¢ in each iteration and change its processing time to a new
p; € [L,U]. Tt is proven that, independently of initial solution and the number of
changes made by the adversary, RLS obtains a solution with discrepancy at most
U in expected time of O(nmin{logn,log R}). In the case of RLS, the number
of jobs on the fuller machine increases only when the fuller machine is switched.
Otherwise it increases the makespan and will not be accepted by the algorithm.
This fact is the base of the proof. It is proved that if the fuller machine switches
(either by an RLS step, which moves a single job between machines, or by a
change that the adversary makes), then a solution with discrepancy at most U
has been found in a step before and after the switch.

The proof for (1+1) EA is not as straightforward as for RLS, since (1+1) EA
may switch multiple jobs between the machines in one mutation step. However,
it is shown that the number of incorrect jobs on the fuller machine, which should
be placed on the other machine to decrease the makespan, has a drift towards
zero. Using this argument, it is shown that (1 4+ 1) EA will find a solution with
discrepancy at most U in expected time O(n3/?). Whether the better upper
bounds such as O(nlogn) are possible is still an open problem.

In the same dynamic setting, recovering a discrepancy of at most U is also
studied for both RLS and (1+1) EA algorithms. It is assumed that the algorithm
has already achieved or has been initialized by a solution with the discrepancy
of at most U and the processing time of a job changes afterwards. By applying
the multiplicative drift theorem on the changes of the discrepancy and using
the fact that the discrepancy will change by at most U — L, it is proven that
(14+1) EA and RLS recover a solution with discrepancy of at most U in expected
time of O(min{R,n}).

The makespan scheduling problem has also been studied in another dynamic
setting. In this model which is called the random model, it is assumed that all
job sizes are in {1,...,n}. At each dynamic change, the adversary chooses one
job ¢ and its value will change from p; to p; — 1 or p; + 1 each with probability
of 1/2. The only exceptions are p; = n and p; = 1 for which it changes to
p; = n — 1 and p; = 2, respectively. Overall, this setting has less adversarial
power than the adversary model due to the randomness and changes by only 1
involved..

Let the random variable X; denotes the random processing time of job ¢ at
each point of time. The following lemma proves that no large gap exists in the
value of processing times which are randomly chosen for jobs.

Lemma 1 (Lemma 4 in [34]). Let ¢(i) := {X; | X; = iAnj e {l,...,n}}|
where i € {1,...,n}, be the frequency of jobs of size i. Let

G:=max{l|Ji: (i) =¢(i+1)=---=0¢>i+1) =0}

19

1s the maximum gap size, i. e. mazimum number of intervals with zero frequency
everywhere. Then, for some constant ¢ > 0,

Pr(G>1) < n2-¢,

This lemma states that, for any constant ¢ > 0 and gap size G > ¢'logn
with a sufficiently large ¢/, there is no gap of size G with probability at least
1—n-n"°!=1—n"c This probability is counted as a high probability in
this study.

When the discrepancy is larger than G, it is proven that it decreases by
at least one if two jobs swap between the fuller and the emptier machines.
Furthermore, the maximum possible discrepancy for an initial solution is n?
when all the jobs have the processing time of n and are placed on one machine.
Finally, it is proven that regardless of the initial solution, (1 + 1) EA obtains
with high probability a discrepancy of at most O(logn) after a one-time change
in time O(n*logn).

The previous result considered the worst-case initial solution. However, it
is proven that if the initial solution is generated randomly, then its expected
discrepancy is ©(ny/n) and it is O(ny/nlogn) with high probability. Thus,
with a random initial solution, (1 + 1) EA obtains a discrepancy of O(logn)
after a one-time change in time O(n3®log®n) with high probability.

The two results on (1 4+ 1) EA and in the random model are for a one-time
change. In extreme case, however, the processing time of a job may increase
or decrease by one in each step which makes it hard to obtain a discrepancy of
O(logn), unlike the other results in this setting. Although, by using the results
in the adversary model and considering that R = U = n, it is possible to find
a solution with discrepancy of at most n. In the final theorem of this study, it
is proven that independently of the initial solution and the number of changes,
(141) EA and RLS obtain a solution with discrepancy of at most n in expected
time O(n®/?) and O(nlogn), respectively. In addition, it is shown that the
expected ratio between the discrepancy and the makespan is 6/n. This is done
by considering that a solution of discrepancy at most n is obtained together
with a lower bound on the makespan. The expected sum of all processing times
is n(n +1)/2 and it is at least n?/3 + n with the probability of 1 — 27%"),
Hence, the expected makespan is at least n?/6 + n/2. Furthermore, if the sum
of processing times is less than n?/3 + n, then the ratio would be at least n/n
since the processing times are at least one. Hence, if n is not too small the ratio
is bounded from above by

6 3

R 2*9(") <
n n -

Sl

3.5 The MAZE Problem

The dynamic pseudo-boolean function MAZE proposed in [28], consists of n + 1
phases of tg = kn®logn iterations. During the first phase, the function is
equivalent to ONEMAX. In the next n phases, all bit-strings except two, still

20

have the value equivalent to ONEMAX. The two different bit-strings, for each
phase p are 0P1"P and 0P~ 117 P*! which have fitness values with an oscillating
pattern: for two iterations out of three, these two bit-strings are assigned values
n 4+ 2 and n + 1, respectively, and at the third iteration, this assignment is
reversed. Note that during the last phase, MAZE behaves similar to TRAP. The
formal definition of MAZE follows:

n+2 ift>Mm+1)-tg ANz=0"
MazB(z, 1) n+2 ift >ty ANz=OPT(t)
x, =
n+1 ift >ty No=ALT(t)

ONEMAX(z) otherwise

OPT[t/tOJ ift#A0 mod 3

OPT(t) =
®) {ALT Lt/to] otherwise

ALT(H) = ALT Lt/to] ift#0 mod 3
OPT 4/t otherwise
OPT, 0P1" P forp<n

ALT, = or—11n—rtl for p<n

While it was shown in [28] that a (1 + 1) EA loses track of the optimum for
this problem and requires with high probability an exponential amount of time
to find the optimum, Lissovoi and Witt [32] have proved that the optimum of the
MAZE function extended to finite alphabets, can be tracked by a (u+1) EA when
the parent population size p is chosen appropriately and a genotype diversity
mechanism is used.

In another work [33], the behavior of parallel evolutionary algorithms is
studied on the MAZE problem. In their analysis, it is proved that both the
number of independent sub-populations (or islands), A, and the length of the
migration intervals, 7, influence the results. When 7 is small, particularly for
7 = 1, migration occurs too often, and the algorithm behaves similar to (1 +
A) EA and fails to track the MAZE efficiently, for A = O(n'~¢), where € is an
arbitrary small positive constant. But with a proper choice of 7, more precisely
T = tg, where ty is the number of iterations in each phase in the definition of
the MAZE problem, and a choice of A = ©(logn), the algorithm is able to track
the optimum of MAZE efficiently.

The analysis of (u 4+ 1) EA and parallel evolutionary algorithms on the
MAZE problem shows that both these algorithms have limitations for tracking
the optimum. (u + 1) EA not only exploits the small number of individuals
among which the optimum is oscillated, but also requires genotype diversity
and a proper choice of p. On the other hand, the obtained positive results
of parallel evolutionary algorithms on the MAZE problem depend on a careful
choice of migration frequency. But on the plus side, with parallel evolutionary
algorithms, the problem can be extended to a finite-alphabet version.

21

4 Analysis of Evolutionary Algorithms on Stochas-
tic Problems

The performance of (1 + 1) EA in noisy environment has been considered by
Droste for the first time [I1]. He proved that for the prior noise which flips a
randomly chosen bit with probability p, (14 1) EA is able to deal with the noisy
ONEMAKX in polynomial time if and only if p = O(log(n)/n). Otherwise, the
optimization time for p = w(log(n)/n) is super polynomial.

Recently, GieBen and Kotzing [22] considered (141) EA together with popu-
lation based evolutionary algorithms in different noisy environments. They also
reproved the results of Droste with new basic theorems and studied other prior
and posterior noises against (1 + 1) EA on ONEMAX problem.

The new prior noise models that have been analyzed recently are

(a) noise which flips each bit independently with the probability of p
(b) noise which assign 0 to each bit independently with the probability of p.

(1+1) EA is able to find the optimal solution on ONEMAX or both noise models
in polynomial time only if p = O(log(n)/n?) and the optimization time grows
super polynomial if p = w(log(n)/n?).

The study has also covered the impact of two posterior noises on the per-
formance of (1 + 1) EA. It states that ONEMAX problem under an additive
posterior noise from the random variable D with variance of o2 is tractable in
polynomial time with (1 + 1) EA if 02 = O(log(n)/n). In other case, if D is
exponentially distributed with parameter 1, (1 4+ 1) EA is able to find the op-
timum only in super polynomial time. Furthermore, analyzing the behavior of
(1+1) EA on ONEMAX under posterior noise coming from a random variable
with the Gaussian distribution D ~ N(0,0?), shows that it is able to deal with
this noise in polynomial time if 02 < 1/(4logn). But if 02 > ¢/(4logn) for any
¢ > 1 then (14 1) EA finds the optimal solution of the noisy ONEMAX in super
polynomial time.

In addition to the runtime analysis, there are other measurements to rank
the behavior of algorithms against the noisy problems. The concept of regret,
for example, considers the progress of algorithms in approximating the noisy
optimal solutions. Different definitions of regrets and how they describe the
performance of algorithms have been discussed in [2]. As a brief introduction,
to measure the approximated solution achieved by an algorithm, Simple Regret
(SR;,) uses the solutions of nth iteration while Approximate Simple Regret
(ASR,,) considers the closest solution to the optimum which has been produced
until the nth iteration. Hence, algorithms that do not use elitism may have
better performance in terms of ASR in comparison with SR measurement.

This section continues by considering the studies on the influence of using
population in evolutionary algorithms for problems with noisy fitness functions.
After this, some results on the performance of a population based evolution-
ary algorithm against different noises is presented. Finally, we introduce an

22

approach that modifies the algorithms by increasing the number of fitness eval-
uation to deal with the noise.

4.1 Influence of The Population Size

In this section, we consider the impact of using populations in evolutionary
algorithms against noisy problems. Gieflen and Kotzing [22] studied this matter
by considering (114 1) EA and (1 + A) EA on the noisy ONEMAX. Considering
a noisy function f, and let (X)r<, be a random variable taking on the value of
the noisy function f for a solution with exactly k ones. It is also assumed that
Vj:0 < j<k<nwehave Pr(X; < Xpi1) < Pr(X; < Xgy1). This means
that when solutions are close, it is more likely to observe a confusion caused by
the noise. The analysis of the performance of (1 + 1) EA on ONEMAX with
prior noise is based on the following theorem.

Theorem 2 (Theorem 12 in [22]). Let pu be given and suppose for each k < n,
Xi € [k =1,k +1]. For each k < n, let Ay be the event that drawing p
independent copies of Xy and one copy of Xi4+1 and the sorting with breaking
ties uniformly, the value of Xi11 does not come out least. If there is a positive
constant ¢ < 1/15 such that

n—~k

Vk,n/4<k<n:Pr(dg)>1-c ,
nj

then (u+ 1) EA optimizes [in an expected number of O(unlogn) iterations.

The proof of this theorem is based on the definitions of two events to show
that there is a positive drift on the number of ones in the best solution which
has k ones in the current step of the algorithm. The first event, Ey, is the event
that the new solution has at least a bit with value one more than the current
solution and it is not dominated by any other solutions, even when considering
the noise. The other event, F1, is the situation that the new solution has less
ones than the current best solution, the current best solution is unique and it is
ignored because of the noisy function. For this case to happen, the best solution
with k ones must be evaluated to have k — 1 ones, all other solutions must have
at least kK — 2 ones and be evaluated to have at least k — 1 ones because of
the noisy function. After this event, the number of ones of the best solution
decreases at most by 2. Considering the probability of each event, the drift on
the number of ones in the best solution is at least

n—k 3c(n —k)
eun nu

= 2¢/(np).

Finally, since ¢ < 1/15 and using multiplicative drift analysis the theorem is
proven.

The previous theorem is used to prove a corollary for the performance of
(u+ 1) EA on noisy ONEMAX with the prior noise, i. e. the noise which
flips a bit uniformly at random with probability p. It is proven that if u >

23

12log (15n)/p then (p + 1) EA finds the optimum of ONEMAX in expected
number of O(unlogn) iterations. To be more specific, u = 24 log (15n) is ade-
quate to achieve such expected time for p = 1/2.

Gieflen and Kotzing also considered the performance of (1+A) EA as another
population based evolutionary algorithm on the noisy ONEMAX problem. In
(1 +) EA there exists an offspring population. The algorithm produces an
offspring with size A by mutating the current best solution A times. Then, it
chooses the best solution among the offspring and the parent as the next best
solution. They prove a main theorem to achieve the results on this matter. The
theorem is as follows:

Theorem 3 (Theorem 14 in [22]). Let A > 24logn and, for each k < n, let
Y. denote the mazimum over A\ observed values of Xy (belonging to inferior
individuals) and let Zy, denote the mazimum over at least \/6 observed values
of Xk (belonging to better individuals). Suppose there is ¢ < 1 such that

Vk < n:Pr(Ye < Xiy1) > 4, (1)
and
q I
. _ >1- 2= .
Vi <n:Pr(Ye1 < Zy)>1 5ot D (2)

Then (14+)\) EA optimizes f in O(("l"%—i—n)/q) iterations and needs O((nlogn+
nA)/q) fitness evaluations.

In the theorem, [is the number of zeros of the current best solution. To
prove it, similar to Theorem [2 it is shown that the drift on the number of ones

is positive and equal to (¢ — ﬂ)enliu' Furthermore, this theorem gives the

sufficient conditions (Equations5|I| and[2) on noises to demonstrate whether they
are tractable with (1 + \) EA in a guaranteed expected number of iterations.

As a corollary, for the prior noise which flips a bit uniformly at random
with probability p, it is proven that (1 4+ A\) EA with A > max{12/p,24}nlogn
optimizes ONEMAX in expected time O(("hl\ﬂ +n?)/p). Let ¢ = p/n. To show
that Equation [I] holds, it is enough to consider the event that the solution with
k ones (current best solution) is evaluated to have more ones. The complement
of this event is a set of events that either there is no noisy bit flip or the noise
flips a zero bit, which leads to:

ke
Pr(Yk<Xk1)21—<1—p+%> Zgzq,

With a similar consideration about the probability of improving at least one of
A/6 of the solutions, it is observed that Equation [also holds and the corollary
is correct.

The other corollary from Theorem [3lis about the non-positive additive pos-
terior noise D that is evaluated to > —1 with a non-zero probability p. It is

24

proven that under this noise, for A > max{10e, %@p@m}, (1 +)\) EA opti-
mizes ONEMAX in time O((nlogn +n))/p). The proof of this corollary is a bit

more tricky. Since D < 0, we have Y, < k and
Pr(Yi > Xp1) <Pr(k > Xp11)=Pr(D<-1)=1—p.

This means that Pr(Y; < Xgy1) > p which fulfills the first condition of
Theorem [Bl To consider the second condition, a similar complement technique
is used, i. e. calculating the probability of Y;y_1 > Z; which is the complement
of Yi—1 < Zg. To satisty Yy_1 > Zj, all of A\/6 solutions which have k ones

should be affected by a noise with the value less than —1; thus A > %@p@p)

concludes that Pr(Y;_1 > Z;) < (1 — p)»6 < p/n. Finally, since A > 10e, the
second condition of Pr(Y;_1 < Zx) has been proven to be satisfied; therefore,
Theorem [3] holds.

4.2 Influence of Different Noise Distributions on The Per-
formance of Population Based EAs

Friedrich et al. [20, [I3] have considered (¢ +1) EA and additive posterior noises
with different distributions. They introduced the concept of "graceful scaling”
to determine the performance of an algorithm against noises. An algorithm
scales gracefully with noise if there exists a parameter setting for the algorithm
such that it finds the optimum of the real fitness function when evaluating the
noisy one, in a polynomial time.

They also introduce a sufficient condition that (u + 1) EA cannot deal with
noise and is unable to find the real optimum through the noisy function. The
condition is: if there are 1+ 1 different values {di,...,d,41} from the random
variable D, Y is the minimum of {d,...,d,} and

1
Pr(Y > d,t1+n) > m,
then (+1) EA, with a polynomially bounded p will not evaluate the optimum
with high probability.

This theorem is used to analyze the performance of (u+1) EA with p = w(1)
and bounded from above by a polynomial, on noisy ONEMAX problem with
different distributions. In this study it is proven that if the noise comes from a
Gaussian distribution with 02 > (na)?, for some a = w(1), (u + 1) EA will not
find the optimum in polynomial time with high probability.

Furthermore, other noise distributions have been studied in [I3]. They ana-
lyzed a random variable D with a distribution that decays exponentially. Here
the probability density function of D is as follows:

1
F(t)=Pr(D<t)= 56“ ift <0 and
1
F(t):=1- 56—“ if t >0,

25

for some constant ¢ and variable t. The probability mass function p of D is
obtained by taking the derivative of F':

p@)::ﬁ”@)::ge“ if t <0 and
p(t) = e if t > 0.

Note that this is a symmetric variant of an exponential distribution. It is ob-
served that p is symmetric around 0 which implies that the distribution of D
has mean 0.

The variance of D is calculated as follows:

“+o0 0 (e’
Var(D) = / t2p(t)dt = (/ t2ectdt +/ th_Ctdt)

0 2 2\ ct10
2—2ct+t
= c/ t2ectdt = { ¢ 3 ce }
— o0 —00

—~ NIo

Now F'(t) can be rewritten in terms of o:

1 ¢
F(t):= geﬂ? if t <0 and
1 ¢
F@y=1—§aV3 if t > 0.

In this setting, it is proven that if the variance is large (62 = w(n?)), then
(u+1) EA will not find the optimum of the noisy ONEMAX. The proof applies
the condition that is mentioned above and bounds Pr(Y > d,,+1 +n). The idea
is to consider a subset of events in which Y > d,;1 + n holds. To this aim,
points ¢y and t¢; are defined such that ¢y < ¢; and we have Pr(D < t;) and
Pr(D < t1) dependent on p in a way that Pr(D < to) < Pr(D < t1) < 1/2.
This definition leads to the following events:

A: The event that D <ty —nand g <Y.

B: Theeventtat tg—n< D <ty —nandt; <Y

The fact that 02 > (na)? for a = w(1), helps to find the lower bounds for
the probabilities and results in Pr(Y > d,,41) > m Hence, (14 1) EA will
not find the optimum of noisy ONEMAX if the noise comes from an exponential
distribution as defined.

The other noise distributions which are studied by Friedrich et al. [13] are
Truncated Distributions. It is proven that (u 4+ 1) EA scales gracefully with
these kind of noises which are generalization of uniform distribution.

26

Definition 4 (Definition 7 in [I3]). Let D be a random variable. If there are
k,q € R such that

Pr(D>k)=0 A Pr(De(k—1,k]) >¢q,

then D 1is called upper q-truncated. Analogously, D is called lower q-truncated
if there is are k,q € R with

Pr(D<k)=0 A Pr(De[kk+1))>q.

Using this definition, it is proven that (u + 1) EA obtains the optimum
of noisy ONEMAX with a lower 2log(nu)/p-truncated noise distribution in ex-
pected O(unlogn) iterations. The proof uses multiplicative drift and benefits
from the fact that the best solution is never removed in the first O(unlogn)
iterations if any other point is evaluated in the minimal bracket [k, k + 1). The
first corollary of this result is that for an arbitrary lower g-truncated noise,
(u+1) EA with g > 371log(ng™!) evaluates the optimum of noisy ONEMAX
after expected O(unlogn) iterations.

Finally the last corollary in this study considered a uniform distribution on
[—r,7], which is lower 1/2r-truncated, as the noise function. In this manner, by
using the previous results, it has been proven that (1+1) EA scales gracefully on
ONEMAX with additive posterior noise from the uniform distribution on [—r, r].

4.3 Resampling Approach for Noisy Discrete Problems

In the previous sections, we have considered the behavior of evolutionary algo-
rithms for noisy problems. This section presents another approach of dealing
with such problems. Here, a modified version of the algorithm, which has a
known performance on the noise-free case, is investigated. Akimoto et al. have
studied resampling methods to modify iterative algorithms and found upper
bounds on its performance according to the proven performance of the known
algorithm [I]. Their presented framework suits EAs perfectly. In a resampling
method, the evaluation of the noisy fitness function for each solution is repeated
k times. The algorithm then takes the average of k£ noisy values as the fitness
value of the solution. Let Opt and k-Opt denote the original algorithm and
the resampling modified version, respectively. The parameter k can be fixed,
or be adapted during the optimization process. In [I], the authors have clas-
sified discrete optimization problems in two different categories. Either there
is a known algorithm available that finds the optimal solution in expected r(J)
fitness evaluations with probability 1 — §, or no such an algorithm is known. In
the first case, k is chosen according to r(d) and in the second case, its value is
set adaptively in each iteration.

Assume that the additive Gaussian noise with variance o2 is applied to the
fitness function. In the pre-known runtime case, it is proven that by fixing

kg, = max (1, [3202 [1n(2) —In (1 - (1= 5)1/T(6))H) ’

27

k,-Opt finds the optimum of the noisy function with probability at least(1 — §)?
and the expected running time is

0 (roymas (17 (12})).

Let p denote the probability of the ratio of noisy and real fitness values of

point z being at least %. The proof first determines p < 2exp (— k/42). This

202
leads to the probability of situations that the noisy fitness value is sufficiently
close to the real one.

On the other hand, suppose there is no algorithm to solve the noise-free
problem. However, let there is a known algorithm Opt’ which satisfies criterion
Opt with probability at least 1 — § after n total fitness evaluations in iteration
n.

Let 8 > 1 and

B o (2(n+D)In(n+1)8 [1
o= e (B (S))|

be the number of resampling of k-Opt’ in iteration m. It is proven that
k-Opt’ satisfies @ for the noisy problem with probability at least (1 — §)? after
n iteration and the total number of fitness evaluations is

i km = O(nlnn).

m=1

A more general scenario (called the heavy tail scenario) is also considered.
Here, there is no assumption on the noise distribution, except that the variance,
02, is finite with mean zero. It is proven that by fixing

kj, = max(1, [1662/(1 — (1 — 6)"))]),

kn-Opt solves the noisy problem with probability at least (1 — §)? and the

expected runtime is
O (r(é) max (1,02@)> .

When no algorithm is known to find the optimum, then by using the defini-
tion of Q), k-Opt’ with

1602(n+1)In(n+1)P 1
Fom = { Z iln ’

5 £~ in(i)?

1=

where § > 1, satisfies @ for any heavy tail noisy function with probability at
least (1 — &)2. The total number of fitness evaluation up to iteration n is

> km = O(n*In(n)”).

m=1

28

Figure 1: Construction graph for pseudo-Boolean optimization with n = 5 bits.

5 Ant Colony Optimization

After having investigated evolutionary algorithms for dynamic and stochastic
problems, we now give a summary on the results obtained in the context of
ant colony optimization (ACO). ACO algorithms construct solutions for a given
optimization problem by performing random walks on a so-called construction
graph. The construction graph frequently used in pseudo-Boolean optimization
is shown in Figure[[l This random walk is influenced by so-called pheromone
values on the edges of the graph. At each time step, the pheromone values in-
duce a probability distribution on the underlying search space which is used to
sample new solutions for the given problem. Pheromone values are adapted over
time such that good components of solutions obtained during the optimization
process are reinforced. The idea is that this reinforcement then leads to better
solutions during the optimization process. An algorithm which is frequently
studied throughout theoretical investigations for pseudo-Boolean maximization
is MMAS (see Algorithm [I). It is a simplification of the Max-Min Ant Sys-
tem introduced in [4I]. The algorithm, which is given in Algorithm [only
uses one ant in each iteration. However, variants of MMAS called A-MMAS,
where in each iteration A\ ants are used, have also been studied in the litera-
ture. Pheromone values are chosen within the interval [Tiin, Tmax] Where Timin
and Tyax are lower and upper bounds used in MMAS. Furthermore, the update
strength p plays an important role in the runtime analysis of ACO algorithms.
For MMAS, a large update strength such as p = 1 often makes the considered
MMAS algorithms similar to simple evolutionary algorithms such as (1+1) EA.
The considered algorithms are usually analyzed with respect to the number of
solutions until a given goal has been achieved. As in the case of runtime analysis
of evolutionary algorithms, one is often interested in the expected number of
solutions to reach the desired goal.

5.1 Dynamic Problems

Kotzing and Molter [28] compared the behavior of (1 + 1) EA and MMAS on
the MAZE problem. The MAZE problem has an oscillating behavior of different
parts of the function and the authors have shown that MMAS is able to track
this oscillating behavior if p is chosen appropriately, i.e. p = 6(1/n) whereas
(14 1) EA looses track of optimum with probability close to 1.

29

Algorithm 1 MMAS
: Set T(y,v) = 1/2 for all (u,v) € E.
: Construct a solution z*.
: Update pheromones w.r.t. x*.
repeat forever
Construct a solution z.
if f(z) > f(z*) then z* := z.
Update pheromones w.r.t. z*.

U e

In the case of dynamic combinatorial optimization problems, dynamic single-
source shortest paths problems have been investigated in [30]. Given a destina-
tion node t € V, the goal is to compute for any node v € V' \ t a shortest paths
from v to ¢t. The set of these single-source shortest paths can be represented as a
tree with root ¢ and the path from v to ¢ in that tree gives a shortest path from v
to t. The authors have investigated different types of dynamic changes for vari-
ants of MMAS. They first investigated the MMAS and show that this algorithm
can effectively deal with one time changes and build on investigations in [42]
for the static case. They show that the algorithm is able to recompute single-
source shortest paths in an expected number of O(£* /Tinin + £10(Tmax/Tmin)/p)
iterations after a one change has happened. The parameter ¢ denotes the max-
imum number of arcs in any shortest path to node ¢ in the new graph and
¢* = min{¢,logn}. The result shows that MMAS is able to track dynamic
changes if they are not too frequent. Furthermore, they present a lower bound
of Q(¢/Tmin) in the case that p = 1 holds. Afterwards, periodic local and global
changes are investigated. In the case of the investigated local changes, A-MMAS
with a small X is able to track periodic local changes for a specific setting. For
global changes, a setting with oscillation between two simple weight functions is
introduced where an exponential number of ants would be required to make sure
that an optimal solution is sampled with constant probability in each iteration.

5.2 Stochastic Problems

In stochastic environments, ACO algorithms have been analyzed for exemplary
benchmark functions and the stochastic shortest paths problem.

Thyssen and Sudholt [4] started the runtime analysis of ACO algorithms
in stochastic environments. They investigated the single-destination shortest
path (SDSP) problem where edge weights are subject to noise. For each edge
e the noise model return a weight of (1 + n(e,p,t)) - w(e) instead of the exact
real weight w(e). This implies that the weight w(e) of each edge e is increased
according to the noise model. They considered a variant of MMAS for the
shortest path problem introduced in [42]. They start by characterizing noise
model for which the algorithm can discover shortest paths efficiently. In the
general setting, they examined the algorithms in terms of approximations. The
results depends on how much non optimal paths differ at least from optimal
ones. More precisely, they show that if for each vertex v € V and some o > 1 it

30

holds that every non-optimal path has length at least (1 + « - E(n(opt,))) - opt,
then the algorithm finds an a-approximation in time proportional to a/(a — 1)
and other standard ACO parameters such as pheromone bounds and pheromone
update strengths. Here opt, denotes the value of a shortest paths from v to
the destination ¢ and E(n(opt,)) denotes the expected random noise on all
edges of this path. Furthermore, for independent gamma-distributions along
the edges, they have shown that the algorithm may need exponential time to
find a good approximation. Doerr et al. [7] have extended the investigations
for the stochastic SDSP problem. They considered a slight variation of MMAS
for the stochastic SDSP which always reevaluates the best so-far solution when
a new solution for comparison is obtained. This allows the MMAS version to
easily obtain shortest paths in the stochastic setting.

Friedrich et al. [14] considered MMAS with a fitness proportional pheromone
update rule on linear pseudo-Boolean functions. They show that the algorithm
scales gracefully with the noise, i.e. the runtime only depends linearly on the
variance of the Gaussian noise. In contrast to this many of the considered
noise settings are not solvable by simple evolutionary algorithms such as (1 +
1) EA [11]. This points out a clear benefit of using ant colony optimization for
stochastic problems.

6 Conclusions

Evolutionary algorithms have been extensively used to deal with dynamic and
stochastic problems. We have given an overview on recent results regarding the
theoretical foundations of evolutionary algorithms for dynamic and stochastic
problems in the context of rigorous runtime analysis. Various results for dynamic
problems in the context of combinatorial optimization for problems such as
makespan scheduling and minimum vertex cover have been summarized and
the benefits of different approaches to deal with such dynamic problems have
been pointed out. In the case of stochastic problems, the impact on the amount
of noise and how population-based approaches are beneficial for coping with
noisy environments have been summarized.

While all these studies have greatly contributed to the understanding of the
basic working principles of evolutionary algorithms and ant colony optimization
in dynamic and stochastic environments, analyzing the behavior on complex
problems remains highly open. Furthermore, also uncertainties often change
over time and are therefore dynamic. Therefore, it would be very interesting
to analyze the behavior of evolutionary algorithms for problems where uncer-
tainties change over time. For future research, it would also be interesting to
examine environments that are both dynamic and stochastic as many real-world
problems have both properties at the same time.

31

References

1]

[10]

Y. Akimoto, S. Astete-Morales, and O. Teytaud. Analysis of runtime of
optimization algorithms for noisy functions over discrete codomains. The-
oretical Computer Science, 605:42—50, 2015.

S. Astete-Morales, M.-L. Cauwet, and O. Teytaud. Analysis of different
types of regret in continuous noisy optimization. In Proceedings of the

Genetic and Evolutionary Computation Conference 2016, pages 205-212.
ACM, 2016.

S. Cathabard, P. K. Lehre, and X. Yao. Non-uniform mutation rates for
problems with unknown solution lengths. In H. Beyer and W. B. Lang-
don, editors, Foundations of Genetic Algorithms, 11th International Work-
shop, FOGA 2011, Schwarzenberg, Austria, January 5-8, 2011, Proceed-
ings, pages 173-180. ACM, 2011.

C. A. C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone,
editors. Parallel Problem Solving from Nature - PPSN XII - 12th Inter-
national Conference, Taormina, Italy, September 1-5, 2012, Proceedings,
Part I, volume 7491 of Lecture Notes in Computer Science. Springer, 2012.

B. Doerr, C. Doerr, and F. Ebel. From black-box complexity to designing
new genetic algorithms. Theor. Comput. Sci., 567(C):87-104, Feb. 2015.

B. Doerr, C. Doerr, and T. Ko6tzing. Solving problems with unknown
solution length at (almost) no extra cost. In S. Silva and A. I. Esparcia-
Alcazar, editors, Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, pages 831—
838. ACM, 2015.

B. Doerr, A. Hota, and T. Kétzing. Ants easily solve stochastic shortest
path problems. In T. Soule and J. H. Moore, editors, Genetic and Evo-
lutionary Computation Conference, GECCO 12, Philadelphia, PA, USA,
July 7-11, 2012, pages 17-24. ACM, 2012.

B. Doerr, D. Johannsen, and C. Winzen. Multiplicative drift analysis.
Algorithmica, 64(4):673-697, 2012.

S. Droste. Analysis of the (1+1) EA for a dynamically changing ONEMAX-
variant. In FEvolutionary Computation, 2002. CEC °02. Proceedings of the
2002 Congress on, volume 1, pages 55-60, May 2002.

S. Droste. Analysis of the (141) ea for a dynamically bitwise changing
onemax. In Proceedings of the 2003 International Conference on Genetic
and Evolutionary Computation: Partl, GECCO’03, pages 909-921, Berlin,
Heidelberg, 2003. Springer-Verlag.

32

[11]

[12]

18]

[19]

S. Droste. Analysis of the (14 1) EA for a noisy OneMax. In Genetic
and Evolutionary Computation—-GECCO 2004, pages 1088—-1099. Springer,
2004.

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approx-
imating covering problems by randomized search heuristics using multi-
objective models. Ewvolutionary Computation, 18(4):617-633, 2010.

T. Friedrich, T. Koétzing, M. S. Krejca, and A. M. Sutton. Graceful scal-
ing on uniform versus steep-tailed noise. In International Conference on
Parallel Problem Solving from Nature, pages 761-770. Springer, 2016.

T. Friedrich, T. Ko6tzing, M. S. Krejca, and A. M. Sutton. Robustness of
ant colony optimization to noise. FEwvolutionary Computation, 24(2):237—
254, 2016.

T. Friedrich, T. Ko6tzing, G. Lagodzinski, F. Neumann, and M. Schirneck.
Analysis of the (14+1) EA on subclasses of linear functions under uniform
and linear constraints. In Proceedings of the 14th ACM/SIGEVO Confer-
ence on Foundations of Genetic Algorithms, FOGA ’17, pages 45-54, New
York, NY, USA, 2017. ACM.

T. Friedrich, T. K&tzing, and A. M. Sutton. On the robustness of evolving
populations. In International Conference on Parallel Problem Solving from
Nature, pages 771-781. Springer, 2016.

T. Friedrich, T. Ko6tzing, M. S. Krejca, and A. M. Sutton. The bene-
fit of recombination in noisy evolutionary search. In K. Elbassioni and
K. Makino, editors, International Symposium of Algorithms and Compu-
tation (ISAAC), pages 140-150, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

T. Friedrich, T. Kotzing, M. S. Krejca, and A. M. Sutton. The benefit of
recombination in noisy evolutionary search. In Genetic and FEvolutionary
Computation Conference (GECCO), pages 161-162, 2016.

T. Friedrich, T. Ko6tzing, M. S. Krejca, and A. M. Sutton. Robustness of
ant colony optimization to noise. FEwvolutionary Computation, 24(2):237—
254, 2016.

T. Friedrich, T. Kotzing, M. S. Krejca, and A. M. Sutton. The compact
genetic algorithm is efficient under extreme gaussian noise. IEEE Transac-
tions on Evolutionary Computation, 21(3):477-490, 2017.

T. Friedrich, T. K&tzing, and A. M. Sutton. On the robustness of evolving
populations. In Parallel Problem Solving From Nature (PPSN), pages 771
781, 2016.

C. Gieflen and T. Koétzing. Robustness of populations in stochastic envi-
ronments. Algorithmica, 75(3):462-489, 2016.

33

[23] T. Jansen, P. S. Oliveto, and C. Zarges. Approximating vertex cover using
edge-based representations. In F. Neumann and K. A. D. Jong, editors,
Foundations of Genetic Algorithms XII, FOGA ’13, Adelaide, SA, Aus-
tralia, January 16-20, 2013, pages 87-96. ACM, 2013.

[24] T. Jansen and C. Zarges. Evolutionary algorithms and artificial immune
systems on a bi-stable dynamic optimisation problem. In Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Computation,
GECCO 14, pages 975982, New York, NY, USA, 2014. ACM.

[25] T. Jansen and C. Zarges. Analysis of randomised search heuristics for
dynamic optimisation. Evolutionary Computation, 23(4):513 — 541, 2015.

[26] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-
Verlag Berlin Heidelberg, 2004.

[27] T. Kotzing, A. Lissovoi, and C. Witt. (1+1) ea on generalized dynamic
onemax. In Proceedings of the 2015 ACM Conference on Foundations of
Genetic Algorithms XIII, FOGA 15, pages 40-51, New York, NY, USA,
2015. ACM.

[28] T. Kotzing and H. Molter. ACO beats EA on a dynamic pseudo-boolean
function. In Coello et al. [4], pages 113-122.

[29] S. Kratsch and F. Neumann. Fixed-parameter evolutionary algorithms and
the vertex cover problem. Algorithmica, 65(4):754-771, 2013.

[30] A. Lissovoi and C. Witt. Runtime analysis of ant colony optimization on
dynamic shortest path problems. Theoretical Computer Science, 561:73 —
85, 2015. Genetic and Evolutionary Computation.

[31] A. Lissovoi and C. Witt. Mmas versus population-based ea on a family of
dynamic fitness functions. Algorithmica, 75(3):554-576, Jul 2016.

[32] A. Lissovoi and C. Witt. Mmas versus population-based ea on a family of
dynamic fitness functions. Algorithmica, 75(3):554-576, Jul 2016.

[33] A. Lissovoi and C. Witt. A runtime analysis of parallel evolutionary algo-
rithms in dynamic optimization. Algorithmica, 78(2):641-659, Jun 2017.

[34] F. Neumann and C. Witt. On the runtime of randomized local search
and simple evolutionary algorithms for dynamic makespan scheduling. In
1JCAI pages 3742-3748, 2015.

[35] P. S. Oliveto, J. He, and X. Yao. Analysis of the (14+1)-EA for finding
approximate solutions to vertex cover problems. IEFEE Trans. Evolutionary
Computation, 13(5):1006-1029, 2009.

34

[36]

37]

[38]

M. Pourhassan, W. Gao, and F. Neumann. Maintaining 2-approximations
for the dynamic vertex cover problem using evolutionary algorithms. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, pages 903-910, New York, NY, USA, 2015.
ACM.

M. Pourhassan, F. Shi, and F. Neumann. Parameterized analysis of multi-
objective evolutionary algorithms and the weighted vertex cover problem.
In Proceedings of the 14th International Conference of Parallel Problem
Solving from Nature — PPSN XIV, pages 729-739. Springer International
Publishing, 2016.

A. Prugel-Bennett, J. Rowe, and J. Shapiro. Run-time analysis of
population-based evolutionary algorithm in noisy environments. In Proceed-
ings of the 2015 ACM Conference on Foundations of Genetic Algorithms
XIII, FOGA 15, pages 69-75, New York, NY, USA, 2015. ACM.

F. Shi, M. Schirneck, T. Friedrich, T. Koétzing, and F. Neumann. Reop-
timization times of evolutionary algorithms on linear functions under dy-
namic uniform constraints. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, pages 1407-1414, New York, NY,
USA, 2017. ACM.

F. Shi, M. Schirneck, T. Friedrich, T. K6tzing, and F. Neumann. Reopti-
mization time analysis of evolutionary algorithms on linear functions under
dynamic uniform constraints. Algorithmica, May 2018.

T. Stiitzle and H. H. Hoos. MAX-MIN ant system. Future Generation
Comp. Syst., 16(8):889-914, 2000.

D. Sudholt and C. Thyssen. Running time analysis of ant colony opti-
mization for shortest path problems. J. Discrete Algorithms, 10:165-180,
2012.

Y. Zhou and J. He. A runtime analysis of evolutionary algorithms for
constrained optimization problems. IEFEE Transactions on Evolutionary
Computation, 11(5):608-619, Oct 2007.

35

	1 Introduction
	2 Preliminaries
	2.1 Dynamic OneMax Problem
	2.2 Linear Pseudo-Boolean Functions Under Dynamic Uniform Constraints
	2.3 Dynamic Vertex Cover Problem
	2.4 Dynamic Makespan Scheduling Problem
	2.5 Stochastic Problems and Noise Models
	2.6 Evolutionary algorithms

	3 Analysis of Evolutionary Algorithms on Dynamic Problems
	3.1 OneMax Under Dynamic Uniform Constraints
	3.2 Linear Pseudo-Boolean Functions Under Dynamic Uniform Constraints
	3.3 The Vertex Cover Problem
	3.4 Makespan Scheduling
	3.5 The MAZE Problem

	4 Analysis of Evolutionary Algorithms on Stochastic Problems
	4.1 Influence of The Population Size
	4.2 Influence of Different Noise Distributions on The Performance of Population Based EAs
	4.3 Resampling Approach for Noisy Discrete Problems

	5 Ant Colony Optimization
	5.1 Dynamic Problems
	5.2 Stochastic Problems

	6 Conclusions

