Skip to main content

A Tableaux Calculus for Default Intuitionistic Logic

  • Conference paper
  • First Online:
Book cover Automated Deduction – CADE 27 (CADE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11716))

Included in the following conference series:

Abstract

We build a Default Logic variant on Intuitionistic Propositional Logic and develop a sound, complete, and terminating, tableaux calculus for it. We also present an implementation of the calculus. We motivate and illustrate the technical elements of our work with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This notion is referred to as local consequence in the literature on Modal Logic.

  2. 2.

    This notion is referred to as sceptical consequence in the literature on Default Logics.

  3. 3.

    The ‘@’ notation is borrowed from Hybrid Logic [3].

  4. 4.

    The signs \(+\) and − are necessary since in \(\mathsf {IPL}\) we cannot use the symbol \(\lnot \) of negation for expressing that a formula does not hold in a world.

References

  1. Amati, G., Aiello, L., Gabbay, D., Pirri, F.: A proof theoretical approach to default reasoning I: tableaux for default logic. J. Log. Comput. 6(2), 205–231 (1996)

    Article  MathSciNet  Google Scholar 

  2. Antoniou, G.: Nonmonotonic Reasoning. The MIT Press, Cambridge (1997)

    Book  Google Scholar 

  3. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, et al. [4], pp. 821–868

    Google Scholar 

  4. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  5. Bochman, A.: Non-monotonic reasoning. In: Gabbay and Woods [20], pp. 555–632

    Google Scholar 

  6. Brewka, G.: Cumulative default logic: in defense of nonmonotonic inference rules. Artif. Intell. 50(2), 183–205 (1991)

    Article  MathSciNet  Google Scholar 

  7. Cassano, V., Areces, C., Castro, P.: Reasoning about prescription and description using prioritized default rules. In: Barthe, G., Sutcliffe, G., Veanes, M. (eds.) 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-22), EPiC Series in Computing, vol. 57, pp. 196–213. EasyChair (2018)

    Google Scholar 

  8. Cassano, V., Fervari, R., Areces, C., Castro, P.F.: Interpolation and beth definability in default logics. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 675–691. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_44

    Chapter  MATH  Google Scholar 

  9. Cassano, V., Pombo, C.G.L., Maibaum, T.S.E.: A propositional tableaux based proof calculus for reasoning with default rules. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 6–21. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_2

    Chapter  MATH  Google Scholar 

  10. Cholewinski, P., Marek, V., Truszczynski, M.: Default reasoning system DeReS. In: 5th International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), pp. 518–528. Morgan Kaufmann (1996)

    Google Scholar 

  11. Claessen, K., Rosén, D.: SAT modulo intuitionistic implications. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 622–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_43

    Chapter  Google Scholar 

  12. Delgrande, J., Schaub, T., Jackson, W.: Alternative approaches to default logic. Artif. Intell. 70(1–2), 167–237 (1994)

    Article  MathSciNet  Google Scholar 

  13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  14. Egly, U., Tompits, H.: A sequent calculus for intuitionistic default logic. In: 12th Workshop Logic Programming (WLP 1997), pp. 69–79 (1997)

    Google Scholar 

  15. Ferrari, M., Fiorentini, C., Fiorino, G.: A tableau calculus for propositional intuitionistic logic with a refined treatment of nested implications. J. Appl. Non-Class. Log. 19, 149–166 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ferrari, M., Fiorentini, C., Fiorino, G.: fCube: an efficient prover for intuitionistic propositional logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 294–301. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8_21

    Chapter  MATH  Google Scholar 

  17. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Springer, Dordrecht (1983). https://doi.org/10.1007/978-94-017-2794-5

    Book  MATH  Google Scholar 

  18. Font, J.: Abstract Algebraic Logic: An Introductory Textbook, 1st edn. College Publications (2016)

    Google Scholar 

  19. Gabbay, D.M.: Intuitionistic basis for non-monotonic logic. In: Loveland, D.W. (ed.) CADE 1982. LNCS, vol. 138, pp. 260–273. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0000064

    Chapter  Google Scholar 

  20. Gabbay, D., Woods, J. (eds.): Handbook of the History of Logic: The Many Valued and Nonmonotonic Turn in Logic, vol. 8. North-Holland, Amsterdam (2007)

    MATH  Google Scholar 

  21. Goré, R., Thomson, J., Wu, J.: A history-based theorem prover for intuitionistic propositional logic using global caching: IntHistGC system description. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 262–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_19

    Chapter  Google Scholar 

  22. Haeusler, E., de Paiva, V., Rademaker, A.: Intuitionistic logic and legal ontologies. In: 23rd International Conference on Legal Knowledge and Information Systems (JURIX 2010), Frontiers in Artificial Intelligence and Applications, vol. 223, pages 155–158. IOS Press (2010)

    Google Scholar 

  23. Hughes, G., Cresswell, M.: An Introduction to Modal Logic. Methuen, London (1968)

    MATH  Google Scholar 

  24. Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69778-0_22

    Chapter  Google Scholar 

  25. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse. J. Log. Lang. Inf. 18(4), 437–464 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kapsner, A.: The logic of guilt, innocence and legal discourse. In: Urbaniak, R., Payette, G. (eds.) Applications of Formal Philosophy. LARI, vol. 14, pp. 7–24. Springer, Cham (2017)

    Chapter  Google Scholar 

  27. Łukaszewicz, W.: Considerations on default logic: an alternative approach. Comput. Intell. 4, 1–16 (1988)

    Article  Google Scholar 

  28. Makinson, D., van der Torre, L.: What is input/output logic? Input/output logic, constraints, permissions. In: Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent Systems, Dagstuhl Seminar Proceedings, vol. 07122. Internationales Begegnungsund Forschungszentrum für Informatik (2007)

    Google Scholar 

  29. Mikitiuk, A., Truszczynski, M.: Constrained and rational default logics. In: 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1509–1517 (1995)

    Google Scholar 

  30. Osorio, M., Navarro Pérez, J., Arrazola, J.: Applications of intuitionistic logic in answer set programming. TPLP 4(3), 325–354 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Parent, X., Gabbay, D., Torre, L.: Intuitionistic basis for input/output logic. In: Hansson, S.O. (ed.) David Makinson on Classical Methods for Non-Classical Problems. OCL, vol. 3, pp. 263–286. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7759-0_13

    Chapter  Google Scholar 

  32. Pearce, D.: Stable inference as intuitionistic validity. J. Log. Program. 38(1), 79–91 (1999)

    Article  MathSciNet  Google Scholar 

  33. Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A polynomial translation of logic programs with nested expressions into disjunctive logic programs: preliminary report. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 405–420. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45619-8_28

    Chapter  MATH  Google Scholar 

  34. Poole, D.: What the lottery paradox tells us about default reasoning. In: 1st International Conference on Principles of Knowledge Representation and Reasoning (KR 1989), pp. 333–340 (1989)

    Google Scholar 

  35. Priest, G.: An Introduction to Non-Classical Logic: From If to Is. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom. Reason. 38(1–3), 261–271 (2007)

    Article  MathSciNet  Google Scholar 

  37. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)

    Article  MathSciNet  Google Scholar 

  38. Servi, G.: Nonmonotonic consequence based on intuitionistic logic. J. Symb. Log. 57(4), 1176–1197 (1992)

    Article  MathSciNet  Google Scholar 

  39. Wansing, H.: Semantics-based nonmonotonic inference. Notre Dame J. Formal Log. 36(1), 44–54 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Ackowledgements

This work was partially supported by ANPCyT-PICTs-2017-1130 and 2016-0215, MinCyT Córdoba, SeCyT-UNC, the Laboratoire International Associé INFINIS and the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 690974 for the project MIREL: MIning and REasoning with Legal texts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Areces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cassano, V., Fervari, R., Hoffmann, G., Areces, C., Castro, P.F. (2019). A Tableaux Calculus for Default Intuitionistic Logic. In: Fontaine, P. (eds) Automated Deduction – CADE 27. CADE 2019. Lecture Notes in Computer Science(), vol 11716. Springer, Cham. https://doi.org/10.1007/978-3-030-29436-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29436-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29435-9

  • Online ISBN: 978-3-030-29436-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics