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Abstract. We introduce the class of constant probability (CP) programs
and show that classical results from probability theory directly yield a
simple decision procedure for (positive) almost sure termination of pro-
grams in this class. Moreover, asymptotically tight bounds on their ex-
pected runtime can always be computed easily. Based on this, we present
an algorithm to infer the exact expected runtime of any CP program.
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1 Introduction

Probabilistic programs are used to describe randomized algorithms and probabil-
distributions, with applications in many areas. For example, consider the well-
known program which models the race between a tortoise and a hare (see, e.g.,
[11,24,30]). As long as the tortoise (variable t) is not behind the hare (variable h),

while (h ≤ t) {
t = t+ 1;
{h = h+Unif (0, 10)} ⊕ 1

2
{h = h};

}

it does one step in each iteration. With
probability 1

2 , the hare stays at its posi-
tion and with probability 1

2 it does a ran-
dom number of steps uniformly chosen
between 0 and 10. The race ends when
the hare is in front of the tortoise. Here, the hare wins with probability 1 and the
technique of [30] infers the upper bound 2

3 ·max(t−h+9, 0) on the expected num-
ber of loop iterations. Thus, the program is positively almost surely terminating.

Sect. 2 recapitulates preliminaries on probabilistic programs and on the con-
nection between their expected runtime and their corresponding recurrence equa-
tion. Then we show in Sect. 3 and 4 that classical results on random walk theory
directly yield a very simple decision procedure for (positive) almost sure termi-
nation of CP programs like the tortoise and hare example. In this way, we also
obtain asymptotically tight bounds on the expected runtime of any CP program.
Based on these bounds, in Sect. 5 we develop the first algorithm to compute
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closed forms for the exact expected runtime of such programs. In Sect. 6, we
present its implementation in our tool KoAT [10] and discuss related and future
work. We refer to the appendix for a collection of examples to illustrate the
application of our algorithm and for all proofs.

2 Expected Runtimes of Probabilistic Programs

Example 1 (Tortoise and Hare). The pro- while ((1,−1) • (t, h) > −1) {
(t, h) = (t, h) + (1, 0) [ 6

11 ];

(t, h) = (t, h) + (1, 1) [ 1
22 ];

(t, h) = (t, h) + (1, 2) [ 1
22 ];

(t, h) = (t, h) + (1, 3) [ 1
22 ];...

(t, h) = (t, h) + (1, 10) [ 1
22 ];

}

gram Prace on the right formulates the race
of the tortoise and the hare as a CP program.
In the loop guard, we use the scalar product
(1,−1) • (t, h) which stands for t− h. Exactly
one of the instructions with numbers in brack-
ets [. . .] is executed in each loop iteration and
the number indicates the probability that the
corresponding instruction is chosen.

We now define the kind of probabilistic programs considered in this paper.

Definition 2 (Probabilistic Program). A pro-
while (a • x > b) {
x = x+ c1 [pc1

(x)];...
x = x+ cn [pcn

(x)];

x = d [p′(x)];
}

gram has the form on the right, where x = (x1, . . . , xr)
for some r ≥ 1 is a tuple of pairwise different program
variables, a, c1, . . . , cn ∈ Zr are tuples of integers, the
cj are pairwise distinct, b ∈ Z, • is the scalar prod-
uct (i.e., (a1, . . . , ar) • (x1, . . . , xr) = a1 · x1 + . . . +
ar · xr), and d ∈ Zr with a • d ≤ b. We require

pc1
(x), . . . , pcn

(x), p′(x) ∈ R≥0 = {r ∈ R | r ≥ 0} and
∑

1≤j≤n
pcj

(x)+p′(x) =

1 for all x ∈ Zr. It is a program with direct termination if there is an x ∈ Zr

with a • x > b and p′(x) > 0. If all probabilities are constant, i.e., if there are
pc1

, . . . , pcn
, p′ ∈ R≥0 such that pcj (x) = pcj and p′(x) = p′ for all 1 ≤ j ≤ n

and all x ∈ Zr, we call it a constant probability (CP) program.

Such a program means that the integer variables x are changed to x+ cj with
probability pcj (x). For inputs x with a •x ≤ b the program terminates immedi-
ately. Note that the program in Ex. 1 has no direct termination (i.e., p′(x) = 0 for
all x ∈ Zr). Since the values of the program variables only depend on their values
in the previous loop iteration, our programs correspond to Markov Chains [32]
and they are related to random walks [17, 21, 33], cf. the appendix for details.

Clearly, in general termination is undecidable and closed forms for the run-
times of programs are not computable. Thus, decidability results can only be
obtained for suitably restricted forms of programs. Our class nevertheless in-
cludes many examples that are often regarded in the literature on probabilistic
programs. So while other approaches are concerned with incomplete techniques
to analyze termination and complexity, we investigate classes of probabilistic pro-
grams where one can decide the termination behavior, always find complexity
bounds, and even compute the expected runtime exactly. Our decision procedure
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could be integrated into general tools for termination and complexity analysis of
probabilistic programs: As soon as one has to investigate a sub-program that falls
into our class, one can use the decision procedure to compute its exact runtime.
Our contributions provide a starting point for such results and the considered
class of programs can be extended further in future work.

In probability theory (see, e.g., [2]), given a set Ω of possible events, the goal
is to measure the probability that events are in certain subsets of Ω. To this end,
one regards a set F of subsets of Ω, such that F contains the full set Ω and is
closed under complement and countable unions. Such a set F is called a σ-field,
and a pair of Ω and a corresponding σ-field F is called a measurable space.

A probability space (Ω,F,P) extends a measurable space (Ω,F) by a probabil-
ity measure P which maps every set from F to a number between 0 and 1, with

P(Ω) = 1, P(∅) = 0, and P(
⊎

j≥0
Aj) =

∑

j≥0
P(Aj) for any pairwise disjoint

sets A0, A1, . . . ∈ F. So P(A) is the probability that an event from Ω is in the sub-
set A. In our setting, we use the probability space ((Zr)ω ,FZ

r

,PP
x0
) arising from

the standard cylinder-set construction of MDP theory, cf. App. B. Here, (Zr)ω

corresponds to all infinite sequences of program states and PP
x0

is the probability
measure induced by the program P when starting in the state x0 ∈ Zr. For ex-
ample, if A ⊆ (Z2)ω consists of all infinite sequences starting with (5, 1), (6, 1),
(7, 6), then P

Prace

(5,1) (A) = 6
11 · 1

22 = 3
121 . So, if one starts with (5, 1), then 3

121

is the probability that the next two states are (6, 1) and (7, 6). Once a state is
reached that violates the loop guard, then the probability to remain in this state
is 1. Hence, if B contains all infinite sequences starting with (7, 8), (7, 8), then
P
Prace

(7,8) (B) = 1. In the following, for any set of numbers M let M = M ∪ {∞}.

Definition 3 (Termination Time). For a program P as in Def. 2, its termi-
nation time is the random variable TP : (Zr)ω → N that maps every infinite
sequence 〈z0, z1, . . .〉 to the first index j where zj violates P’s loop guard.

Thus, TPrace(〈(5, 1), (6, 1), (7, 8), (7, 8), . . .〉) = 2 and TPrace(〈(5, 1), (6, 1), (5, 6),
(8, 6), (9, 6), . . .〉) = ∞ (i.e., this sequence always satisfies Prace’s loop guard as
the jth entry is (5 + j, 6) for j ≥ 3). Now we can define the different notions of
termination and the expected runtime of a probabilistic program. As usual, for
any random variable X on a probability space (Ω,F,P), P(X = j) stands for
P(X−1({j})). So PP

x0
(TP = j) is the probability that a sequence has termination

time j. Similarly, PP
x0
(TP < ∞) =

∑

j∈N
PP
x0
(TP = j). The expected value E(X)

of a random variable X : Ω → N for a probability space (Ω,F,P) is the weighted

average under the probability measure P, i.e., E(X) =
∑

j∈N
j · P(X = j),

where ∞ · 0 = 0 and ∞ · u = ∞ for all u ∈ N>0.

Definition 4 (Termination and Expected Runtime). A program P as
in Def. 2 is almost surely terminating (AST) if PP

x0
(TP < ∞) = 1 for any

initial value x0 ∈ Zr. For any x0 ∈ Zr, its expected runtime rtPx0
(i.e., the

expected number of loop iterations) is defined as the expected value of the ran-
dom variable TP under the probability measure PP

x0
, i.e., rtPx0

= EP
x0

(

TP) =
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∑

j∈N
j ·PP

x0
(TP=j) if PP

x0
(TP<∞) = 1, and rtPx0

= EP
x0

(

TP) = ∞ otherwise.

The program P is positively almost surely terminating (PAST) if for any initial
value x0 ∈ Zr, the expected runtime of P is finite, i.e., if rtPx0

= EP
x0

(

TP) < ∞.

Example 5 (Expected Runtime for Prace). By the observations in Sect. 4 we will
infer that 2

3 · (t−h+1) ≤ rtPrace

(t,h) ≤ 2
3 · (t−h+1)+ 16

3 holds whenever t−h > −1,

cf. Ex. 22. So the expected number of steps until termination is finite (and linear
in the input variables) and thus, Prace is PAST. The algorithm in Sect. 5 will
even be able to compute rtPrace

(t,h) exactly, cf. Ex. 34.

If the initial values x0 violate the loop guard, then the runtime is trivially 0.

Corollary 6 (Expected Runtime for Violating Initial Values). For any
program P as in Def. 2 and any x0 ∈ Zr with a • x0 ≤ b, we have rtPx0

= 0.

To obtain our results, we use an alternative, well-known characterization of the
expected runtime, cf. e.g., [4, 9, 16, 24–27, 32, 34]. To this end, we search for
the smallest (or “least”) solution of the recurrence equation that describes the
runtime of the program as 1 plus the sum of the runtimes in the next loop
iteration, multiplied with the corresponding probabilities. Here, functions are
compared pointwise, i.e., for f, g : Zr → R≥0 we have f ≤ g if f(x) ≤ g(x) holds
for all x ∈ Zr. So we search for the smallest function f : Zr → R≥0 that satisfies

f(x) =
∑

1≤j≤n
pcj

(x)·f(x+cj)+p′(x)·f(d)+1 for all x with a • x > b. (1)

Equivalently, we can search for the least fixpoint of the “expected runtime trans-
former” LP which transforms the left-hand side of (1) into its right-hand side.

Definition 7 (LP , cf. [32]). For P as in Def. 2, we define the expected runtime
transformer LP : (Zr→ R≥0) → (Zr→ R≥0), where for any f : Zr→ R≥0:

LP (f)(x) =

{
∑

1≤j≤n
pcj

(x) · f(x+ cj) + p′(x) · f(d) + 1, if a • x > b

f(x), if a • x ≤ b

Example 8 (Expected Runtime Transformer for Prace). For Prace from Ex. 1,
LPrace maps any function f : Z2 → R≥0 to LPrace(f), where LPrace(f)(t, h) =

{

6
11 · f(t+ 1, h) + 1

22 ·
∑

1≤j≤10
f(t+ 1, h+ j) + 1, if t− h > −1

f(t, h), if t− h ≤ −1
(2)

Thm. 9 recapitulates that the least fixpoint of LP indeed yields an equivalent
characterization of the expected runtime. In the following, let 0 : Zr → R≥0 be
the function with 0(x) = 0 for all x ∈ Zr.

Theorem 9 (Connection Between Expected Runtime and Least Fix-
point of LP , cf. [32]). For any P as in Def. 2, the expected runtime trans-
former LP is continuous. Thus, it has a least fixpoint lfp(LP ) : Zr → R≥0 with
lfp(LP) = sup{0,LP(0), (LP)2(0), . . .}. Moreover, the least fixpoint of LP is the
expected runtime of P, i.e., for any x0 ∈ Zr, we have lfp(LP )(x0) = rtPx0

.
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So the expected runtime rtPrace

(t,h) can also be characterized as the smallest

function f : Z2→ R≥0 satisfying f(t, h)=(2), i.e., as the least fixpoint of LPrace .

3 Expected Runtime of Programs with Direct Termination

We start with stating a decidability result for the case where for all x with
a • x > b, the probability p′(x) for direct termination is at least p′ for some
p′ > 0. Intuitively, these programs have a termination time whose distribution
is closely related to the geometric distribution with parameter p′ (which has
expected value 1

p′ ). By using the alternative characterization of rtPx0
from Thm. 9,

one obtains that such programs are always PAST and their expected runtime
is indeed bounded by the constant 1

p′ . This result will be used in Sect. 5 when
computing the exact expected runtime of such programs. The more involved case
where p′(x) = 0 is considered in Sect. 4.

Theorem 10 (PAST and Expected Runtime for Programs With Direct
Termination). Let P be a program as in Def. 2 where there is a p′ > 0 such
that p′(x) ≥ p′ for all x ∈ Zr with a • x > b. Then P is PAST and its expected
runtime is at most 1

p′ , i.e., rt
P
x0

≤ 1
p′ if a • x0 > b, and rtPx0

= 0 if a • x0 ≤ b.

Example 11 (Ex. 1 with Direct Termination). while ((1,−1) • (t, h) > −1) {
(t, h) = (t, h) + (1, 0) [ 9

10 ];

(t, h) = (7, 8) [ 1
10 ];

}

Consider the variant Pdirect of Prace on the
right, where in each iteration, the hare either
does nothing with probability 9

10 or one di-
rectly reaches a configuration where the hare
is ahead of the tortoise. By Thm. 10 the program is PAST and its expected
runtime is at most 1

1
10

= 10, i.e., independent of the initial state it takes at most

10 loop iterations on average. In Sect. 5 it will turn out that 10 is indeed the
exact expected runtime, cf. Ex. 32.

4 Expected Runtimes of Constant Probability Programs

Now we present a very simple decision procedure for termination of CP programs
(Sect. 4.2) and show how to infer their asymptotic expected runtimes (Sect. 4.3).
This will be needed for the computation of exact expected runtimes in Sect. 5.

4.1 Reduction to Random Walk Programs
while (x > 0) {
x = x+m [pm];...
x = x+ 1 [p1];

x = x [p0];

x = x− 1 [p−1];...
x = x− k [p−k];

x = d [p′];
}

As a first step, we show that we can restrict ourselves to
random walk programs, i.e., programs with a single pro-
gram variable x and the loop condition x > 0.

Definition 12 (Random Walk Program). A CP pro-
gram P is called a random walk program if there exist
m, k ∈ N and d ∈ Z with d ≤ 0 such that P has the form
on the right. Here, we require that m > 0 implies pm > 0
and that k > 0 implies p−k > 0.
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Def. 13 shows how to transform any CP program as in Def. 2 into a random walk
program. The idea is to replace the tuple x by a single variable x that stands
for a • x− b. Thus, the loop condition a • x > b now becomes x > 0. Moreover,
a change from x to x+ cj now becomes a change from x to x+ a • cj .

while (a • x > b) {
x = x+ c1 [pc1

];...
x = x+ cn [pcn

];

x = d [p′];
}

Definition 13 (Transforming CP Programs to Ran-
dom Walk Programs). Let P be the CP program on the
left with x = (x1, . . . , xr) and a • d ≤ b. Let rdwP denote
the affine map rdwP : Zr→ Z with rdwP(z) = a •z− b for

while (x > 0) {
x = x+mP [prdwmP

];...
x = x− kP [prdw−kP

];

x = rdwP(d) [p
′];

}

all z ∈ Zr. Thus, rdwP(d) ≤ 0.
Let kP ,mP ∈ N be minimal such
that −kP ≤ a • cj ≤ mP holds

for all 1 ≤ j ≤ n. For all −kP ≤ j ≤ mP , we define

prdwj =
∑

1≤u≤n, a•cu=j
pcu

. This results in the ran-

dom walk program Prdw on the right.

Example 14 (Transforming Prace). For the program Prace
while (x > 0) {
x = x+ 1 [ 6

11 ];

x = x [ 1
22 ];

x = x− 1 [ 1
22 ];

x = x− 2 [ 1
22 ];...

x = x− 9 [ 1
22 ];

}

of Ex. 1, the mapping rdwPrace
: Z2 → Z is rdwPrace

(t, h) =
(1,−1) • (t, h) + 1 = t− h+1. Hence we obtain the random
walk program Prdw

race on the right, where x = rdwPrace
(t, h)

represents the distance between the tortoise and the hare.

Approaches based on supermartingales (e.g., [1,5,11,13,14,
18]) use mappings similar to rdwP in order to infer a real-
valued term which over-approximates the expected runtime.
However, in the following (non-trivial) theorem we show
that our transformation is not only an over- or under-approximation, but the
termination behavior and the expected runtime of P and Prdw are identical.

Theorem 15 (Transformation Preserves Termination & Expected Run-
time). Let P be a CP program as in Def. 2. Then the termination times TP

and TPrdw

are identically distributed w.r.t. rdwP , i.e., for all x0 ∈ Zr with x0 =

rdwP(x0) and all j∈N we have PP
x0
(TP= j) = PPrdw

x0
(TPrdw

= j). So in particular,

PP
x0
(TP<∞) = PPrdw

x0
(TPrdw

<∞) and rtPx0
= EP

x0
(TP) = EPrdw

x0
(TPrdw

) = rtP
rdw

x0
.

Thus, the expected runtimes of P on the input x0 and of Prdw on x0 coincide.

The following definition identifies pathological programs that can be disregarded.

Definition 16 (Trivial Program). Let P be a CP pro- while (x > 0) {
x = x [1];

}
gram as in Def. 2. We call P trivial if a = 0 = (0, 0, . . . , 0)
or if Prdw is the program on the right.

Note that a random walk program P is trivial iff it has the form while(x >
0){x = x [1]; }, since P =Prdw holds for random walk programs P . From now
on, we will exclude trivial programs P as their termination behavior is obvious:
for inputs x0 that satisfy the loop condition a • x0 > b, the program never



Computing Expected Runtimes 7

terminates (i.e., rtPx0
= ∞) and for inputs x0 with a • x0 ≤ b we have rtPx0

= 0.
Note that if a = 0, then the termination behavior just depends on b: if b < 0,
then rtPx0

= ∞ for all x0 and if b ≥ 0, then rtPx0
= 0 for all x0.

4.2 Deciding Termination

We now present a simple decision procedure for (P)AST of random walk pro-
grams P . By the results of Sect. 4.1, this also yields a decision procedure for
arbitrary CP programs. If p′ > 0, then Thm. 10 already shows that P is PAST
and its expected runtime is bounded by the constant 1

p′ . Thus, in the rest of

Sect. 4 we regard random walk programs without direct termination, i.e., p′ = 0.
Def. 17 introduces the drift of a random walk program, i.e., the expected

value of the change of the program variable in one loop iteration, cf. [5].

Definition 17 (Drift). Let P be a random walk program P as in Def. 12. Then

its drift is µP =
∑

−k≤j≤m
j · pj.

Thm. 18 shows that to decide (P)AST, one just has to compute the drift.

Theorem 18 (Decision Procedure for (P)AST of Random Walk Pro-
grams). Let P be a non-trivial random walk program without direct termination.

• If µP > 0, then the program is not AST.
• If µP = 0, then the program is AST but not PAST.
• If µP < 0, then the program is PAST.

Example 19 (Prace is PAST). The drift of Prdw

race in Ex. 14 is µPrdw
race

= 1 · 6
11 +

1
22 ·

∑

−9≤j≤0
j = − 3

2 < 0. So on average the distance x between the tortoise

and the hare decreases in each loop iteration. Hence by Thm. 18, Prdw

race is PAST
and the following Cor. 20 implies that Prace is PAST as well.

Corollary 20 (Decision Procedure for (P)AST of CP programs). For
a non-trivial CP program P, P is (P)AST iff Prdw is (P)AST. Hence, Thm. 15
and 18 yield a decision procedure for AST and PAST of CP programs.

In the appendix, we show that Thm. 18 follows from classical results on random
walks [33]. Alternatively, Thm. 18 could also be proved by combining several
recent results on probabilistic programs: The approach of [28] could be used to
show that µP = 0 implies AST. Moreover, one could prove that µP < 0 implies
PAST by showing that x is a ranking supermartingale of the program [5,11,14,18].
That the program is not PAST if µP ≥ 0 and not AST if µP > 0 could be proved
by showing that −x is a µP -repulsing supermartingale [13].

While the proof of Thm. 18 is based on known results, the formulation of
Thm. 18 shows that there is an extremely simple decision procedure for (P)AST
of CP programs, i.e., checking the sign of the drift is much simpler than applying
existing (general) techniques for termination analysis of probabilistic programs.
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4.3 Computing Asymptotic Expected Runtimes

It turns out that for random walk programs (and thus by Thm. 15, also for CP
programs), one can not only decide termination, but one can also infer tight
bounds on the expected runtime. Thm. 21 shows that the computation of the
bounds is again very simple.

Theorem 21 (Bounds on the Expected Runtime of CP Programs).
Let P be a non-trivial CP program as in Def. 2 without direct termination which
is PAST (i.e., µPrdw < 0). Moreover, let kP be obtained according to the trans-
formation from Def. 13. If rdwP (x0) ≤ 0, then rtPx0

= 0. If rdwP(x0) > 0, then
P’s expected runtime is asymptotically linear and we have

− 1
µ
Prdw

· rdwP(x0) ≤ rtPx0
≤ − 1

µ
Prdw

· rdwP(x0) +
1−kP

µ
Prdw

.

Example 22 (Bounds on the Runtime of Prace). In Ex. 19 we saw that the pro-
gram Prdw

race from Ex. 14 is PAST as it has the drift µPrdw
race

= − 3
2 < 0. Note that

here k = 9. Hence by Thm. 21 we get that whenever rdwPrace
(t, h) = t − h+ 1

is positive, the expected runtime rtPrace

(t,h) is between − 1
µ
Prdw
race

· rdwPrace
(t, h) =

2
3 · (t − h + 1) and − 1

µ
Prdw
race

· rdwPrace
(t, h) + 1−k

µ
Prdw
race

= 2
3 · (t − h + 1) + 16

3 .

The same upper bound 2
3 · (t− h+1)+ 16

3 was inferred in [30] by an incomplete
technique based on several inference rules and linear programming solvers. In
contrast, Thm. 21 allows us to read off such bounds directly from the program.

Our proof of Thm. 21 in the appendix again uses the connection to random walks
and shows that the classical Lemma of Wald [21, Lemma 10.2(9)] directly yields
both the upper and the lower bound for the expected runtime. Alternatively, the
upper bound in Thm. 21 could also be proved by considering that rdwP (x0) +
(1− kP) is a ranking supermartingale [1,5,11,14,18] whose expected decrease in
each loop iteration is µP . The lower bound could also be inferred by considering
the difference-bounded submartingale −rdwP(x0) [8, 20].

5 Computing Exact Expected Runtimes

While Thm. 10 and 21 state how to deduce the asymptotic expected runtime,
we now show that based on these results one can compute the runtime of CP
programs exactly. In general, whenever it is possible, then inferring the exact
runtimes of programs is preferable to asymptotic runtimes which ignore the
“coefficients” of the runtime.

Again, we first consider random walk programs and generalize our technique
to CP programs using Thm. 15 afterwards. Throughout Sect. 5, for any random
walk program P as in Def. 12, we require that P is PAST, i.e., that p′ > 0 (cf.
Thm. 10) or that the drift µP is negative if p′ = 0 (cf. Thm. 18). Note that
whenever k = 0 and P is PAST, then p′ > 0.3

To compute P ’s expected runtime exactly, we use its characterization as the
least fixpoint of the expected runtime transformer LP (cf. Thm. 9), i.e., rtPx is

3 If p′ = 0 and k = 0 then µP ≥ 0.
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the smallest function f : Z → R≥0 satisfying the constraint

f(x) =
∑

−k≤j≤m
pj · f(x+ j) + p′ · f(d) + 1 for all x > 0, (3)

cf. (1). Since P is PAST, f never returns ∞, i.e., f : Z → R≥0. Note that the
smallest function f : Z → R≥0 that satisfies (3) also satisfies

f(x) = 0 for all x ≤ 0. (4)

Therefore, as d ≤ 0, the constraint (3) can be simplified to

f(x) =
∑

−k≤j≤m
pj · f(x+ j) + 1 for all x > 0. (5)

In Sect. 5.1 we recapitulate how to compute all solutions of such inhomogeneous
recurrence equations (cf., e.g., [15, Ch. 2]). However, to compute rtPx , the chal-
lenge is to find the smallest solution f : Z → R≥0 of the equation (5). Therefore,
in Sect. 5.2 we will exploit the knowledge gained in Thm. 10 and 21 to show that
there is only a single function f that satisfies both (4) and (5) and is bounded
by a constant (if p′ > 0, cf. Thm. 10) resp. by a linear function (if p′ = 0, cf.
Thm. 21). This observation then allows us to compute rtPx exactly. So the cru-
cial prerequisites for this result are Thm. 9 (which characterizes the expected
runtime as the smallest solution of the equation (5)), Thm. 18 (which allows the
restriction to negative drift if p′ = 0), and in particular Thm. 10 and 21 (since
Sect. 5.2 will show that the results of Thm. 10 and 21 on the asymptotic runtime
can be translated into suitable conditions on the solutions of (5)).

5.1 Finding All Solutions of the Recurrence Equation

Example 23 (Modification of Prdw

race). To illustrate our ap-
while (x > 0) {
x = x+ 1 [ 6

11 ];

x = x [ 1
11 ];

x = x− 1 [ 1
22 ];

x = x− 2 [ 7
22 ];

}

proach, we use a modified version of Prdw

race from Ex. 14 to
ease readability. In Sect. 6, we will consider the original
program Prdw

race resp. Prace from Ex. 14 resp. Ex. 1 again
and show its exact expected runtime inferred by the im-
plementation of our approach. In the modified program
Pmod
race on the right, the distance between the tortoise and

the hare still increases with probability 6
11 , but the prob-

ability of decreasing by more than two is distributed to the cases where it
stays the same and where it decreases by two. We have p′ = 0 and the drift
is µPmod

race
= 1 · 6

11 + 0 · 1
11 − 1 · 1

22 − 2 · 7
22 = − 3

22 < 0. So by Thm. 18, Pmod
race is

PAST. By Thm. 9, rt
Pmod

race
x is the smallest function f : Z → R≥0 satisfying

f(x) = 6
11 ·f(x+1)+ 1

11 ·f(x)+ 1
22 ·f(x−1)+ 7

22 ·f(x−2)+1 for all x > 0. (6)

Instead of searching for the smallest f : Z → R≥0 satisfying (5), we first cal-
culate the set of all functions f : Z → C that satisfy (5), i.e., we also consider
functions returning negative or complex numbers. Clearly, (5) is equivalent to

0 = pm · f(x+m) + . . .+ p1 · f(x+ 1) + (p0 − 1) · f(x) +
p−1 · f(x− 1) + . . .+ p−k · f(x− k) + 1 for all x > 0.

(7)
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The set of solutions on Z → C of this linear, inhomogeneous recurrence equa-
tion is an affine space which can be written as an arbitrary particular solution
of the inhomogeneous equation plus any linear combination of k + m linearly
independent solutions of the corresponding homogeneous recurrence equation.

We start with computing a solution to the inhomogeneous equation (7). To
this end, we use the bounds for rtPx from Thm. 10 and 21 (where we take the
upper bound 1

p′ if p′ > 0 and the lower bound − 1
µP

· x if p′ = 0). So we define

Cconst =
1
p′ , if p

′ > 0 and Clin = − 1
µP

, if p′ = 0.

One easily shows that if p′ > 0, then f(x) = Cconst is a solution of the inhomo-
geneous recurrence equation (7) and if p′ = 0, then f(x) = Clin · x solves (7).

Example 24 (Ex. 23 cont.). In the program Pmod
race of Ex. 23, we have p′ = 0 and

µPmod
race

= − 3
22 . Hence Clin = 22

3 and Clin · x is a solution of (6).

After having determined one particular solution of the inhomogeneous recurrence
equation (7), now we compute the solutions of the homogeneous recurrence equa-
tion which results from (7) by replacing the add-on “+ 1” with 0. To this end,
we consider the corresponding characteristic polynomial χP :

4

χP(λ) = pm · λk+m + . . .+ p1 · λk+1 + (p0 − 1) · λk + p−1 · λk−1 + . . .+ p−k (8)

Let λ1, . . . , λc denote the pairwise different (possibly complex) roots of the cha-
racteristic polynomial χP . For all 1 ≤ j ≤ c, let vj ∈ N \ {0} be the multiplicity
of the root λj . Thus, we have v1 + . . .+ vc = k +m.

Then we obtain the following k + m linearly independent solutions of the
homogeneous recurrence equation resulting from (7):

λx
j · xu for all 1 ≤ j ≤ c and all 0 ≤ u ≤ vj − 1

So f :Z→C is a solution of (5) (resp. (7)) iff there exist coefficients aj,u∈C with

f(x) = C(x) +
∑

1≤j≤c

∑

0≤u≤vj−1
aj,u · λx

j · xu for all x > −k, (9)

where C(x) = Cconst =
1
p′ if p′ > 0 and C(x) = Clin · x = − 1

µP
· x if p′ = 0. The

reason for requiring (9) for all x > −k is that −k + 1 is the smallest argument
where f ’s value is taken into account in (5).

Example 25 (Ex. 24 cont.). The characteristic polynomial for the program Pmod
race

of Ex. 23 has the degree k +m = 2 + 1 = 3 and is given by

χPmod
race

(λ) = 6
11 · λ3 − 10

11 · λ2 + 1
22 · λ+ 7

22 .

4 If m = 0 then χP(λ) = (p0 − 1) · λk + p−1 · λk−1 + . . . + p−k, and if k = 0 then
χP(λ) = pm · λm + . . .+ p1 · λ+ (p0 − 1). Note that p0 6= 1 since P is PAST and in
Def. 12 we required that m > 0 implies pm > 0 and k > 0 implies p−k > 0. Hence,
the characteristic polynomial has exactly the degree k +m, even if m = 0 or k = 0.
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Its roots are λ1 = 1, λ2 = − 1
2 , and λ3 = 7

6 . So here, all roots are real numbers
and they all have the multiplicity 1. Hence, three linearly independent solutions
of the homogeneous part of (6) are the functions 1x = 1, (− 1

2 )
x, and (76 )

x.
Therefore, a function f : Z → C satisfies (6) iff there are a1, a2, a3 ∈ C such that

f(x) = Clin · x+ a1 · 1x + a2 · (− 1
2 )

x+ a3 · (76 )
x

= 22
3 · x+ a1 + a2 · (− 1

2 )
x+ a3 · (76 )

x for x > −2.
(10)

5.2 Finding the Smallest Solution of the Recurrence Equation

In Sect. 5.1, we recapitulated the standard approach for solving inhomogeneous
recurrence equations which shows that any function f : Z → C that satisfies
the constraint (5) is of the form (9). Now we will present a novel technique to
compute rtPx , i.e., the smallest non-negative solution f : Z → R≥0 of (5). By
Thm. 10 and 21, this function f is bounded by a constant (if p′ > 0) resp. linear
(if p′ = 0). So, when representing f in the form (9), we must have aj,u = 0
whenever |λj | > 1. The following lemma shows how many roots with absolute
value less or equal to 1 there are (i.e., these are the only roots that we have
to consider). It is proved using Rouché’s Theorem which allows us to infer the
number of roots whose absolute value is below a certain bound. Note that 1 is a
root of the characteristic polynomial iff p′ = 0, since

∑

−k≤j≤m
pj = 1− p′.

Lemma 26 (Number of Roots With Absolute Value ≤ 1). Let P be
a random walk program as in Def. 12 that is PAST. Then the characteristic
polynomial χP has k roots λ ∈ C (counted with multiplicity) with |λ| ≤ 1.

Example 27 (Ex. 25 cont.). In Pmod
race of Ex. 23 we have k = 2. So by Lemma 26,

χP has exactly two roots with absolute value ≤ 1. Indeed, the roots of χP are
λ1 = 1, λ2 = − 1

2 , and λ3 = 7
6 , cf. Ex. 25. So |λ3| > 1, but |λ1| ≤ 1 and |λ2| ≤ 1.

Based on Lemma 26, the following lemma shows that when imposing the restric-
tion that aj,u = 0 whenever |λj | > 1, then there is only a single function of the
form (9) that also satisfies the constraint (4). Hence, this must be the function
that we are searching for, because the desired smallest solution f : Z → R≥0 of
(5) also satisfies (4).

Lemma 28 (Unique Solution of (4) and (5) when Disregarding Roots
With Absolute Value > 1). Let P be a random walk program as in Def. 12
that is PAST. Then there is exactly one function f : Z → C which satisfies both
(4) and (5) (thus, it has the form (9)) and has aj,u = 0 whenever |λj | > 1.

The main theorem of Sect. 5 now shows how to compute the expected runtime
exactly. By Thm. 10 and 21 on the bounds for the expected runtime and by
Lemma 28, we no longer have to search for the smallest function that satisfies
(4) and (5), but we just search for any solution of (4) and (5) which has aj,u = 0
whenever |λj | > 1 (because there is just a single such solution). So one only has
to determine the values of the remaining k coefficients aj,u for |λj | ≤ 1, which
can be done by exploiting that f(x) has to satisfy both (4) for all x ≤ 0 and it
has to be of the form (9) for all x > −k. In other words, the function in (9) must
be 0 for −k + 1 ≤ x ≤ 0.
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Theorem 29 (Exact Expected Runtime for Random Walk Programs).
Let P be a random walk program as in Def. 12 that is PAST and let λ1, . . . , λc be
the roots of its characteristic polynomial with multiplicities v1, . . . , vc. Moreover,
let C(x) = Cconst =

1
p′ if p′ > 0 and C(x) = Clin · x = − 1

µP
· x if p′ = 0. Then

the expected runtime of P is rtPx = 0 for x ≤ 0 and

rtPx = C(x) +
∑

1≤j≤c, |λj |≤1

∑

0≤u≤vj−1
aj,u · λx

j · xu for x > 0,

where the coefficients aj,u are the unique solution of the k linear equations:

0 = C(x)+
∑

1≤j≤c, |λj |≤1

∑

0≤u≤vj−1
aj,u ·λx

j ·xu for −k + 1 ≤ x ≤ 0 (11)

So in the special case where k = 0, we have rtPx = C(x) = Cconst =
1
p′ for x > 0.

Thus for x > 0, the expected runtime rtPx can be computed by summing up the

bound C(x) and an add-on
∑

1≤j≤c, |λj |≤1

∑

0≤u≤vj−1
. . . Since C(x) is an

upper bound for rtPx if p′ > 0 and a lower bound for rtPx if p′ = 0, this add-on
is non-positive if p′ > 0 and non-negative if p′ = 0.

Example 30 (Ex. 27 cont.). By Thm. 29, the expected runtime of the program

Pmod
race from Ex. 23 is rt

Pmod
race

x = 0 for x ≤ 0 and

rt
Pmod

race
x = 22

3 · x+ a1 + a2 · (− 1
2 )

x for x > 0, cf. (10).

The coefficients a1 and a2 are the unique solution of the k = 2 linear equations

0 = 22
3 · 0 + a1 + a2 · (− 1

2 )
0 = a1 + a2

0 = 22
3 · (−1) + a1 + a2 · (− 1

2 )
−1 = − 22

3 + a1 − 2 · a2
So a1 = 22

9 , a2 = − 22
9 , and hence rt

Pmod
race

x = 22
3 · x+ 22

9 − 22
9 · (− 1

2 )
x for x > 0.

By Thm. 15, we can lift Thm. 29 to arbitrary CP programs P immediately.

Corollary 31 (Exact Expected Runtime for CP Programs). For any
CP program, its expected runtime can be computed exactly.

Note that irrespective of the degree of the characteristic polynomial, its roots
can always be approximated numerically with any chosen precision. Thus, “exact
computation” of the expected runtime in the corollary above means that a closed
form for rtPx can also be computed with any desired precision.

Example 32 (Exact Expected Runtime of Pdirect).Reconsi-
while (x > 0) {
x = x+ 1 [ 9

10 ];

x = 0 [ 1
10 ];

}

der the program Pdirect of Ex. 11 with the probability p′ =
1
10 for direct termination. Pdirect is PAST and its expected
runtime is at most 1

p′ = 10, cf. Ex. 11. The random walk

program Prdw

direct on the right is obtained by the transforma-
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tion of Def. 13. As k = 0, by Thm. 29 we obtain rt
Prdw

direct
x = 1

p′ = 10 for x > 0.

By Thm. 15, this implies rtPdirect

(t,h) = rt
Prdw

direct

rdwPdirect
(t,h) = 10 if rdwPdirect

(t, h) =

t− h+ 1 > 0, i.e., 10 is indeed the exact expected runtime of Pdirect.

Note that Thm. 29 and Cor. 31 imply that for any x0 ∈ Zr, the expected
runtime rtPx0

of a CP program P that is PAST and has only rational probabilities
pc1

, . . . , pcn
, p′ ∈ Q is always an algebraic number. Thus, one could also compute

a closed form for the exact expected runtime rtPx using a representation with
algebraic numbers instead of numerical approximations.

Nevertheless, Thm. 29 may yield a representation of rtPx which contains com-
plex numbers aj,u and λj , although rtPx is always real. However, one can easily
obtain a more intuitive representation of rtPx without complex numbers:

Since the characteristic polynomial χP only has real coefficients, whenever
χP has a complex root λ of multiplicity v, its conjugate λ is also a root of
χP with the same multiplicity v. So the pairwise different roots λ1, . . . , λc can
be distinguished into pairwise different real roots λ1, . . . , λs, and into pairwise
different non-real complex roots λs+1, λs+1, . . . , λs+t, λs+t, where c = s+ 2 · t.

For any coefficients aj,u, a
′
j,u ∈ C with j ∈ {s + 1, . . . , s + t} and u ∈

{0, . . . , vj − 1} let bj,u = 2 · Re(aj,u) ∈ R and b′j,u = −2 · Im(aj,u) ∈ R. Then

aj,u ·λx
j +a′j,u ·λj

x
= bj,u ·Re(λx

j )+ b′j,u · Im(λx
j ). Hence, by Thm. 29 we get the

following representation of the expected runtime which only uses real numbers:

rt
P
x =























C(x) +
∑

1≤j≤s, |λj |≤1

∑

0≤u≤vj−1

aj,u · λx
j · xu

+
∑

s+1≤j≤s+t, |λj |≤1

∑

0≤u≤vj−1

(

bj,u ·Re(λx
j ) + b

′
j,u ·Im(λx

j )
)

· xu
, for x > 0

0, for x ≤ 0

(12)

To compute Re(λx
j ) and Im(λx

j ), take the polar representation of the non-real

roots λj = wj · eθj·i. Then Re(λx
j ) = wx

j · cos(θj · x) and Im(λx
j ) = wx

j · sin(θj ·x).
Therefore, we obtain the following algorithm to deduce the exact expected

runtime automatically.

Algorithm 33 (Computing the Exact Expected Runtime). To infer the
runtime of a CP program P as in Def. 12 that is PAST, we proceed as follows:

1. Transform P into Prdw by the transformation of Def. 13. Thus, Prdw is a
random walk program as in Def. 12.

2. Compute the solution C(x) = Cconst =
1
p′ resp. C(x) = Clin · x = − 1

µ
Prdw

· x
of the inhomogeneous recurrence equation (7).

3. Compute the k+m (possibly complex) roots of the characteristic polynomial
χPrdw (cf. (8)) and keep the k roots λ with |λ| ≤ 1.

4. Determine the coefficients aj,u by solving the k linear equations in (11).
5. Return the solution (12) where bj,u = 2 · Re(aj,u), b′j,u = −2 · Im(aj,u), and

for λj = wj ·eθj ·i we have Re(λx
j ) = wx

j ·cos(θj ·x) and Im(λx
j ) = wx

j ·sin(θj ·x).
Moreover, x must be replaced by rdwP(x).
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6 Conclusion, Implementation, and Related Work

We presented decision procedures for termination and complexity of classes of
probabilistic programs. They are based on the connection between the expected
runtime of a program and the smallest solution of its corresponding recurrence
equation, cf. Sect. 2. For our notion of probabilistic programs, if the probability
for leaving the loop directly is at least p′ for some p′ > 0, then the program is
always PAST and its expected runtime is asymptotically constant, cf. Sect. 3.
In Sect. 4 we showed that a very simple decision procedure for AST and PAST
of CP programs can be obtained by classical results from random walk theory
and that the expected runtime is asymptotically linear if the program is PAST.
Based on these results, in Sect. 5 we presented our algorithm to automatically
infer a closed form for the exact expected runtime of CP programs (i.e., with
arbitrarily high precision). All proofs and a collection of examples to demonstrate
our algorithm can be found in the appendix.

Implementation. We implemented Alg. 33 in our tool KoAT [10], which was
already one of the leading tools for complexity analysis of (non-probabilistic)
integer programs. The implementation is written in OCaml and uses the Python

libraries MpMath [22] and SymPy [29] for solving linear equations and for find-
ing the roots of the characteristic polynomial. In addition to the closed form for
the exact expected runtime, our implementation can also compute the concrete
number of expected loop iterations if the user specifies the initial values of the
variables. For further details, a set of benchmarks, and to download our imple-
mentation, we refer to https://aprove-developers.github.io/recurrence/.

Example 34 (Computing the Exact Expected Runtime of Prace Automatically).
For the tortoise and hare program Prace from Ex. 1, our implementation in KoAT

computes the following expected runtime within 0.49 s on an Intel Core i7-6500
with 8 GB memory (when selecting a precision of 2 decimal places):

rt
Prace
(t,h)

= 0.049 · 0.65(t−h+1) · sin (2.8 · (t − h + 1)) − 0.35 · 0.65(t−h+1) · cos (2.8 · (t − h + 1))

+0.15 · 0.66(t−h+1) · sin (2.2 · (t − h + 1)) − 0.35 · 0.66(t−h+1) · cos (2.2 · (t − h + 1))

+0.3 · 0.7(t−h+1) · sin (1.5 · (t − h + 1)) − 0.39 · 0.7(t−h+1) · cos (1.5 (t − h + 1))

+0.62 · 0.75(t−h+1) · sin (0.83 · (t − h + 1)) − 0.49 · 0.75(t−h+1) · cos (0.83 · (t − h + 1))
+ 2

3 · (t − h) + 2.3

So when starting in a state with t = 1000 and h = 0, according to our imple-
mentation the number of expected loop iterations is rtPrace

(1000,0) = 670.

Related Work. Many techniques to analyze (P)AST have been developed,
which mostly rely on ranking supermartingales, e.g., [1,5,11,13,14,18,20,28,30].
Indeed, several of these works (e.g., [1, 5, 18, 20]) present complete criteria for
(P)AST, although (P)AST is undecidable. However, the corresponding automa-
tion of these techniques is of course incomplete. In [14] it is shown that for affine
probabilistic programs, a superclass of our CP programs, the existence of a linear
ranking supermartingale is decidable. However, the existence of a linear ranking

https://aprove-developers.github.io/recurrence/


Computing Expected Runtimes 15

supermartingale is sufficient but not necessary for PAST or an at most linear
expected runtime.

Classes of programs where termination is decidable have already been studied
for deterministic programs. In [35] it was shown that for a class of linear loop pro-
grams over the reals, the halting problem is decidable. This result was transferred
to the rationals [6] and under certain conditions to integer programs [6, 19, 31].
Termination analysis for probabilistic programs is substantially harder than for
non-probabilistic ones [23]. Nevertheless, there is some previous work on classes
of probabilistic programs where termination is decidable and asymptotic bounds
on the expected runtime are computable. For instance, in [7] it was shown that
AST is decidable for certain stochastic games and [12] presents an automatic
approach for inferring asymptotic upper bounds on the expected runtime by
considering uni- and bivariate recurrence equations.

However, our algorithm is the first which computes a general formula (i.e., a
closed form) for the exact expected runtime of arbitrary CP programs. To our
knowledge, up to now such a formula was only known for the very restricted
special case of bounded simple random walks (cf. [17]), i.e., programs of the

while (b > x > 0) {
x = x+ 1 [p];

x = x− 1 [1− p];
}

form on the right for some 1 ≥ p ≥ 0 and some b ∈ Z.
Note that due to the two boundary conditions x > 0
and b > x, the resulting recurrence equation for the ex-
pected runtime of the program only has a single solution
f : Z → R≥0 that also satisfies f(0) = 0 and f(b) = 0.
Hence, standard techniques for solving recurrence equations suffice to compute
this solution. In contrast, we developed an algorithm to compute the exact ex-
pected runtime of unbounded arbitrary CP programs where the loop condition
only has one boundary condition x > 0, i.e., x can grow infinitely large. For that
reason, here the challenge is to find an algorithm which computes the smallest
solution f : Z → R≥0 of the resulting recurrence equation. We showed that this
can be done using the information on the asymptotic bounds of the expected
runtime from Sect. 3 and 4.

Future Work. There are several directions for future work. In Sect. 4.1 we re-
duced CP programs to random walk programs. In future work, we will consider
more advanced reductions in order to extend the class of probabilistic programs
where termination and complexity are decidable. Moreover, we want to develop
techniques to automatically over- or under-approximate the runtime of a pro-
gram P by the runtimes of corresponding CP programs P1 and P2 such that
rtP1

x ≤ rtPx ≤ rtP2
x holds for all x ∈ Zr. Furthermore, we will integrate the

easy inference of runtime bounds for CP programs into existing techniques for
analyzing more general probabilistic programs.
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13. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for
probabilistic termination. In: Proc. POPL ’17. pp. 145–160 (2017),
https://doi.org/10.1145/3093333.3009873
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Appendix

This appendix contains a collection of examples to demonstrate the application
of our algorithm in App. A and all proofs (in App. B-E).

A Case Studies

In this section, we demonstrate our approach for the computation of the exact
expected runtime on further examples.

Example 35 (Example with Direct Termination and Non-Constant Exact Run-
time). As an example with p′ > 0 where the exact expected runtime is not
constant, consider the following program P .

while (x > 0) {
x = x+ 1 [ 18 ];

x = x [ 12 ];

x = x− 1 [ 14 ];

x = 0 [ 18 ];
}

The characteristic polynomial is χP(λ) =
1
8 · λ2 − 1

2 · λ + 1
4 . It has the k +m =

1 + 1 = 2 roots 2 ±
√
2. So the only root with absolute value ≤ 1 is 2−

√
2. By

Thm. 29 we obtain rtPx = 0 for x ≤ 0 and

rtPx = 8 + a1 · (2−
√
2)x for x > 0.

Here, a1 is the unique solution of the linear equation 0 = 8+a1 · (2−
√
2)0 ·00 =

8 + a1, i.e., a1 = −8. So for x > 0 we have

rtPx = 8− 8 · (2−
√
2)x,

i.e., here the negative add-on −8 · (2 −
√
2)x is added to the upper bound 8.

Example 36 (Example with Complex Roots). To show that complex roots are
indeed possible, we apply Alg. 33 to the following program P , where p′ = 0 and
µP = − 13

30 . Thus, Clin = 30
13 and C(x) = 30

13 · x.

while (x > 0) {
x = x+ 1 [ 5

36 ];

x = x [ 12 ];

x = x− 1 [ 1360 ];

x = x− 2 [ 7
90 ];

x = x− 3 [ 1
15 ];

}
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The characteristic polynomial χP(λ) has the roots 1, 3, and the two complex

roots −1±
√
3 i

5 . Hence, the k = 3 roots with absolute value ≤ 1 are 1 and −1±
√
3 i

5 .
By Thm. 29 we obtain the following general solution:

f(x) = 30
13 · x+ a1 + a2 · (−1+

√
3 i

5 )x + a3 · (−1−
√
3 i

5 )x for x > −3

The coefficients a1, a2, a3 are determined by the three linear equations 0 = f(x)
for −2 ≤ x ≤ 0, cf. (11). They have the unique solution a1 = 180

169 , a2 = − 90
169 −

2
169 ·

√
3 i, and a3 = − 90

169 + 2
169 ·

√
3 i. Thus, b2 = 2 · Re(a2) = − 180

169 , and

b′2 = −2 · Im(a2) =
4

169 ·
√
3. The polar representation of λ = −1+

√
3 i

5 is 2
5 · e

2π
3 ·i.

Hence, Re(λx) = (25 )
x · cos(2π3 · x) and Im(λx) = (25 )

x · sin(2π3 · x). Thus, we get

rtPx = 0 for x ≤ 0 and for x > 0 we have

rtPx = 30
13 · x+ 180

169 − 180
169 ·

(

2
5

)x· cos
(

2π
3 · x

)

+ 4
169 ·

√
3 ·
(

2
5

)x· sin
(

2π
3 · x

)

.

Example 37 (Example with Root of Higher Multiplicity). As an example where
the characteristic polynomial has a root with multiplicity greater than 1, consider
the following program P .

while (x > 0) {
x = x+ 1 [ 5

21 ];

x = x [ 47 ];

x = x− 1 [ 3
35 ];

x = x− 2 [ 7
75 ];

x = x− 3 [ 2
175 ];

}
We use the approach of Alg. 33 to infer the exact expected runtime. Step 1 is
not necessary, since we already have a random walk program.

2. We have p′ = 0, µP = − 12
175 , and thus, Clin = 175

12 .
3. The characteristic polynomial has the degree k + m = 3 + 1 = 4 and is

given by χP(λ) = 5
21 · λ4 − 3

7 · λ3 + 3
35 · λ2 + 7

75 · λ + 2
175 . It has the roots

λ1 = 1 with multiplicity 1, λ2 = 6
5 with multiplicity 1, and λ3 = − 1

5 with
multiplicity 2. Hence, the three roots with absolute value ≤ 1 are 1 and − 1

5
with multiplicity 2. As proved in Lemma 26 we have 1 + 2 = 3 = k such
roots counted with multiplicity.

4. By Thm. 29, the general solution is

f(x) = 175
12 · x+ a1,0 + a2,0 · (− 1

5 )
x + a2,1 · x · (− 1

5 )
x for x > −3.

The coefficients a1,0, a2,0, and a2,1 are determined by the following linear
equations, cf. (11):

0 = f(0) = a1,0 + a2,0

0 = f(−1) = − 175
12 + a1,0 − 5 · a2,0 + 5 · a2,1

0 = f(−2) = − 175
6 + a1,0 + 25 · a2,0 − 50 · a2,1



20 J. Giesl, P. Giesl, and M. Hark

They have the unique solution a1,0 = 175
36 , a2,0 = − 175

36 , and a2,1 = − 35
12 .

Hence, rtPx = 0 for x ≤ 0 and for x > 0 we have

rtPx = 175
12 x+ 175

36 − 175
36 · (− 1

5 )
x − 35

12 · x · (− 1
5 )

x.

Example 38 (Negative Binomial Loop from [28, Sect. 5.1]). Consider the follow-
ing program P from [28, Sect. 5.1].

while (x > 0) {
x = x [ 12 ];

x = x− 1 [ 12 ];
}

The drift of this program is µP = − 1
2 < 0 and by Thm. 18 we can conclude that

the negative binomial loop is positive almost surely terminating. Furthermore,
as k = 1 and m = 0 we obtain that the expected runtime rtPx of this program
satisfies 2 · x ≤ rtPx ≤ 2 · x for all x > 0 by Thm. 21, i.e.,

rtPx =

{

2 · x, if x > 0

0, if x ≤ 0

So with our approach, the expected runtime of this example can be determined
with clearly less effort than with the technique presented in [28]. On the other
hand, the reasoning of [28] can be applied to arbitrary probabilistic programs
which may even include non-determinism.

Example 39 (Symmetric Random Walk). Consider the following program P .

while (x > 0) {
x = x+ 1 [ 12 ];

x = x− 1 [ 12 ];
}

One easily calculates the drift µP = 1
2 − 1

2 = 0. So by Thm. 18 we immediately
obtain the well-known result that this program is almost surely terminating but
not positive almost surely terminating, i.e., the expected runtime is infinite.

Example 40 (Example with Irrational Runtime from [14, Ex. 5.1]). Consider the
following program P which was presented in [14, Ex. 5.1] to show that expected
runtimes can be irrational.

while (x > 0) {
x = x+ 1 [ 12 ];

x = x− 2 [ 12 ];
}

Its drift is µP = 1
2 · 1+ 1

2 · (−2) = − 1
2 < 0, so by Thm. 18 this program is indeed

PAST. As k = 2, we obtain the following bounds on the expected runtime by
Thm. 21 for any positive initial value x > 0:

2 · x ≤ rtPx ≤ 2 · x+ 2
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The characteristic polynomial of this program is χP(x) =
1
2 · x3 − x2 + 1

2 . It has

the three roots 1, 1+
√
5

2 , and 1−
√
5

2 . So the k = 2 roots of absolute value ≤ 1 are

1 and 1−
√
5

2 . By Thm. 29, the general solution is

f(x) = 2 · x+ a1 + a2 · (1−
√
5

2 )x for x > −2.

The coefficients a1 and a2 are determined by the following equations:

0 = f(0) = a1 + a2

0 = f(−1) = −2 + a1 + a2 · 2
1−

√
5

They have the unique solution a1 = 3 −
√
5 and a2 =

√
5 − 3. Hence, we infer

the following exact expected runtime for x > 0:

rtPx = 2 · x+ 3−
√
5 + (

√
5− 3) · (1−

√
5

2 )x

So in particular, rtP1 = 1 +
√
5. The expected runtime obtained in [14, Ex. 5.1]

is slightly different (they obtain 2 · (5 +
√
5)), because [14] counts the number of

executed statements whereas we count loop iterations.

Example 41 (Example from [30, Sect. 3.1]). Consider the following program P .
It was used in [30, Sect. 3.1] to show how one can infer the expected runtime of
a probabilistic program by solving a recurrence equation. However, the authors
of [30] conclude that recurrence equations are not well suited for runtime analyses,
while our paper shows that for CP programs, an automated runtime analysis
based on recurrence equations is feasible.

while (x > 0) {
x = x+ 1 [ 14 ];

x = x− 1 [ 34 ];
}

Its drift is µP = 1
4 · 1+ 3

4 · (−1) = − 1
2 < 0, so by Thm. 18 this program is indeed

PAST. By Thm. 21, we can infer the following bounds on the expected runtime
for any positive initial value x > 0:

2 · x ≤ rtPx ≤ 2 · x.

Hence, in this example we can directly conclude that for any x > 0 the expected
runtime is rtPx = 2 · x, without having to solve the corresponding recurrence
equation with Thm. 29 resp. Alg. 33.

B Proofs for Sect. 2

We begin with introducing some auxiliary definitions that will be needed in the
proofs. To define the run of a program, we use the “Kronecker-Delta” where for
any y, z ∈ Zr with y 6= z we have δy,z = 0 and δy,y = 1.
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Definition 42 (Run of a Program). For any program P as in Def. 2, a run is
an infinite sequence 〈z0, z1, z2, . . .〉 ∈ (Zr)ω and a prefix run is a finite sequence
〈z0, z1, . . . , zj〉 ∈ (Zr)j+1 for some j ∈ N. For a prefix run π, its cylinder set

CylZ
r

(π) ⊆ (Zr)ω consists of all runs with prefix π.
For any initial value x0 ∈ Zr of the program variables, we define a function prPx0

that maps any prefix run π to its probability (i.e., 0 ≤ prPx0
(π) ≤ 1). Thus, for

any prefix run 〈z0, z1, . . . , zj〉, let prPx0
(〈z0〉) = δx0,z0 and if j ≥ 1, we define:

prPx0
(〈z0, . . . , zj〉)=







prPx0
(〈z0, . . . , zj−1〉) · (pzj−zj−1(zj−1) + δzj ,d · p′(zj−1)),

if a • zj−1 > b

prPx0
(〈z0, . . . , zj−1〉) · δzj−1,zj

, if a • zj−1 ≤ b

Example 43 (Run in Prace). For Prace from Ex. 1 and a start configuration where
the tortoise is 10 steps ahead of the hare (e.g., x0 = (11, 1)), the prefix run
〈(11, 1), (12, 1), (13, 6)〉 has the probability prPrace

(11,1) (〈(11, 1), (12, 1), (13, 6)〉) =

δ(11,1),(11,1) · p(12,1)−(11,1)(11, 1) · p(13,6)−(12,1)(12, 1) = p(1,0)(11, 1) · p(1,5)(12, 1) =
6
11 · 1

22 = 3
121 . So we take into account whether the prefix run starts with

x0 = (11, 1) and multiply the probability to get from x = (11, 1) to x = (12, 1)
with the probability to get from x = (12, 1) to x = (13, 6).

In our setting, we regard a measurable space (Ω,F) where Ω is the set of runs
(Zr)ω and we want to measure the probability that a run starts with a certain
sequence π of numbers. So we regard the smallest σ-field F

Z
r

that contains all
cylinder sets CylZ

r

(π) for all prefix runs π. Moreover, we consider the probability
space ((Zr)ω ,FZ

r

,PP
x0
). Here, the probability measure PP

x0
for a program P is

defined such that the probability that a run is in CylZ
r

(π) is the probability
prPx0

(π) of the prefix run π.

Definition 44 (Probability Measure for a Program). For any program P
as in Def. 2 and any x0 ∈ Zr, let PP

x0
: FZ

r → [0, 1] be the unique probability

measure such that we have PP
x0
(CylZ

r

(π)) = prPx0
(π) for any prefix run π.

Example 45 (Probability Measure for Prace). CylZ
2

(〈(11, 1), (12, 1), (13, 6)〉) con-
sists of all runs that start with (11, 1), (12, 1), (13, 6). If the initial value is

x0 = (11, 1), then the probability that a run is in CylZ
2

(〈(11, 1), (12, 1), (13, 6)〉)
is

P
Prace

(11,1) (Cyl
Z
2

(〈(11, 1), (12, 1), (13, 6)〉)) = pr
Prace

(11,1) (〈(11, 1), (12, 1), (13, 6)〉) =
3

121
.

Now we introduce a stochastic process XZ
r

(i.e., a family of random variables
XZ

r

j ) which corresponds to the values of the program variables during a run.

Definition 46 (Stochastic Process XZ
r

). For r ≥ 1, let XZ
r

= (XZ
r

j )j∈N

where XZ
r

j : (Zr)ω → Zr is defined as XZ
r

j (〈z0, . . . , zj , . . .〉) = zj, i.e., when

applied to a run,XZ
r

j returns the values of the program variables after the j-th
loop iteration.
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So XZ
2

0 (〈(11, 1), (12, 1), . . .〉) = (11, 1) and XZ
2

1 (〈(11, 1), (12, 1), . . .〉) = (12, 1).
Using XZ

r

, the termination time of a program (cf. Def. 3) can also be defined
as TP(π) = inf{j ∈ N | a •XZ

r

j (π) ≤ b} for any π ∈ (Zr)ω. As shown in Def. 4,
the termination time is needed to define the expected runtime of a program. We
first prove that if the initial values x0 violate the loop guard, then the expected
runtime is trivially 0.

Corollary 6 (Expected Runtime for Violating Initial Values). For any
program P as in Def. 2 and any x0 ∈ Zr with a • x0 ≤ b, we have rtPx0

= 0.

Proof. We have PP
x0
(XZ

r

0 = x0) = PP
x0
((XZ

r

0 )−1({x0})) = PP
x0
(CylZ

r

(x0)) =

prPx0
(x0) = δx0,x0 = 1. Thus, for x0 with a • x0 ≤ b, we obtain PP

x0
(TP = 0) =

PP
x0
(a •XZ

r

0 ≤ b) ≤ PP
x0
(XZ

r

0 = x0) = 1 and hence rtPx0
= EP

x0

(

TP) = 0. ⊓⊔

To prove Thm. 9 we show how to translate any probabilistic program into a
Markov Decision Process (MDP) and then reuse existing corresponding results
for MDPs [32]. In this section we recapitulate the needed concepts for MDPs
and after the introduction of any concept, we show how it is related to the
corresponding notions for probabilistic programs.
We consider infinite time horizon MDPs, where we restrict ourselves to determin-
istic MDPs without final states, i.e., to Discrete Time Markov Chains (DTMCs).
So there is one unique action for every state of the MDP.

Definition 47 (Discrete Time Markov Chain). A Discrete Time Markov
Chain (DTMC) without final states M = (S, P, rew) consists of the following
components:

• S is a set of states.
• P : S × S → [0, 1] is a transition probability function such that for all states

s ∈ S we have
∑

s′∈S
P (s, s′) = 1.

• rew : S → R is the reward function.

Def. 48 shows how to translate any probabilistic program P to a corresponding
DTMC MP . This is possible for our notion of probabilistic programs, because
the values of the program variables only depend on their values in the previous
loop iteration. To ease notation, let the probabilities pc(x) be constant zero for
all c ∈ Zr \ {c1, . . . , cn}.

Definition 48 (Translating Probabilistic Programs to DTMCs). Let P
be a program as in Def. 2. Its corresponding DTMC MP = (S, P, rew) is given
by

• S = Zr

• For states satisfying the loop guard, the probability function P is induced by
the probabilities pcj , and for states that do not satisfy the loop guard, the
probability to remain in the state is 1:

P (s, s′) =

{

ps′−s(s) + δs′,d · p′(s), if a • s > b
δs,s′ , if a • s ≤ b
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• The reward function is given by rew(s) =

{

1, if a • s > b

0, if a • s ≤ b

For a DTMC M = (S, P, rew) and each initial state x0 ∈ S, we examine a
stochastic process XS using a probability measure PM

x0
for the measurable space

(Sω ,FS). The definitions of FS , PM
x0
, and XS are generalizations of the corre-

sponding definitions from Sect. 2 to arbitrary state spaces.
Moreover, instead of (prefix) runs we now regard histories resp. sample paths
and instead of the probability prPx0

of a run with the initial variable assignment

x0 we regard the probability prMx0
of a sample path with the initial state x0.

Definition 49 (Probability Measure for a DTMC). Let M = (S, P, rew)
be a DTMC.

• A sample path is an infinite sequence 〈s0, s1, s2, . . .〉 ∈ Sω and a history is
a finite sequence 〈s0, s1, . . . , sj〉 ∈ Sj+1 for some j ∈ N. The cylinder set
CylS(π) of a history π consists of all sample paths with prefix π.

• For any x0 ∈ S, prMx0
:
⋃

j∈N
Sj+1 → [0, 1] is the function that maps

any history 〈s0, . . . , sj〉 to its probability if x0 is the initial state. Thus, let
prMx0

(〈s0〉) = δx0,s0 and if j ≥ 1, we define:

prMx0
(〈s0, . . . , sj〉) = prMx0

(〈s0, . . . , sj−1〉) · P (sj−1, sj)

• The (canonical) measurable space for a DTMC is (Sω ,FS), where FS is the
smallest σ-field containing all cylinder sets CylS(π) for all histories π.

• For any x0 ∈ S, the probability measure prMx0
: FS → [0, 1] for the DTMC

M and the initial state x0 is the unique probability measure such that for
any history π we have PM

x0
(CylS(π)) = prMx0

(π).

• The stochastic process XS = (XS
j )j∈N is defined as XS

j : Sω → S, where
XS

j (s0, . . . , sj, . . .) = sj.

The following corollary shows that for any probabilistic program P , the prob-
ability spaces for P and for its corresponding DTMC MP are the same.

Corollary 50 (P and MP Have the Same Probability Measure). For any
program P as in Def. 2 and its corresponding DTMC MP , the corresponding
probability spaces are the same. So in particular, we have PP

x0
= PMP

x0
for any

x0 ∈ Zr.

Proof. By Def. 48 and 49, the measurable space for MP is ((Zr)ω,FZ
r

), which
is also the measurable space for P . Moreover, Def. 49 implies prPx0

= prMP
x0

and

thus, PP
x0

= PMP
x0

for any x0 ∈ Zr. ⊓⊔

For DTMCs, one is interested in the expected total reward. For a DTMC M =
(S, P, rew) and the stochastic process XS , the expected total reward maps any

initial state s0 ∈ S to the expected value of
∑

j∈N
rew(XS

j ) under the prob-

ability measure PM
s0

(if this expected value exists). Note that if rew(s) ≥ 0 for
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all s ∈ S, then the sum
∑

j∈N
rew(XS

j ) : Sω → R≥0 is a non-negative5 random

variable. Hence, its expected value under the probability measure PM
s0

is well de-
fined. In particular, this holds for the DTMCs MP corresponding to programs
P , because for any run π = 〈z0, z1, . . .〉 ∈ (Zr)ω, rew(XZ

r

j (π)) = rew(zj) is 1 if
the j-th tuple zj in the run does not violate the loop condition a • zj > b and
0, otherwise (i.e., rew(z) ∈ {0, 1} for all z ∈ Zr).

Definition 51 (Expected Total Reward). Let M = (S, P, rew) be a
DTMC. For any s0 ∈ S, the expected total reward trMs0 ∈ R ∪ {−∞,∞} of
M is

trMs0 = lim
u→∞

EM
s0





∑

0≤j≤u

rew(XS
j )





whenever this limit exists in R ∪ {−∞,∞}. As argued above, the limit always
exists in the special case of non-negative rewards. Therefore, in the case where
rew(s) ∈ {0, 1} for all s ∈ S, we have

trMs0 =
∑

u∈N

u · PM
s0
(
∑

j∈N

rew(XS
j ) = u).

The following lemma shows the connection between the termination time and
the total reward of a run. In the following, we say that a run π = 〈z0, z1, . . .〉 is
constant on violating states if a • zj ≤ b implies zj = zj+1 for all j ∈ N.

Lemma 52 (Total Reward is Termination Time). Let P be a program
as in Def. 2. For every run π that is constant on violating states, we have
∑

j∈N
rew(XZ

r

j (π)) = TP(π).

Proof. First, we show that the equality holds for runs π = 〈z0, z1, . . .〉 where
TP(π) = u < ∞. So a • zj > b for all j < u and since π is constant on violating
states, we have a • zj ≤ b for all j ≥ u. Here we obtain

∑

j∈N

rew(XZ
r

j (π)) =
∑

j∈N

rew(zj)

=
∑

0≤j<u

1 +
∑

j≥u

0

= u

= TP(〈z0, z1, . . .〉)
= TP(π).

5 The non-negativity of rew ensures that the infinite sum of all rew(XS
j ) is a value

in R≥0. In contrast, if we have positive and negative rewards, then the infinite sum
might diverge and neither converge to −∞ nor to ∞.
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Now we consider a run π = 〈z0, z1, . . .〉 such that TP(π) = ∞, i.e., a•zj > b
for all j ∈ N. Then we have

∑

j∈N

rew(XZ
r

j (π)) =
∑

j∈N

rew(zj)

=
∑

j∈N

1

= ∞
= TP(〈z0, z1, . . .〉)
= TP(π). ⊓⊔

With Cor. 50 and Lemma 52 we can show that the expected runtime of a program
P is identical to the expected total reward of its corresponding DTMC MP .
This is the crucial theorem which allows us to apply results on DTMCs also for
probabilistic programs.

Theorem 53 (Expected Total Reward is Expected Runtime). For any
program P as in Def. 2, the expected runtime of P and the expected total reward
of the corresponding DTMC MP are the same, i.e., for any x0 ∈ Zr we have
rtPx0

= trMP
x0

.

Proof. Due to Def. 51 we have trMP
x0

=
∑

u∈N
u · PMP

x0
(Au), where Au = {π ∈

(Zr)ω |
∑

j∈N
rew(XZ

r

j (π)) = u}. Note that prMP
x0

(π) = 0 if π is not constant

on violating states. Thus, PMP
x0

(Au) = PMP
x0

(A′
u) where

A
′
u = {π∈(Zr)ω |

∑

j∈N

rew(XZ
r

j (π)) = u and π is constant on violating states}

= {π∈(Zr)ω | TP(π)=u and π is constant on violating states} by Lemma 52.

Hence, we obtain

trMP
x0

=
∑

u∈N

u · PMP
x0

(A′
u)

=
∑

u∈N

u · PP
x0
(A′

u) by Cor. 50.

Note that prPx0
(π) = 0 if π is not constant on violating states. Thus, PP

x0
(A′

u) =

PP
x0
(A′′

u) where A′′
u = {π ∈ (Zr)ω | TP(π) = u}. So we get

trMP
x0

=
∑

u∈N

u · PP
x0
(A′′

u)

=
∑

u∈N

u · PP
x0
(TP = u)

= EP
x0

(

TP)

= rtPx0
. ⊓⊔
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Now we introduce the transformer L that is used for DTMCs and corresponds
to the expected runtime transformer for probabilistic programs. In the following,
we restrict ourselves to DTMCs with non-negative rewards to ensure that the
expected total reward exists.

Definition 54 (LM, cf. [32, Eq. 7.1.5]). Let M = (S, P, rew) be a DTMC
with only non-negative rewards. We define the mapping LM : (S → R≥0) →
(S → R≥0) such that for every function f : S → R≥0 and every s ∈ S, we have

LM(f)(s) = rew(s) +
∑

s′∈S
P (s, s′) · f(s′).

The following corollary shows that the expected runtime transformer LP of
a program P is the same as the transformer LMP of the corresponding DTMC
MP .

Corollary 55 (LMP is Expected Runtime Transformer LP ). For any pro-
gram P, the expected runtime transformer LP from Def. 7 is identical to the
transformer LMP from Def. 54.

Proof. Let P be a program as in Def. 2 and let MP = (Zr, P, rew). Consider an
arbitrary function f : Zr → R≥0 and an s ∈ Zr. If a • s ≤ b then rew(s) = 0,
P (s, s) = 1, and P (s, s′) = 0 for s′ 6= s. Hence

LMP (f)(s) = rew(s) +
∑

s′∈S
P (s, s′) · f(s′)

= rew(s) + f(s)
= 0 + f(s)
= f(s)

= LP(f)(s).

If a • s > b then

LMP (f)(s) = rew(s) +
∑

s′∈S
P (s, s′) · f(s′)

= 1 +
∑

s′∈S
(ps′−s(s) + δs′,d · p′(s)) · f(s′)

= 1 +
∑

1≤j≤n

pcj
(s) · f(s+ cj) + p′(s) · f(d)

= LP (f)(s). ⊓⊔

Now that we know that the transformers LP and LMP are the same, we can use
existing results on DTMCs to obtain results for programs P . More precisely, for
any DTMC M = (S, P, rew) with only non-negative rewards, it is known that
the expected total reward function trM : S → R≥0 with trM(s0) = trMs0 for any

s0 ∈ S is a fixpoint of M’s transformer LM.

Theorem 56 (Expected Total Reward is Fixpoint). Let M be a DTMC
with only non-negative rewards. Then trM is a fixpoint of LM.
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Proof. The proof can be found in [32, Thm. 7.1.3]. Note that it requires the
assumption that the expected total reward exists [32, Assumption 7.1.1] which
is ensured by a non-negative reward function. ⊓⊔

Moreover, the expected total reward function is smaller or equal than any other
fixpoint of LM (and than every function f which satisfies the inequality f ≥
LM(f)).

Theorem 57 (Expected Total Reward is Smaller Than Other Fix-
points). Let M = (S, P, rew) be a DTMC with only non-negative rewards and
let there be a function f : S → R≥0 such that f ≥ LM(f). Then f ≥ trM.

Proof. The proof of the finite case, i.e., f(s) < ∞ for all s ∈ S, can be found
in [32, Thm. 7.2.2]. Note that in our case there is a unique strategy (since we
restrict ourselves to DTMCs) and we have only non-negative rewards. Therefore,
the proof holds for functions f that map to infinity as well. ⊓⊔

Thm. 56 and 57 imply that the expected total reward function trM is the least
fixpoint of the transformer LM.

Corollary 58 (Expected Total Reward is Least Fixpoint). Let M =
(S, P, rew) be a DTMC with only non-negative rewards. Then trM is the least
fixpoint of LM, i.e., for any s0 ∈ S we have lfp(LM)(s0) = trMs0 .

The following theorem shows that LM is continuous for any DTMC M with
only non-negative rewards. This is needed to apply Kleene’s Fixpoint Theorem,
i.e., to show that the least fixpoint of LM is sup{0,LM(0), (LM)2(0), . . .}.

Theorem 59 (Continuity of LM, cf. [32, Lemma 7.1.5.c]). Let M be a
DTMC with only non-negative rewards. Then LM is continuous.

Proof. Let S = {f0, f1, . . .} be a chain in S → R≥0 , i.e., we have fj ≤ fj+1 for
all j ∈ N. Then (supS) is the function (supS) : S → R≥0 with (supS)(s) =
sup
j∈N

(fj(s)) for all s ∈ S. Therefore, for any s ∈ S we have

LM(supS)(s) = rew(s) +
∑

s′∈S
P (s, s′) · (supS)(s′)

= rew(s) +
∑

s′∈S
P (s, s′) · sup

j∈N

(fj(s
′))

= sup
j∈N

(

rew(s) +
∑

s′∈S
P (s, s′) · fj(s′)

)

as all operations are linear

= sup
j∈N

(

LM(fj)(s)
)

= (supLM(S))(s),

where LM(S) = {LM(f0),LM(f1), . . .}. ⊓⊔
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Now we can prove Thm. 9 which states that the expected runtime of a program
P is the least fixpoint of its expected runtime transformer LP and that it can
be obtained as the supremum of {0,LP(0), (LP)2(0), . . .}. As usual, a function
f : Zr → R≥0 is a fixpoint of LP if LP (f) = f . Such a fixpoint f is the least
fixpoint of LP (i.e., f = lfp(LP )) if f ≤ g for any other fixpoint g of LP .

Theorem 9 (Connection Between Expected Runtime and Least Fix-
point of LP , cf. [32]). For any P as in Def. 2, the expected runtime trans-
former LP is continuous. Thus, it has a least fixpoint lfp(LP ) : Zr → R≥0 with
lfp(LP) = sup{0,LP(0), (LP)2(0), . . .}. Moreover, the least fixpoint of LP is the
expected runtime of P, i.e., for any x0 ∈ Zr, we have lfp(LP )(x0) = rtPx0

.

Proof. By Thm. 53, the expected runtime of P is the same as the expected total
reward of the corresponding DTMC MP . Cor. 58 showed that the expected total
reward is the least fixpoint of the transformer LMP , and LMP is the same as
the expected runtime transformer LP due to Cor. 55.

As the continuity of LMP = LP was shown in Thm. 59, by Kleene’s Fixpoint
Theorem we have lfp(LP ) = sup{0,LP (0), (LP )2(0), . . .}. ⊓⊔

C Proofs for Sect. 3

Theorem 10 (PAST and Expected Runtime for Programs With Direct
Termination). Let P be a program as in Def. 2 where there is a p′ > 0 such
that p′(x) ≥ p′ for all x ∈ Zr with a • x > b. Then P is PAST and its expected
runtime is at most 1

p′ , i.e., rt
P
x0

≤ 1
p′ if a • x0 > b, and rtPx0

= 0 if a • x0 ≤ b.

Proof. The expected runtime transformer LP is continuous (and thus, mono-
tonic) by Thm. 9. Hence, by induction on j one can show that f ≥ LP (f) im-
plies f ≥ (LP)j(0) for any function f : Zr → R≥0 and any j ∈ N. So f ≥ LP(f)
implies f ≥ sup{0,LP(0), (LP)2(0), . . .} = lfp(LP). By Thm. 9, this means that
f(x0) ≥ lfp(LP )(x0) = rtPx0

for all x0 ∈ Zr.

Hence, to prove Thm. 10, it suffices to show f ≥ LP (f) for the function
f : Zr → R≥0 with f(x) = 1

p′ if a • x > b and f(x) = 0 if a • x ≤ b.

For x with a • x ≤ b, we have LP (f)(x) = f(x). If a • x > b, then we get

LP(f)(x) =
∑

1≤j≤n

pcj
(x) · f(x+ cj) + p′(x) · f(d) + 1

≤
∑

1≤j≤n

pcj
(x) · 1

p′ + p′(x) · 0 + 1

= 1
p′ ·

∑

1≤j≤n

pcj
(x) + 1

= 1−p′(x)
p′ + 1 ≤ 1−p′

p′ + 1 = 1
p′ = f(x) ⊓⊔
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D Proofs for Sect. 4

In this section we present the proofs of Sect. 4. It is divided into three subsections
in which we will give the proofs for the respective subsections of Sect. 4.

D.1 Proofs for Sect. 4.1

To prove Thm. 15, we need an auxiliary lemma.

Lemma 60 (Connections between P and Prdw). Let P be a CP program
as in Def. 2 and let rdwω

P be the function which applies rdwP componentwise to
runs. Then we have:

(a) TPrdw ◦ rdwω
P = TP

(b) Let x0 ∈ Zr. Then for any prefix run 〈y0, . . . , yj〉 ∈ Zj+1 we have:

PPrdw

rdwP(x0)
(CylZ(〈y0, . . . , yj〉) = PP

x0
((rdwω

P)
−1(CylZ(〈y0, . . . , yj〉))).

Here, for any M ⊆ Zω we have (rdwω
P)

−1(M) = {π ∈ (Zr)ω | rdwω
P(π) ∈

M}.
Proof. (a) Let 〈z0, z1, . . .〉 ∈ (Zr)ω such that TP(〈z0, z1, . . .〉) = j ∈ N. So if

j ∈ N, then rdwP(z0), . . . , rdwP(zj−1) > 0 and rdwP(zj) ≤ 0. Similarly, if
j = ∞, then rdwP(zj) > 0 for every j ∈ N. So in both cases, we have

j = TPrdw

(〈rdwP(z0), rdwP(z1), . . .〉) = TPrdw

(rdwω
P(〈z0, z1, . . .〉))

= (TPrdw ◦ rdwω
P)(〈z0, z1, . . .〉).

(b) First note that for any prefix run 〈y0, . . . , yj〉 ∈ Zj+1, we have

(rdwω
P )

−1(CylZ(〈y0, . . . , yj〉)) =
⊎

z0,...,zj∈Zr such that

rdwP (z0)=y0,...,rdwP (zj)=yj

CylZ
r

(〈z0, . . . , zj〉). (13)

As usual, “⊎” denotes the disjoint union, i.e., we have CylZ
r

(π) ∩CylZ
r

(π′)
= ∅ for prefix runs π 6= π′ of the same length. Note that both sides of the
equality (13) can be empty, i.e., there might not be any zu with rdwP(zu) =
yu for some 1 ≤ u ≤ j. For x0 = rdwP(x0), we prove that

PPrdw

x0
(CylZ(〈y0, . . . , yj〉) = PP

x0









⊎

z0,...,zj∈Zr such that

rdwP (z0)=y0,...,rdwP (zj)=yj

CylZ
r

(〈z0, . . . , zj〉)









.

The result then follows by (13). For the left-hand side we get PPrdw

x0
(CylZ(〈y0,

. . . , yj〉) = 0 if y0 6= x0 and otherwise, we have

PPrdw

x0
(CylZ(〈y0, . . . , yj〉) =

∏

1≤u≤j

(prdwyu−yu−1
+ δyu,rdwP (d) · p′)

=
∏

1≤u≤j





∑

1≤v≤n, a•cv=yu−yu−1

pct
+ δyu,rdwP(d) · p′



 .
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For the right-hand side recall that rdwP(x0) = x0 and that we only regard
tuples z0 where rdwP(z0) = y0. So if y0 6= x0, then all of these tuples z0

are different from x0. Hence, then the right-hand side is also 0. Otherwise,
we have the following, where dP = rdwP(d):

PP
x0





⊎

z0,...,zj∈Zr such that rdwP(z0)=y0,...,rdwP(zj)=yj

CylZ
r

(〈z0, . . . , zj〉)





= PP
x0





⊎

z1,...,zj∈Zr such that rdwP(z1)=y1,...,rdwP(zj)=yj

CylZ
r

(〈x0, z1, . . . , zj〉)





=
∑

z1,...,zj∈Zr such that rdwP(z1)=y1,...,rdwP(zj)=yj

PP
x0

(

CylZ
r

(〈x0, z1, . . . , zj〉)
)

=
∑

z1,...,zj∈Zr such that

rdwP (z1)=y1,...,rdwP (zj)=yj

(pz1−x0 + δz1,d · p′) ·
∏

2≤u≤j

(pzu−zu−1 + δzu,d · p′)

=
∑

cv1 ,...,cvj
∈{c1,...,cn} such that rdwP (x0+cv1 )=y1,

rdwP (x0+cv1+cv2 )=y2,...,rdwP (x0+cv1+...+cvj
)=yj

(pcv1
+ δy1,dP · p′) · . . . · (pcvj

+ δyj ,dP · p′)

(†)
=

∑

cv1 ,...,cvj
∈{c1,...,cn} such that y1−y0=a•cv1 ,...,yj−yj−1=a•cvj

(pcv1
+ δy1,dP · p′) · . . . · (pcvj

+ δyj ,dP · p′)

= (
∑

c∈{c1,...,cn} such that y1−y0=a•c
pc + δy1,dP · p′) · . . . · (

∑

c∈{c1,...,cn} such that yj−yj−1=a•c
pc + δyj ,dP · p′)

=
∏

1≤u≤j





∑

1≤t≤n, a•ct=yu−yu−1

pct
+ δyu,dP · p′



 .

For Equation (†), note that rdwP(x0+cv1) = a•(x0+cv1)−b = a•x0+a•
cv1−b = rdwP(x0)+a•cv1 = y0+a•cv1 . Hence, rdwP(x0+cv1) = y1 means
that y1−y0 = a•cv1 . Similarly, rdwP(x0+cv1+cv2) = y0+a•cv1+a•cv2 =
y1 + a • cv2 . So rdwP(x0 + cv1 + cv2) = y2 means that y2 − y1 = a • cv2 ,
etc. ⊓⊔

Theorem 15 (Transformation Preserves Termination & Expected Run-
time). Let P be a CP program as in Def. 2. Then the termination times TP and

TPrdw

are identically distributed w.r.t. rdwP , i.e., for all x0 ∈ Zr with x0 =

rdwP(x0) and all j∈N we have PP
x0
(TP= j) = PPrdw

x0
(TPrdw

= j). So in particular,

PP
x0
(TP<∞) = PPrdw

x0
(TPrdw

<∞) and rtPx0
= EP

x0
(TP) = EPrdw

x0
(TPrdw

) = rtP
rdw

x0
.

Thus, the expected runtimes of P on the input x0 and of Prdw on x0 coincide.

Proof. For any j ∈ N and any x0 ∈ Zr we obtain the following.

PP
x0
(TP = j)

= PP
x0
(TPrdw ◦ rdwω

P = j) by Lemma 60 (a)
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= PP
x0

(

(rdwω
P)

−1
(

(TPrdw

)−1 ({j})
))

= PP
x0



(rdwω
P)

−1





⊎

y0,...,yj−1∈Z>0,yj∈Z≤0

CylZ(〈y0, . . . , yj〉)









= PP
x0





⊎

y0,...,yj−1∈Z>0,yj∈Z≤0

(rdwω
P)

−1
(

CylZ(〈y0, . . . , yj〉)
)





=
∑

y0,...,yj−1∈Z>0,yj∈Z≤0

PP
x0

(

(rdwω
P)

−1
(

CylZ(〈y0, . . . , yj〉
))

=
∑

y0,...,yj−1∈Z>0,yj∈Z≤0

PPrdw

rdwP(x0)

(

CylZ(〈y0, . . . , yj〉)
)

by Lemma 60 (b)

= PPrdw

rdwP (x0)





⊎

y0,...,yj−1∈Z>0,yj∈Z≤0

CylZ(〈y0, . . . , yj〉)





= PPrdw

rdwP (x0)

(

TPrdw

= j
)

.

As the above equality holds for every j ∈ N it also holds for j = ∞. ⊓⊔

D.2 Proofs for Sect. 4.2

For the proof of Thm. 18, we use results on random walks [17, 21, 33]. We first
recapitulate the required notions from probability theory.

Consider a probability space (Ω,F,P) (i.e., for every A ∈ F ⊆ 2Ω, P(A) is
the probability that an event from the set Ω is in the subset A) and a stochastic
process Y = (Yj)j∈N where each Yj : Ω → Z is a random variable. Y is indepen-
dent and identically distributed (i.i.d.) on (Ω,F,P) if for all j, j′ ∈ N with j 6= j′

and all y, z ∈ Z:

• Yj and Yj′ are identically distributed, i.e., P(Yj = z) = P(Yj′ = z)
• Yj and Yj′ are independent, i.e., P(Yj = y, Yj′ = z) = P(Yj = y) · P(Yj′ = z)

Here, P(Yj = y, Yj′ = z) = P(Y −1
j ({y}) ∩ Y −1

j′ ({z})) is the probability that an
event π ∈ Ω satisfies both Yj(π) = y and Yj′ (π) = z. So independence means
that one random variable does not influence the value of the other.

Now we recapitulate the notion of a random walk created by an i.i.d. stochas-
tic process.

Definition 61 (Random Walk [21]). Let Y = (Yj)j∈N be an i.i.d. stochastic
process for a probability space (Ω,F,P) with Yj : Ω → Z and let X0 : Ω → Z

be a random variable such that P(X0 = x0) = 1 for some x0 ∈ Z. The (one-
dimensional) random walk for (Ω,F,P) induced by Y with starting point X0 is

the sequence S = (Sj)j∈N of random variables6 Sj = X0 +
∑

0≤u≤j−1
Yu. We

denote the random walk S by (X0,Y).

6 Note that we define Sj = X0 +
∑

0≤u≤j−1
Yu instead of Sj = x0 +

∑

0≤u≤j−1
Yu.

In this way, the random variables X0, Y0, Y1, . . . only generate a single random walk
that does not depend on x0. Instead, the different possible initial values x0 are taken
care of by choosing different probability spaces (Ω,F,Px0) where Px0(X0 = x0) = 1.
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Analogous to the termination time for programs from Def. 3, the hitting time is
the time when the random walk “hits” a certain subset of Z for the first time.

Definition 62 (Hitting Time). The hitting time for a random walk (Sj)j∈N

is the random variable T hit : Ω → N with T hit(π) = inf{j ∈ N | Sj(π) ≤ 0}.

If Y = (Yj)j∈N is i.i.d., then E(Y0) = E(Yj) for all j ∈ N. Hence, we define
µ = E(Y0) to be the drift, i.e., the expected change in each step of the random
walk. For such random walks, a result similar to Thm. 18 is already known.

Lemma 63 (Drift and Hitting Time [33, Thm. 17.1, Prop. 18.1]). Let
Y be i.i.d. for a probability space (Ω,F,P) and let (X0,Y) be a random walk for
(Ω,F,P) such that µ = E(Y0) < ∞ (note that the drift µ does not depend on
X0). Let T

hit be the hitting time for (X0,Y). Then we have:

• If µ > 0, then P(T hit = ∞) > 0.
• If µ = 0 and P(Y0 = 0) 6= 1, then P(T hit = ∞) = 0 but E(T hit) = ∞.
• If µ < 0, then E(T hit) < ∞.

In order to use Lemma 63 to prove Thm. 18, our aim is to represent the stochastic
process XZ from Def. 46 (for r = 1) as a random walk XZ = (XZ

0 ,Y
Z) for a

suitable stochastic process YZ.
To this end, we take the stochastic processYZ = (Y Z

j )j∈N with Y Z

j = (XZ

j+1−
XZ

j ) for all j ∈ N, i.e., Y Z

j is the change of the program variable in the (j +

1)-th loop iteration. Then XZ can be obtained as the random walk (XZ

0 ,Y
Z),

since PP
x0
(XZ

0 = x0) = 1 and XZ

j = XZ

0 +
∑

0≤u≤j−1
(XZ

u+1 − XZ

u ) = XZ

0 +
∑

0≤u≤j−1
Y Z

u for all j ∈ N.

Unfortunately, YZ is not i.i.d. for the probability measure PP
x0
, because the

probability that Y Z

j = 0 (i.e., that XZ

j+1 = XZ

j holds) depends on j. More

precisely, the probability for XZ

j+1 = XZ

j is p0 plus the probability that the
program has already reached a value x ≤ 0 (i.e., that the program’s termination
time is at most j). The reason is that according to the probability measure
PP
x0
, the value of x remains unchanged as soon as x ≤ 0. Thus, we obtain

PP
x0
(Y Z

j = 0) = p0 + PP
x0
(TP ≤ j), where PP

x0
(TP ≤ j) clearly depends on j.

Therefore, we now introduce a new adapted probability measure PP
x0

such that

YZ is i.i.d. on the probability space (Zω ,FZ,PP
x0
) and at the same time, EP

x0
(TP)

= EP
x0

(

TP), where EP
x0
(TP) denotes the expected value of the termination time

TP under the probability measure PP
x0
. In the following definition, qPx0

corre-

sponds to the function prPx0
from Def. 42 that maps any prefix run to its proba-

bility if x0 is the initial value of the program variable. When defining prPx0
, the

probability for a prefix run 〈z0, . . . , zj−1, zj〉 where zj−1 ≤ 0 and zj−1 6= zj was
0. In contrast, for qPx0

we continue to execute the program also if x ≤ 0. This cor-
responds to a variant of the program where the loop condition x > 0 is replaced
by true.
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Definition 64 (Probability Measure PP
x0
). For any random walk program

P as in Def. 12 without direct termination, any x0 ∈ Z, and any prefix run
〈z0, z1, . . . , zj〉, let qPx0

(〈z0〉) = δx0,z0 and if j ≥ 1, we define:

qPx0
(〈z0, . . . , zj〉) = qPx0

(〈z0, . . . , zj−1〉) · pzj−zj−1

PP
x0

is the probability measure with PP
x0
(CylZ(π))=qPx0

(π) for any prefix run π.

Example 65 (Adapted Probability Measure for Prdw

race). Consider runs that start
with 1, −2, and −6. Here, we have Y Z

0 (〈1,−2,−6, . . .〉) = (−2) − 1 = −3 and
Y Z

1 (〈1,−2,−6, . . .〉) = (−6) − (−2) = −4. For Prdw

race of Ex. 14, when using the

probability measure P
Prdw

race

1 from Def. 44, we obtain P
Prdw

race

1 (CylZ(〈1,−2,−6〉)) =
pr

Prdw

race

1 (〈1,−2,−6〉) = prdw−3 · prdw−4 · δ−2,−6 = 0, since the value of x should
not change anymore after reaching the non-positive value −2. In contrast, the

adapted probability measure P
Prdw

race

1 from Def. 64 yields P
Prdw

race

1 (CylZ(〈1,−2,

−6〉)) = q
Prdw

race

1 (CylZ(〈1,−2,−6〉)) = prdw−3 · prdw−4 = 1
22 · 1

22 = 1
484 .

For the termination time TP one only regards the time that it takes until the
program variable x is non-positive for the first time. Thus, it does not matter
whether x is kept unchanged afterwards (as in the probability measure PP

x0
)

or whether the loop body is executed further afterwards (as in PP
x0
). So the

expected runtime is the same, no matter whether one uses EP
x0

or EP
x0
.

Lemma 66 (TP is Identically Distributed Under PP
x0

and PP
x0
). For any

random walk program P without direct termination, any x0 ∈ Z, and any j ∈ N,
we have PP

x0

(

TP = j
)

= PP
x0

(

TP = j
)

. Thus, EP
x0

(

TP) = EP
x0

(

TP).

Proof. First of all, by the definition of TP , for any j ∈ N we have

(TP)−1({j}) =
⊎

π=〈z0,...,zj〉∈Z
j
>0×Z≤0

CylZ(π). (14)

First, we consider x0 ≤ 0. Then any cylinder set with positive probability
w.r.t. PP

x0
resp. PP

x0
has the form CylZ(π) where π starts with x0 ≤ 0. But

for any run τ ∈ CylZ(π) we have TP(τ) = 0. Therefore, we conclude PP
x0
(TP =

0) = 1 = PP
x0
(TP = 0).

We now show that for x0 > 0

PP
x0

(

CylZ(π)
)

= PP
x0

(

CylZ(π)
)

for any π = 〈z0, . . . , zj〉 ∈ Z
j
>0 × Z≤0. (15)

The reason is that we have:

PP
x0
(CylZ(π)) = prPx0

(π) by Def. 44

= δx0,z0 ·
∏

0≤u≤j−1

pzu+1−zu by Def. 42 as z0, . . . , zj−1 > 0

= qPx0
(π)

= PP
x0
(CylZ(π)) by Def. 64
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Therefore, for all j ∈ N we obtain:

PP
x0

(

TP = j
)

= PP
x0
((TP)−1({j}))

= PP
x0







⊎

π=〈z0,...,zj〉∈Z
j

>0×Z≤0

CylZ(π)






by (14)

=
∑

π=〈z0,...,zj〉∈Z
j
>0×Z≤0

PP
x0

(

CylZ(π)
)

by additivity of prob. measures

=
∑

π=〈z0,...,zj〉∈Z
j
>0×Z≤0

PP
x0

(

CylZ(π)
)

by (15)

= PP
x0







⊎

π=〈z0,...,zj〉∈Z
j
>0×Z≤0

CylZ(π)






by additivity of prob. measures

= PP
x0

(

TP = j
)

by (14)

Finally, PP
x0

(

TP = ∞
)

= 1 −
∑

j∈N

PP
x0

(

TP = j
)

= 1 −
∑

j∈N

PP
x0

(

TP = j
)

=

PP
x0

(

TP = ∞
)

. ⊓⊔

Now we show that the process YZ with Y Z

j = XZ

j+1 − XZ

j is i.i.d. w.r.t. the

probability measure PP
x0

and thus, (XZ

0 ,Y
Z) is a random walk for (Zω ,FZ,PP

x0
).

So the expected value of Y Z

j under PP
x0
, is the same for all j. In fact, this expected

value is the drift µP of the program, irrespective of the start value x0.

Lemma 67 (Y is i.i.d. and its Expected Value is the Drift of the Pro-
gram). Let XZ be the stochastic process as in Def. 46. We define the pro-
cess YZ = (Y Z

j )j∈N by Y Z

j = XZ

j+1 − XZ

j for all j ∈ N. Then for any ran-

dom walk program P without direct termination and any x0 ∈ Z, YZ is i.i.d.
w.r.t. (Zω ,FZ,PP

x0
) and thus, (XZ

0 ,Y
Z) is a random walk for this probability

space. Furthermore, for any x0 ∈ Z and any j ∈ N, we have EP
x0
(Y Z

j ) = µP .

Proof. We first show that the Y Z

j are identically distributed. More precisely, we

prove that for all u, x0 ∈ Z and all j ∈ N we have PP
x0
(Y Z

j = u) = pu. Similar to
our handling of multivariate programs in App. B, for any random walk program
P as in Def. 12 we define pv = 0 for v > m or v < −k.

PP
x0
(Y Z

j = u)

= PP
x0
(XZ

j+1 −XZ

j = u)

= PP
x0

({〈z0, . . .〉 ∈ Zω | zj+1 − zj = u})

= PP
x0





⊎

π=〈z0,...,zj+1〉∈Zj+2,zj+1−zj=u

CylZ(π)
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=
∑

π=〈z0,...zj+1〉∈Zj+2,zj+1−zj=u

PP
x0

(

CylZ(π)
)

by additivity of prob. measures

=
∑

π=〈z0,...,zj+1〉∈Zj+2,zj+1−zj=u

qPx0
(π) by Def. 64

=
∑

π=〈z0,z1,...,zj+1〉∈Zj+2,z0=x0,zj+1−zj=u

∏

0≤v≤j

pzv+1−zv by Def. 64

=
∑

π=〈z0,z1,...,zj〉∈Zj+1,z0=x0



pu ·
∏

0≤v≤j−1

pzv+1−zv





=





∑

π=〈z0,z1,...,zj〉∈Zj+1,z0=x0

∏

0≤v≤j−1

pzv+1−zv



 · pu

=





∑

v1,...,vj∈Z

pv1 · . . . · pvj



 · pu

=

(

∑

v∈Z

pv

)j

· pu

= 1j · pu = pu. as P does not have direct termination

As pu is independent of j, the Y Z

j are identically distributed. Furthermore, the

expected value of Y Z

j under PP
x0

is

EP
x0
(Y Z

j ) =
∑

−k≤u≤m

u · pu = µP ,

which is the drift of the program.

It remains to show the independence of the random variables. Let j 6= j′ ∈ N

and w.l.o.g. assume j′ > j.

PP
x0
(Y Z

j = u, Y Z

j′ = u′)
= PP

x0
(XZ

j+1 −XZ

j = u,XZ

j′+1 −XZ

j′ = u′)
= PP

x0
{〈z0, . . .〉 ∈ Zω | zj+1 − zj = u, zj′+1 − zj′ = u′}

= PP
x0







⊎

π=〈z0,...,zj′+1〉∈Zj′+2,zj+1−zj=u,zj′+1−zj′=u′

CylZ(π)







=
∑

π=〈z0,...,zj′+1〉∈Zj′+2,zj+1−zj=u,zj′+1−zj′=u′

PP
x0

(

CylZ(π)
)

=
∑

π=〈z0,...,zj′+1〉∈Zj′+2,zj+1−zj=u,zj′+1−zj′=u′

qPx0
(π)

=
∑

π=〈z0,z1,...zj′+1〉∈Zj′+2,z0=x0,zj+1−zj=u,zj′+1−zj′=u′

∏

0≤v≤j′

pzv+1−zv
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=
∑

π=〈z0,z1,...z
j′+1〉∈Zj

′+2,

z0=x0,zj+1−zj=u,

z
j′+1

−z
j′

=u′

pu ·





∏

0≤v≤j−1

pzv+1−zv



 · pu′ ·





∏

j+1≤v≤j′−1

pzv+1−zv





=







∑

π=〈z0,z1,...zj′ 〉∈Zj′+1,z0=x0,zj+1−zj=u

∏

0≤v≤j′−1, v 6=j

pzv+1−zv






· pu · pu′

=





∑

v1,...,vj′−1∈Z

pv1 · . . . · pvj′−1



 · pu · pu′

=

(

∑

v∈Z

pv

)j′−1

· pu · pu′

= 1j
′−1 · pu · pu′ = pu · pu′

= PP
x0
(Y Z

j = u) ·PP
x0
(Y Z

j′ = u′). ⊓⊔

Now we can prove Thm. 18 based on the results of Lemma 63 for random walks.

Theorem 18 (Decision Procedure for (P)AST of Random Walk Pro-
grams). Let P be a non-trivial random walk program without direct termination.

• If µP > 0, then the program is not AST.

• If µP = 0, then the program is AST but not PAST.

• If µP < 0, then the program is PAST.

Proof. Due to Lemma 67,YZ is i.i.d. w.r.t. (Zω ,FZ,PP
x0
) and thus, SZ = (XZ

0 ,Y
Z)

is a random walk w.r.t. this probability space for any x0 ∈ Z. By Def. 61 we have

SZ

j = XZ

0 +
∑

0≤u≤j−1
Y Z

u = XZ

j for any j ∈ N. Hence, the hitting time T hit for

the random walk SZ as defined in Def. 62 is exactly the termination time TP .
As we proved in Lemma 67 that EP

x0
(Y0) = µP holds independent of x0 ∈ Z, we

can use Lemma 63 for all x0. So we get for all x0 ∈ Z:

• If µP > 0, then PP
x0
(TP=∞)

Lemma 66
= PP

x0
(TP=∞) > 0, i.e., P is not AST.

• Note that as P is non-trivial (i.e., p0 6= 1), we have PP
x0
(Y Z

0 = 0) 6= 1. So if

µP = 0, then Lemma 63 implies PP
x0
(TP = ∞)

Lemma 66
= PP

x0
(TP = ∞) = 0

but EP
x0
(TP)

Lemma 66
= EP

x0
(TP) = ∞, i.e., P is AST but not PAST.

• If µP < 0, then EP
x0
(TP)

Lemma 66
= EP

x0
(TP) < ∞, i.e., P is PAST. ⊓⊔

Example 68 (Termination of Variations of Prdw

race). We showed already in Sect.
4.2 that the drift of the program Prdw

race in Ex. 14 is − 3
2 < 0. So by Thm. 18 this

program is PAST, i.e., the hare is expected to overtake the tortoise in a finite
number of iterations.

Now consider the modified program P :
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while (x > 0) {
x = x+ 1 [ 6

11 ];

x = x [ 3
11 ];

x = x− 1 [0];

x = x− 2 [ 1
11 ];

x = x− 3 [0];

x = x− 4 [ 1
11 ];

}
The distance still increases with probability 6

11 but it decreases by at most 4.
Its drift is µP = 1 · 6

11 + 0 · 3
11 + (−2) · 1

11 + (−4) · 1
11 = 0. Hence, on average

the distance x between the tortoise and the hare remains unchanged after each
loop iteration. By Thm. 18 this program is AST but not PAST. Hence, the hare
wins with probability 1, but the expected number of required loop iterations is
infinite.

Finally, we change the probabilities to obtain the program P ′:

while (x > 0) {
x = x+ 1 [ 6

11 ];

x = x [ 3
11 ];

x = x− 1 [ 1
22 ];

x = x− 2 [ 1
22 ];

x = x− 3 [ 1
22 ];

x = x− 4 [ 1
22 ];

}

Its drift is µP′ = 1 · 6
11 + 0 · 3

11 + 1
22 ·

∑

−4≤j≤−1
j = 1

11 > 0. Thus, P ′ is not

AST by Thm. 18. So there is a positive probability that the hare never catches
up with the tortoise and the race takes forever.

Corollary 20 (Decision Procedure for (P)AST of CP programs). For
a non-trivial CP program P, P is (P)AST iff Prdw is (P)AST. Hence, Thm. 15
and 18 yield a decision procedure for AST and PAST of CP programs.

Proof. If P has direct termination (i.e., p′ 6= 0), then P and Prdw are PAST
by Thm. 10. Otherwise, by Thm. 15 we can reduce the termination of P to the
termination of Prdw on inputs which are in the image of rdwP . Note that the
termination behavior of Prdw is the same for all x > 0. Hence, to show that P
is (P)AST iff Prdw (P)AST, we prove that rdwP ’s image also includes positive
values. To see this, note that a 6= 0 implies a • a > 0. Hence, for any natural
number u > b

a•a we obtain rdwP(u · a) = u · a • a− b > b
a•a · a • a− b = 0. ⊓⊔

D.3 Proofs for Sect. 4.3

We now show that for CP programs P without direct termination, one can not
only decide termination, but the construction for the proof of Thm. 18 also
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directly yields asymptotically exact bounds on their expected runtime. More
precisely, we show that rtPx0

is asymptotically linear whenever P is PAST (and
we even provide actual upper and lower bounds). To prove this result, we use
Wald’s Lemma from probability theory. Again, we first consider random walk
programs and then use the reduction of Sect. 4.1 to lift our result to arbitrary
CP programs.

Recall that if a stochastic process Y = (Yj)j∈N on a probability space
(Ω,F,P) is i.i.d., then E(Y0) = E(Yj) for all j ∈ N. Thus, we obtain

E





∑

0≤j≤c−1

Yj



 =
∑

0≤j≤c−1

E(Yj) = c · E(Y0) for any constant c ∈ N.

By Wald’s Lemma, a similar statement even holds if instead of the constant c
we use a random variable T , provided that T is independent from the stochas-
tic process Y. We use a consequence of Wald’s Lemma where T does not need
to be independent from the whole process Y but for every j, the random vari-
able Yj is independent of whether T is greater or equal to j + 1. The required
independence can be expressed formally by demanding that Yj must be inde-
pendent of I{T≥j+1} : Ω → {0, 1}, where I{T≥j+1}(π) = 1 if T (π) ≥ j + 1 and

I{T≥j+1}(π) = 0 otherwise. Then, to compute E

(

∑

0≤j≤T−1
Yj

)

, by Wald’s

Lemma one can apply E to both T and Yn separately, i.e., one can compute
E(T ) · E(Y0).

Lemma 69 (Consequence of Wald’s Lemma, cf. [21, Lemma 10.2(9)]).
Let Y = (Yj)j∈N be a stochastic process on a probability space (Ω,F,P) which
is i.i.d. and let T : Ω → N be a random variable. Define the random variable

(
∑

0≤j≤T−1
Yj) :Ω→R, π 7→

∑

0≤j≤T (π)−1
Yj(π). If E(Y0)<∞, E(T )< ∞, and

the random variables Yj and I{T≥j+1} are independent for all j∈N, then

E





∑

0≤j≤T−1

Yj



 = E(T ) · E(Y0).

Proof. In [3, Thm. 17.7] it is shown that

E





∑

0≤j≤T−1

Yj



 < ∞, (16)

i.e., the expected value of
∑

0≤j≤T−1
Yj exists. The proof of Lemma 69 is similar

to the proof of [21, Lemma (9) in Sect. 10.2], but it is done under different
preconditions.

E





∑

0≤j≤T−1

Yj
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= E





∑

0≤j

Yj · I{T≥j+1}





=
∑

0≤j

E
(

Yj · I{T≥j+1}
)

by the existence (16), i.e.,

since this expected value is < ∞
=
∑

0≤j

E (Yj) · E
(

I{T≥j+1}
)

by independence of Yj and I{T≥j+1}

=
∑

0≤j

E (Y0) · E
(

I{T≥j+1}
)

as E(Yj) = E(Y0), since Y is i.i.d.

= E (Y0) ·
∑

0≤j

E
(

I{T≥j+1}
)

= E (Y0) ·
∑

0≤j

(

0 · P
(

I{T≥j+1} = 0
)

+ 1 · P
(

I{T≥j+1} = 1
))

= E (Y0) ·
∑

0≤j

P (T ≥ j + 1)

= E (Y0) ·
∑

0≤j

∑

j+1≤u

P (T = u)

= E (Y0) ·
∑

1≤u

∑

0≤j≤u−1

P (T = u)

= E (Y0) ·
∑

1≤u

u · P (T = u)

= E (Y0) · E (T ) ⊓⊔

In our setting, we consider the stochastic process YZ from Lemma 67 and the
termination time TP . When regarding PP

x0
, Yj (i.e., the difference between the

(j+1)-th and the j-th element of a run) is clearly not independent of the question
whether the run already terminated in (or before) the j-th element. The reason
is that under the probability measure PP

x0
, the elements of a run do not change

anymore after termination. However, Lemma 70 shows that when regarding PP
x0

instead, the independence requirement of Lemma 69 is fulfilled.

Lemma 70 (Independence of Y Z

j and I{TP≥j+1}). Let YZ = (Y Z

j )j∈N be
the stochastic process from Lemma 67. Then for any random walk program P
without direct termination, any x0 ∈ Z, and any j ∈ N, the random variables
Y Z

j and I{TP≥j+1} are independent w.r.t. the probability measure PP
x0
.

Proof. We show that for any x, y ∈ Z, we have

PP
x0

(

Y Z

j = x, I{TP≥j+1} = y
)

= PP
x0

(Yj = x) ·PP
x0

(

I{TP≥j+1} = y
)

.

Note that the left- and the right-hand side are both zero whenever y /∈ {0, 1}.
Thus, it is enough to show the claim for y = 0 and y = 1.

Case 1: y = 0

PP
x0

(

Yj = x, I{TP≥j+1} = 0
)



Computing Expected Runtimes 41

= PP
x0









⊎

0≤u≤j

⊎

π=〈z0,...,zj+1〉∈Zu
>0

×Z≤0×Zj−u+1,

zj+1−zj=x

CylZ(π)









=
∑

0≤u≤j

∑

π=〈z0,...,zj+1〉∈Zu
>0×Z≤0×Zj−u+1,

zj+1−zj=x

PP
x0

(

CylZ(π)
)

as PP
x0

is a prob. measure

=
∑

0≤u≤j

∑

π=〈z0,...,zj+1〉∈Zu
>0

×Z≤0×Zj−u+1,

zj+1−zj=x

qPx0
(π) by Def. 64

=
∑

0≤u≤j

∑

π=〈z0,...,zj+1〉∈Zu
>0×Z≤0×Zj−u+1,

zj+1−zj=x

δx0,z0 ·
∏

0≤v≤j

pzv+1−zv by Def. 64

=





∑

0≤u≤j

∑

π=〈z0,...,zj〉∈Zu
>0×Z≤0×Zj−u

δx0,z0 ·
∏

0≤v≤j−1

pzv+1−zv



 · px

= PP
x0

(Yj = x) ·





∑

0≤u≤j

∑

π=〈z0,...,zj〉∈Zu
>0×Z≤0×Zj−u

δx0,z0 ·
∏

0≤v≤j−1

pzv+1−zv





= PP
x0

(Yj = x) ·





∑

0≤u≤j

∑

π=〈z0,...,zj〉∈Zu
>0×Z≤0×Zj−u

qPx0
(π)





= PP
x0

(Yj = x) ·





∑

0≤u≤j

∑

π=〈z0,...,zj〉∈Zu
>0×Z≤0×Zj−u

PP
x0

(

CylZ(π)
)



 by Def. 64

= PP
x0

(Yj = x) ·PP
x0





⊎

0≤u≤j

⊎

π=〈z0,...,zj〉∈Zu
>0×Z≤0×Zj−u

CylZ(π)



 prob. measure

= PP
x0

(Yj = x) ·PP
x0

(

I{TP≥j+1} = 0
)

Case 2: y = 1

PP
x0

(

Yj = x, I{TP≥j+1} = 1
)

= PP
x0











⊎

π=〈z0,...,zj+1〉∈Z
j+1
>0

×Z,

zj+1−zj=x

CylZ(π)











=
∑

π=〈z0,...,zj+1〉∈Z
j+1
>0

×Z,

zj+1−zj=x

PP
x0

(

CylZ(π)
)

as PP
x0

is a prob. measure

=
∑

π=〈z0,...,zj+1〉∈Z
j+1
>0

×Z,

zj+1−zj=x

qPx0
(π) by Def. 64
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=
∑

π=〈z0,...,zj+1〉∈Z
j+1
>0

×Z,

zj+1−zj=x

δx0,z0 ·
∏

0≤v≤j

pzv+1−zv by Def. 64

=







∑

π=〈z0,...,zj〉∈Z
j+1
>0

δx0,z0 ·
∏

0≤v≤j−1

pzv+1−zv






· px

= PP
x0

(Yj = x) ·







∑

π=〈z0,...,zj〉∈Z
j+1
>0

δx0,z0 ·
j−1
∏

v=0

pzv+1−zv







= PP
x0

(Yj = x) ·







∑

π=〈z0,...,zj〉∈Z
j+1
>0

qPx0
(π)






by Def. 64

= PP
x0

(Yj = x) ·







∑

π=〈z0,...,zj〉∈Z
j+1
>0

PP
x0

(

CylZ(π)
)






by Def. 64

= PP
x0

(Yj = x) ·PP
x0







⊎

π=〈z0,...,zj〉∈Z
j+1
>0

CylZ(π)






as PP

x0
is a prob. measure

= PP
x0

(Yj = x) ·PP
x0

(

I{TP≥j+1} = 1
)

⊓⊔

Now we can use Lemma 69 to infer linear upper and lower bounds for the ex-
pected runtime if the random walk program P is PAST (i.e., if µP < 0).

Theorem 71 (Bounds on the Expected Runtime of Random Walk Pro-
grams). Let P be a random walk program as in Def. 12 without direct termi-
nation where µP < 0. Then rtPx0

= 0 for x0 ≤ 0 and for x0 > 0, we have

− 1
µP

· x0 ≤ rtPx0
≤ − 1

µP
· x0 +

1−k
µP

.

So for x0 > 0, P’s expected runtime is asymptotically linear, i.e., rtPx0
∈ Θ(x0).

Proof. All prerequisites are satisfied to apply Wald’s Lemma (Lemma 69) for the
stochastic processYZ on the probability space (Zω ,FZ,PP

x0
) and the termination

time TP : By Lemma 67, YZ is i.i.d. w.r.t. (Zω,FZ,PP
x0
) and EZ

x0
(Y Z

0 ) = µP < ∞.

Since µP < 0, Thm. 18 yields that P is PAST and hence rtPx0
= EP

x0

(

TP) < ∞.

By Lemma 66 this implies EP
x0

(

TP) = EP
x0

(

TP) < ∞. Furthermore, Y Z

j and
I{TP≥j+1} are independent by Lemma 70. Thus, Lemma 69 yields

EP
x0





∑

0≤j≤TP−1

Y Z

j



 = EP
x0
(TP) · EP

x0
(Y Z

0 ). (17)

Let the random variable XTP : Ω→Z map every run π to the first non-positive
value in π, i.e., to the value of the program variable when P terminates, or 0
otherwise. So XTP (π) = XTP(π)(π) if T

P(π)<∞ and XTP (π) = 0 if TP(π)=∞.
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To infer linear bounds on the expected value of the termination time EP
x0
(TP)

resp. EP
x0

(

TP), we first infer bounds on EP
x0
(XTP ). Clearly, we haveXTP (π) ≤ 0

for every π ∈ Ω by the definition of the termination time and of XTP . Hence,
this implies EP

x0
(XTP ) ≤ 0, i.e., 0 is an upper bound for EP

x0
(XTP ).

To infer a lower bound for EP
x0
(XTP ), note that if x0 > 0, then for every run

π = 〈z0, . . . , zj−1, zj , . . .〉 where PP
x0
(CylZ(π)) = qPx0

(π) > 0 and zj is the first
non-positive value in π, we have j ≥ 1 and zj is at most k smaller than zj−1.
Thus, zj−1 ≥ 1 implies zj ≥ zj−1 − k ≥ 1− k. Hence, for all these runs we have
XTP (π) = zj ≥ 1− k. Moreover, for runs π without non-positive values, we also
have XTP (π) ≥ 1 − k, since XTP (π) = 0 and since µP < 0 implies k ≥ 1. Thus,
we obtain EP

x0
(XTP ) ≥ 1− k whenever x0 > 0.

So to summarize, we get the following upper and lower bounds for EP
x0
(XTP )

if x0 > 0:

1− k ≤ EP
x0
(XTP ) ≤ 0 (18)

Recall that for every j ≥ 0 we have XZ

j = XZ

0 +
∑

0≤u≤j−1
Y Z

u . Hence, we

also have XTP = XZ

0 +
∑

0≤u≤TP−1
Y Z

u . This implies:

EP
x0
(XTP ) = EP

x0
(XZ

0 ) +EP
x0





∑

0≤u≤TP−1

Y Z

u





= x0 +EP
x0
(TP) ·EP

x0
(Y Z

0 ) by (17)

= x0 +EP
x0
(TP) · µP by Lemma 67

= x0 + EP
x0

(

TP) · µP by Lemma 66.

Hence, by (18) we obtain − 1
µP

· x0 ≤ EP
x0

(

TP) ≤ − 1
µP

· x0 +
1−k
µP

for any

x0 > 0. This implies the theorem, since rtPx0
= EP

x0

(

TP). ⊓⊔

Theorem 21 (Bounds on the Expected Runtime of CP Programs).

Let P be a non-trivial CP program as in Def. 2 without direct termination which
is PAST (i.e., µPrdw < 0). Moreover, let kP be obtained according to the trans-
formation from Def. 13. If rdwP (x0) ≤ 0, then rtPx0

= 0. If rdwP(x0) > 0, then
P’s expected runtime is asymptotically linear and we have

− 1
µ
Prdw

· rdwP(x0) ≤ rtPx0
≤ − 1

µ
Prdw

· rdwP(x0) +
1−kP

µ
Prdw

.

Proof. The result directly follows from Thm. 15 and 71.

E Proofs for Sect. 5

Lemma 26 (Number of Roots With Absolute Value ≤ 1). Let P be
a random walk program as in Def. 12 that is PAST. Then the characteristic
polynomial χP has k roots λ ∈ C (counted with multiplicity) with |λ| ≤ 1.
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Proof. We use Rouché’s Theorem: For a univariate polynomial av ·xv + . . .+a1 ·
x + a0, if there is a number w ∈ R>0 and an index u ∈ N with 0 ≤ u ≤ v such
that

|au| · wu >
∑

0≤j≤v, j 6=u

|aj| · wj , (19)

then the polynomial has exactly u (possibly complex) roots (counted with mul-
tiplicity) of absolute value less than w.

We now apply Rouché’s Theorem to the characteristic polynomial and pro-
ceed by case analysis. First, we consider the case where p′ > 0. Here, we choose
w = 1 and u = k. Then (19) becomes

|p0 − 1| >
∑

−k≤j≤m, j 6=0

|pj |.

As |p0 − 1| = 1− p0 and |pj | = pj for all j, this is equivalent to

1 >
∑

−k≤j≤m

pj = 1− p′

which is true since p′ > 0. So by Rouché’s Theorem, the characteristic polynomial
χP has k roots λ with |λ| < 1.

However, we would like to conclude that there are no more than k roots λ
with |λ| ≤ 1. Thus, we still need to show that χP has no root λ with |λ| = 1.

Clearly, 0 = χP(λ) is equivalent to 0 =
∑

−k≤j≤m
pj ·λk+j −λk. If |λ| = 1 were

true, then 1 =
∑

−k≤j≤m
pj · λj and

1 = |1| ≤
∑

−k≤j≤m

|pj | · |λ|j =
∑

−k≤j≤m

pj = 1− p′

by using |pj| = pj . However, this is a contradiction to p′ > 0.

Now we consider the case where p′ = 0 and thus
∑

−k≤j≤m
pj = 1. Our goal

is to show that for all small enough ε > 0, the inequality (19) holds if we set
w = 1 + ε and u = k. Then (19) becomes

|p0 − 1| · wk >
∑

−k≤j≤m, j 6=0

|pj | · wj+k.

As |p0 − 1| = 1− p0, w = 1 + ε, and |pj | = pj for all j, this is equivalent to

(1− p0) · (1 + ε)k >
∑

−k≤j≤m, j 6=0

pj · (1 + ε)j+k.
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Note that7 (1 + ε)j = 1 + j · ε+O(ε2) for any j ≥ 0. Hence, we obtain

(1 − p0) + k · (1 − p0) · ε+O(ε2)

>





∑

−k≤j≤m, j 6=0

pj



+





∑

−k≤j≤m, j 6=0

pj · (j + k) · ε



+O(ε2).

By using
∑

−k≤j≤m
pj = 1, this simplifies to

k · (1 − p0) · ε+O(ε2) >





∑

−k≤j≤m, j 6=0

pj · (j + k) · ε



+O(ε2).

When dividing by ε > 0, we get

k · (1 − p0) +O(ε) >





∑

−k≤j≤m, j 6=0

pj · (j + k)



 +O(ε).

To satisfy this, it is sufficient to have

k · (1− p0) >





∑

−k≤j≤m, j 6=0

pj · (j + k)



+O(ε).

This is equivalent to

k >
∑

−k≤j≤m

pj · (j + k) +O(ε)

=
∑

−k≤j≤m

pj · j + k +O(ε)

= µP + k +O(ε).

Since µP < 0 as P is PAST (cf. Thm. 18), this is true for all sufficiently small
ε. Hence, there are exactly k roots of absolute value less than 1 + ε, where ε is
sufficiently small, so in particular k roots of absolute value ≤ 1. ⊓⊔

Lemma 28 (Unique Solution of (4) and (5) when Disregarding Roots
With Absolute Value > 1). Let P be a random walk program as in Def. 12
that is PAST. Then there is exactly one function f : Z → C which satisfies both
(4) and (5) (thus, it has the form (9)) and has aj,u = 0 whenever |λj | > 1.

Proof. To encode the requirement on the aj,u, we modify (5) into a new con-
straint (20) which ensures aj,u = 0 whenever |λj | > 1. More precisely, this new

7 This notation means that (1+ε)j = 1+j ·ε+f(ε) for a function f with f(x) ∈ O(x2).
Here, k, m, and the pj are considered to be constants, i.e., we write O(ε2) instead

of (1− p0) · O(ε2) or
∑

−k≤j≤m, j 6=0
pj · O(ε2).
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constraint (20) is a recurrence equation such that the characteristic polynomial
χ0 of its homogeneous part has all the roots of χP except those whose absolute

value is greater than 1, i.e., χ0(λ) =
∏

1≤j≤c, |λj |≤1
(λ − λj)

vj . Thus, we can

define the coefficients qj ∈ C by

χ0(λ) =
∏

1≤j≤c, |λj |≤1

(λ− λj)
vj = λk −

∑

−k≤j≤−1

qj · λk+j .

Note that the degree of the polynomial χ0 is indeed k, because by Lemma 26 we

have
∑

1≤j≤c, |λj |≤1
vj = k.

Moreover, the constant add-on of the new recurrence equation is constructed
in such a way that the particular solutions Cconst resp. Clin · x of (5) are also
solutions of the inhomogeneous recurrence equation. Thus, let Dconst = Cconst ·
(

1−
∑

−k≤j≤−1
qj

)

and Dlin = −Clin ·
∑

−k≤j≤−1
j · qj . Instead of (5), we

now consider the constraint

f(x) =
∑

−k≤j≤−1

qj · f(x+ j) +D for all x > 0, (20)

where we choose D = Dconst if p′ > 0 and D = Dlin if p′ = 0. We show the
following two claims:

(a) There is exactly one function f : Z → C which satisfies (4) and (20).
(b) A function f : Z → C satisfies (20) iff f satisfies (5) (thus, it has the form

(9)) where aj,u = 0 whenever |λj | > 1.

These two claims imply the statement of the lemma. To see this, note that by
(a) there exists a function which satisfies (4) and (20) and by (b) this function
also satisfies (5) and it has aj,u = 0 whenever |λj | > 1. This function is unique,
because if there were two different functions f1 and f2 that satisfy (4) and (5)
and have aj,u = 0 whenever |λj | > 1, then by (b) these two functions would also
both satisfy (20). But this would be a contradiction to the uniqueness stated in
(a).

We now prove the claims (a) and (b). For (a), note that the recurrence
equation (20) is formulated in such a way that f(x) only depends on the values
of f on the smaller values x− 1, . . . , x− k (i.e., it is a recurrence of order k). By
the constraint (4), the initial value of f on negative values is uniquely determined
(i.e., f(0) = f(−1) = . . . = f(−k + 1) = 0). Hence, by induction on x, one can
easily prove that there is a single unique function f : Z → C that satisfies both
(4) and (20).

For the claim (b), we only have to show that Cconst is a solution of the
inhomogeneous recurrence equation (20) if p′ > 0 and Clin · x is a solution of
(20) if p′ = 0. Once this is shown, it is clear that all solutions of (20) result
from adding the particular solution Cconst resp. Clin · x of the inhomogeneous
equation to a solution of the homogeneous variant of (20) (where D is replaced
by 0). Any solution of this homogeneous variant can be represented as a linear
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combination of the solutions λx
j · xu where |λj | ≤ 1 and u ∈ {0, . . . , vj − 1}.

That these are linearly independent solutions of the homogeneous variant of
(20) follows from the fact that χ0 is the corresponding characteristic polynomial.
Thus, the solutions of (20) are all functions of the form (9) where aj,u = 0
whenever |λj | > 1, which proves (b).

It remains to show that Cconst resp. Clin · x are particular solutions of the
inhomogeneous recurrence equation (20). If p′ > 0, then the definition of Dconst

indeed implies Cconst = Cconst ·
∑

−k≤j≤−1
qj +Dconst. If p

′ = 0, then we have

to show

Clin · x = Clin ·
∑

−k≤j≤−1

qj · (x+ j) +Dlin. (21)

Since 1 is a root of χP (i.e., one of the λj with |λj | ≤ 1 is λj = 1), 1 is also a root of

χ0. So we have 0 = χ0(1) = 1−
∑

−k≤j≤−1
qj , which implies

∑

−k≤j≤−1
qj = 1.

So (21) is equivalent to

Clin · x = Clin · (x ·
∑

−k≤j≤−1

qj +
∑

−k≤j≤−1

j · qj) +Dlin

= Clin · (x+
∑

−k≤j≤−1

j · qj) +Dlin.

This holds due to the definition of Dlin. ⊓⊔

Theorem 29 (Exact Expected Runtime for Random Walk Programs).
Let P be a random walk program as in Def. 12 that is PAST and let λ1, . . . , λc be
the roots of its characteristic polynomial with multiplicities v1, . . . , vc. Moreover,
let C(x) = Cconst =

1
p′ if p′ > 0 and C(x) = Clin · x = − 1

µP
· x if p′ = 0. Then

the expected runtime of P is rtPx = 0 for x ≤ 0 and

rtPx = C(x) +
∑

1≤j≤c, |λj |≤1

∑

0≤u≤vj−1
aj,u · λx

j · xu for x > 0,

where the coefficients aj,u are the unique solution of the k linear equations:

0 = C(x)+
∑

1≤j≤c, |λj |≤1

∑

0≤u≤vj−1
aj,u ·λx

j ·xu for −k + 1 ≤ x ≤ 0 (11)

So in the special case where k = 0, we have rtPx = C(x) = Cconst =
1
p′ for x > 0.

Proof. By Thm. 9, the expected runtime rtPx is the least fixpoint of the expected
runtime transformer LP , i.e., the smallest function f(x) : Z → R≥0 which satis-
fies (3), or equivalently, the smallest function which satisfies (4) and (5).

Since f satisfies (5), it is a function of the form (9), i.e., there exist coefficients
aj,u ∈ C such that for all x > −k we have

f(x) = C(x) +
∑

1≤j≤c

∑

0≤u≤vj−1

aj,u · λx
j · xu.
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If we had aj,u 6= 0 for a coefficient where |λj | > 1, then f(x) would not be
bounded by a constant (if p′ > 0) resp. by a linear function (if p′ = 0). Thus,
this would contradict Thm. 10 (if p′ > 0) resp. Thm. 21 (if p′ = 0).

By Lemma 28 there is a single unique function f : Z → C which satisfies
both (4) and (5) and has aj,u = 0 whenever |λj | > 1. So this function must
be the expected runtime (and hence, it maps any integer to a non-negative real
number). Due to (5) the function must be of the form (9) for all x > −k but at
the same time it also has to satisfy f(x) = 0 for all x ≤ 0 due to (4). Therefore,
it must satisfy the linear equations (11). On the other hand, the linear equations
(11) cannot have more than one solution because otherwise this would yield two
different functions that satisfy both (4) and (5) and have aj,u = 0 whenever
|λj | > 1, in contradiction to Lemma 28.

If k = 0, then p′ > 0 as P is PAST. Lemma 26 implies that χP has no root

with |λ| ≤ 1 and thus, rtPx = Cconst +
∑

1≤j≤c, |λj |≤1
. . . = Cconst for x > 0. ⊓⊔

Corollary 31 (Exact Expected Runtime for CP Programs). For any CP
program, its expected runtime can be computed exactly.

Proof. If P is trivial, then its expected runtime is obvious. Otherwise, by Cor. 20
one can decide if P is PAST and in that case, Prdw is PAST as well. For any

CP program P , we have rtPx = rtP
rdw

rdwP(x) due to Thm. 15. As rtP
rdw

rdwP(x) can be

computed exactly by Thm. 29, this also holds for rtPx . ⊓⊔

As mentioned in Sect. 5, Thm. 29 and Cor. 31 imply that for any x0 ∈ Zr, the
expected runtime rtPx0

of a CP program P that is PAST and has only rational
probabilities pc1

, . . . , pcn , p
′ ∈ Q is always an algebraic number. This is due

to the fact that rtPx0
can be represented as a linear combination of algebraic

numbers (the roots of the characteristic polynomial χPrdw ). The coefficients of
this linear combination are the solution of a linear equation system (11) over
algebraic numbers and hence, they are algebraic numbers themselves. Therefore,
one could also compute a closed form for the exact expected runtime rtPx using
a representation with algebraic numbers instead of numerical approximations.

As also discussed in Sect. 5, while the exact computation of the expected
runtime of a random walk program P according to Thm. 29 may yield a repre-
sentation of rtPx with possibly complex number, one can easily obtain a more
intuitive representation of rtPx that uses real numbers only.

As stated before, for any coefficients aj,u, a
′
j,u ∈ C with j ∈ {s+1, . . . , s+ t}

and u ∈ {0, . . . , vj − 1} there exist coefficients bj,u and b′j,u such that

aj,u · λx
j + a′j,u · λj

x
= bj,u · Re(λx

j ) + b′j,u · Im(λx
j )

holds for all x ∈ Z. More precisely, bj,u = aj,u+a′j,u and b′j,u = (aj,u−a′j,u) · i. So
any linear combination of the functions λx

j ·xu and λj
x ·xu can be replaced by a

linear combination of the functions Re(λx
j ) ·xu and Im(λx

j ) ·xu. In this way, one
obtains k +m linearly independent real solutions of the corresponding homoge-
neous recurrence equation. Hence, by Thm. 29 we now get the representation of
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the expected runtime in (12):

rt
P
x =























C(x) +
∑

1≤j≤s, |λj |≤1

∑

0≤u≤vj−1

aj,u · λx
j · xu

+
∑

s+1≤j≤s+t, |λj |≤1

∑

0≤u≤vj−1

(

bj,u ·Re(λx
j ) + b

′
j,u ·Im(λx

j )
)

· xu
, for x > 0

0, for x ≤ 0

Since rtPx is real-valued, λx
j ∈ R for j ∈ {1, . . . , s}, and Re(λx

j ), Im(λx
j ) ∈ R

for j ∈ {s + 1, . . . , s + t}, all aj,u for j ∈ {1, . . . , s} and all bj,u, b
′
j,u for j ∈

{s + 1, . . . , s + t} are real numbers. As bj,u = aj,u + a′j,u, this means that a′j,u
is the conjugate of aj,u, i.e., a

′
j,u = aj,u and thus, bj,u = 2 · Re(aj,u) and b′j,u =

−2 · Im(aj,u).
As mentioned, to compute Re(λx

j ) and Im(λx
j ), we consider the polar represen-

tation of the non-real roots λj , i.e., for j ∈ {s+1, . . . , s+t} let λj = wj ·eθj·i with
wj ∈ R>0 and θj ∈ (0, 2π). Then λx

j = wx
j · eθj·i·x, and Re(λx

j ) = wx
j · cos(θj · x)

and Im(λx
j ) = wx

j · sin(θj · x).
Note that in Alg. 33, one could also already use the representation in (12)

with Re(λx
j ) = wx

j · cos(θj ·x) and Im(λx
j ) = wx

j · sin(θj ·x) here. Then one would
only have to solve a system of linear equations over the reals and can compute
bj,u and b′j,u directly.
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