Skip to main content

\(\mathsf {dL}_{\iota }\): Definite Descriptions in Differential Dynamic Logic

  • Conference paper
  • First Online:
Automated Deduction – CADE 27 (CADE 2019)

Abstract

We introduce , which extends differential dynamic logic () for hybrid systems with definite descriptions and tuples, thus enabling its theoretical foundations to catch up with its implementation in the theorem prover . Definite descriptions enable partial, nondifferentiable, and discontinuous terms, which have many examples in applications, such as divisions, nth roots, and absolute values. Tuples enable systems of multiple differential equations, arising in almost every application. Together, definite description and tuples combine to support long-desired features such as vector arithmetic.

We overcome the unique challenges posed by extending with these features. Unlike in , definite descriptions enable non-locally-Lipschitz terms, so our differential equation (ODE) axioms now make their continuity requirements explicit. Tuples are simple when considered in isolation, but in the context of hybrid systems they demand that differentials are treated in full generality. The addition of definite descriptions also makes a free logic; we investigate the interaction of free logic and the ODEs of , showing that this combination is sound, and characterize its expressivity. We give an example system that can be defined and verified using these extensions.

This research was sponsored by NDSEG, the AFOSR under grant number FA9550-16-1-0288, and the Alexander von Humboldt Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 27–44. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_3

    Chapter  Google Scholar 

  2. Barras, B.: Sets in Coq, Coq in sets. J. Formaliz. Reason. 3(1), 29–48 (2010). https://doi.org/10.6092/issn.1972-5787/1695

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohrer, R., Fernández, M., Platzer, A.: \(\sf dL_{\iota }\): definite descriptions in differential dynamic logic. Technical report. CMU-CS-19-111, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA (2019)

    Google Scholar 

  4. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) CPP, pp. 208–221. ACM (2017). https://doi.org/10.1145/3018610.3018616

  5. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified controller executables from verified cyber-physical system models. In: Grossman, D. (ed.) PLDI, pp. 617–630. ACM (2018). https://doi.org/10.1145/3192366.3192406

  6. Church, A.: Introduction to Mathematical Logic. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  7. Driver, R.: Torricelli’s law: an ideal example of an elementary ODE. Am. Math. Mon. 105(5), 453–455 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Norwell (1999)

    MATH  Google Scholar 

  9. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

  10. Henzinger, T.A.: The theory of hybrid automata. In: LICS. IEEE (1996). https://doi.org/10.1109/LICS.1996.561342

  11. Hubbard, J.H., West, B.H.: Differential Equations: A Dynamical Systems Approach. Springer, Heidelberg (1991). https://doi.org/10.1007/978-1-4612-4192-8

    Book  MATH  Google Scholar 

  12. Jeannin, J., et al.: A formally verified hybrid system for safe advisories in the next-generation airborne collision avoidance system. STTT 19(6), 717–741 (2017). https://doi.org/10.1007/s10009-016-0434-1

    Article  Google Scholar 

  13. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order logic: semantics, soundness, and a verified implementation. J. Autom. Reason. 56(3), 221–259 (2016). https://doi.org/10.1007/s10817-015-9357-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Łukasiewicz, J.: O logice tr ojwartościowej (on 3-valued logic). Ruch Filozoficzny 5, 169–171 (1920)

    Google Scholar 

  15. Mitsch, S., Gario, M., Budnik, C.J., Golm, M., Platzer, A.: Formal verification of train control with air pressure brakes. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail. LNCS, vol. 10598, pp. 173–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_12

    Chapter  Google Scholar 

  16. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obstacle avoidance and navigation of ground robots. Int. J. Robot. Res. 36(12), 1312–1340 (2017). https://doi.org/10.1177/0278364917733549

    Article  Google Scholar 

  17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  18. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010). https://doi.org/10.1093/logcom/exn070

    Article  MathSciNet  MATH  Google Scholar 

  20. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Log. Method Comput. Sci. 8(4), 1–44 (2012). https://doi.org/10.2168/LMCS-8(4:17)2012. Special issue for selected papers from CSL2010

    Article  MathSciNet  MATH  Google Scholar 

  21. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE (2012). https://doi.org/10.1109/LICS.2012.64

  22. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012). https://doi.org/10.1109/LICS.2012.13

  23. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason. 59(2), 219–265 (2017). https://doi.org/10.1007/s10817-016-9385-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log. 18(3), 19:1-19:44 (2017). https://doi.org/10.1145/3091123

    Article  MathSciNet  MATH  Google Scholar 

  25. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power of differential ghosts. In: Dawar, A., Grädel, E. (eds.) LICS, pp. 819–828. ACM, New York (2018). https://doi.org/10.1145/3209108.3209147

    Chapter  Google Scholar 

  26. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_6

    Chapter  Google Scholar 

  27. Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes-Kepler-University, Linz, Austria), pp. 24–84. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-9459-1_3

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Martin Giese for discussions on the use of definite descriptions in theorem provers and the referees for their thoughtful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose Bohrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bohrer, R., Fernández, M., Platzer, A. (2019). \(\mathsf {dL}_{\iota }\): Definite Descriptions in Differential Dynamic Logic. In: Fontaine, P. (eds) Automated Deduction – CADE 27. CADE 2019. Lecture Notes in Computer Science(), vol 11716. Springer, Cham. https://doi.org/10.1007/978-3-030-29436-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29436-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29435-9

  • Online ISBN: 978-3-030-29436-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics