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Abstract 

Automatic analysis of reflective writing involves identifying indicator strings 

and using string matching or rule matching processes, which flag sections of 

text containing reflective material. The problem with the string-based approach 

is its inability to deal with knowledge inference from the text, such as the 

content, context, relevance, clarity, and interconnection, which can be identified 

by semantic analysis. Semantic analysis depends mainly on mapping the text 

into stored knowledge sources, such as WordNet, and analyzing the 

associations in the underlying knowledge source. In this paper, a semantic-

based approach for reflective writing analysis is proposed, in which the input 

text, which is being analyzed is mapped into semantic concepts. Moreover, a 

machine learning approach for reflective writing identification and analysis has 

been implemented to overcome the limitations of rule execution and keyword 

matching. The proposed approach addresses the efficiency of using several 

effective concepts, correlated with effective words that are identified in 

WordNet-Affect. The input text is classified into reflective or non-reflective 

categories, after which the input text is classified into various reflective classes, 

based on the type of the document. Moreover, the concepts in WordNet-Affect 

are evaluated and analyzed to demonstrate their effects on classification and 

labeling tasks. 

 

Keywords: WordNet-Affect, Classification, Automatic, Reflective, Semantic-

based. 
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1 Introduction 

Reflective Writing (RW) involves insights and mental considerations of learned 

topics, past experiences, and actions. RW has several definitions in the 

literature, among them being that it is a form of conceptual processing with a 

purpose that is applied to unstructured ideas in a case of solution [1], a 

purposeful philosophy toward a goal [2] and an efficient method of thinking 

about practice [3]. 

The benefits of RW are significant [4] since the potential of learning could be 

lost or forgotten without reflecting on the experience. Vass and Littleton [5], 

Chen, Wei [6], and Xie, Ke [7] found that the most important role of reflection 

in students’ writing is to enhance their practice [8].  

 However, the benefits of RW come with difficulties in terms of RW analysis 

and feedback. RW analysis involves classifying an input text into either 

reflective or non-reflective components and providing feedback to enhance the 

reflecting writing by highlighting the strengths and weakness of the input text with 

regards to the properties of RW. Theoretical models of RW analysis have been 

proposed that involve using string indicators to determine whether reflection is 

present [9]. Moreover, some models distinguish between different levels of reflection 

[10]. As the manual analysis is tedious and time-consuming, there is a need for 

automatic RW analysis [8] [11]. 

To implement automatic reflective writing analysis as an analog to the existing in 

manual models, Natural Language Process (NLP) is used. NLP is a “potential for 

computational analysis of reflective writing (Reflective Writing Analytics) as a means 

of discovering evidence for metacognitive activity in the reflective writing of a 

learner” [12]. NLP has the potential to automatically analyze the input text and 

discover the reflection indicators to make a final decision about the input and to 

determine whether the text is reflective or not.  

The existing approaches to automatic RW analysis, which are dictionary-based or 

rule-based, depend on shallow text processing and the extraction of string patterns to 

be used as input for rule evaluation and keyword matching. 

The problems of existing automatic reflection analysis include the inability to deal 

with the depth of the reflection activities in the text [13]. This is because the existing 

approaches depend on the strings alone and ignore the semantic features of the text. 

While reflection depends on a deep understanding of the underlying topic and event, 

the automatic process does not give any attention to the depth of the content in the 

analyzed text. 

In this paper, a semantic-based approach for RW analysis is proposed. The input 

text being analyzed is mapped into semantic concepts, and based on the efficiency of 

using several effective concepts is correlated with effective words. These are 
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identified in WordNet-Affect which is a linguistic resource for a lexical representation 

of affective knowledge created by Strapparava and Valitutti [14]. 

 

1.1 Research Question  

 

The goal of this paper is to automatically distinguish between three levels for 

reflective text analysis depends on machine learning. To answer this research 

question; 

How to automatically distinguish between descriptive, reflective and critical reflective 

texts? 

1.2 Contribution 

This paper has two contributions: (1) The automatic reflective writing analysis 

designed based on reflection theory. (2) The automatic reflective writing analysis 

based on semantic concepts concerning WordNet and WordNet-Affect and using 

machine learning classification algorithms. 

2 Related work   

Various theoretical models for RW analysis have been proposed, each of which 

classifies text into one of several categories that are defined precisely, in order to help 

an assessor to provide correct analysis and sufficient feedback to the writer. 

Automatic RW analysis has been built on top of these models, in order to ease the 

analysis task. Existing approaches for automatic reflection analysis are classified into 

keyword-based and rule-based categories. The keyword-based category depends on 

locating specific keywords, as an indication of reflection, in the input text, using a 

keyword matching process. The rule-based category depends on applying specific 

rules in sentences or phrases in the text. 

2.1 Reflective Writing Models  

Besides the different viewpoints of the researchers in this field, the variety of reflection 

models can be referred back to areas, types, and fields of reflection. Kember [15] 

categorizes reflective text into seven categories these are: 1) Habitual action, 

2) Introspection, 3) Thoughtful action, 4) Content reflection, 5) Process reflection, 

6) Content and process reflection, and 7) Premise reflection. While the first three are 

non-reflective, four to six are reflective, and the last is highly reflective. Plack et al. 

[16] categorize reflective text into three categories, namely non-reflective, reflective 

and high reflective. This model is general and easy to use, as it is linked with the six 
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thinking activities of the Bloom’s taxonomy [17]. Accordingly, without losing any 

generality, this model can be used effectively as the basis for the automatic analysis of 

various fields and text types. 

2.2 Keyword-based Automatic Analysis  

Rusman and Martnez-Mons [18] have implemented e-assessment of RW in the 

educational sector, in which the process of grading students’ essay is done 

automatically, and feedback is also provided as well. This process depends on 

keyword matching and evaluation. Similar work for extracting the RW indications 

from essays has been conducted by Dascalu [19]. 

Ullmann [20] used various NLP tools to detect different reflection indicators. The 

model was trained using a dataset of labeled reflective texts to capture associations of 

different words with different reflection categories. This helps to constrain the 

consistency of feedback but fails to build a comprehensive model as it is based on 

string features of the text. An enhanced bag-of-words model for automatic RW 

assessment was proposed by El-Din [21], which takes into account sentiment scores at 

the word level to improve feedback. 

However, sentiment is just one of the feedback attributes. Gibson et al. 

[12] proposed a more comprehensive keyword-based approach which categorizes text 

based on several metacognitive activities. The aim is to examine the extent to which 

the conceptual model may correspond to lexical and structural features in RW. The 

conceptual model includes RW features that were identified from previous studies, 

some of these being pronouns, adapted from the work of Pennebaker and Chung [22], 

and linguistic features adapted from Ryan [23]. 

2.3 Rule-based Automatic Analysis  

Academic writing analytics have been proposed by Shum et al. [24] to provide an 

educational interface, where a single NLP tool, Xerox Incremental Parser (XIP) [25], 

is used to detect and label reflective sentences without evaluating the whole document 

as reflective or not. XIP implements syntactic analysis, lexical resources and the 

dependency rules that detect the reflective patterns. 

A prediction model was developed and implemented by Chen et al. [26] to 

discover a common topic discussed in students’ RW. The strength of this model is 

that it uses various classifiers to categorize the strengths and weaknesses in the RW, 

such as Naive Bayes, Decision Tree J48, and Support Vector Machines. 

However, while this model helps to answer some of the issues faced, it fails to give 

a comprehensive solution. As noted, these studies demonstrate the ability to conduct 

automatic RW assessment using NLP tools, techniques and rules. One of the 

interesting points about these studies is the investigation of the string features of the 

text regardless of the semantic features. 
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3 Proposed Work  

The proposed approach for reflective text analysis depends on machine learning to 

implement coarse- and fine-classification tasks. In the coarse-classification task, the 

input text is classified into reflective or non-reflective categories, while in the fine-

classification task, the reflective text is labeled with one or more of the thinking 

activities that can be related to the reflective activities. 

The proposed approach depends on extracting and using a set of features as input to a 

classification algorithm, so as to generate a specific class or label to the input text. 

The features correspond to semantic concepts related to WordNet conceptual 

knowledge source, and these are: emotion, mood, trait, cognitive state, physical state, 

hedonic signal, emotion-eliciting situation, emotional response, behavior, attitude, and 

sensation. The implemented approach is illustrated in Fig. 1. 

Testing 

Data

Training 

Data Text Analysis Word Sensing
Topic 

Modeling

Feature 

Extraction

Classifier 

Training

Classification

Output

Class/Labels
WordNet

WordNet 

Effect

Model

Text Analysis Word Sensing
Topic 

Modeling

Feature 

Extraction

Fig. 1. RW Analysis Approach 

First, the text is analyzed and mapped to its corresponding concept in WordNet-

Affect. Second, the word sense is determined using word sense disambiguation. Then, 

the topic of the text is modeled with reference to WordNet-Affect. A feature vector of 

WordNet-Affect concepts is constructed, and finally, the feature vector is used to 

classify the input text, using classification algorithms, into reflective or non-reflective 

categories. After this, the input text is classified into various activity classes as 

identified by Plack et al. [16], namely non-reflective, reflective and highly reflective. 

3.1 Text Analysis  

In text analysis, the input text is tokenized and tagged with its part-of-speech to be 

lemmatized. The lemmas of the input words are extracted using Stanford Tagger [27]. 

It is important to identify the parts of speech and the lemmas of each word to map the 

word into its associated WordNet synsets, which form a lexical database of English. 
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Nouns, verbs, adjectives, and adverbs are grouped into sets of synonyms called 

synsets, because WordNet presents lexical knowledge based and arranges words of similar 

meaning into synsets. Relations and associations between the components of the knowledge 

base are constructed based on the synsets, not the words [28]. The steps implemented by the 

text analysis stage are illustrated in Fig. 2. 

 

 

Fig. 2. Text Analysis Stage 

3.2 Word Sense Disambiguation 

 

In mapping words to WordNet, the same word might exist in a different synsets based on its 

part of speech and its lemmas. Moreover, the same word might exist in various synsets 

depending on its meaning. Subsequently, the input text is then disambiguated to map each 

word onto the correct WordNet synsets. The disambiguation process is implemented based on 

the semantic similarity among the words in the text. Various semantic similarity measures 

exist, which can be designated as information-based and relation-based. 

In this paper, a word is disambiguated by choosing the synset of the word that most 

overlaps the synsets of other words in the sentence using Lesk [29]. As given in equation 1. If 

more than one synset obtains the same overlapping rate, according to the Lesk measure, then, 

the most frequent meaning is selected, where, compi and compj, are the components of the 

word of the underlying sense (e.g.: synset) and the component of a given the word in the 

sentence, xi, j is equal to one if the components are identical and zero otherwise The output 

value of equation 1 is divided by the length of the gloss to be normalized in the range [0 − 1].

 
Lesk is used as a similarity measure, where the similarity between a pair of words is 

calculated as the number of common words number in their definitions, which is called gloss in 

WordNet. To extend this idea, in this paper, each possible synset is given an overlapping rate 

value that represents its maximum similarity with any synset of any word in the input sentence. 

The output synset of each word is selected as the one with highest overlap among them 

all. In doing so, the disambiguation process is implemented as collectively 

determining the synsets of all words in the sentence. 
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3.3 Topic Modeling 

In this step, the input synsets are modeled using WordNet-Affect (see Fig. 3) [14]. 

However, instead of using the direct mapping into WordNet-Affect, these synsets are 

used to model the topic of the text, as reflective analysis depends on sentences rather 

than the whole text and short sentence classifications cannot be implemented 

directly. 

Accordingly, each sentence is linked to all WordNet-Affect categories. As the 

synsets for the input text are extracted, the similarity of each synset with each 

category in WordNet-Affect is calculated using the Lesk measure. Accordingly, each 

extracted synset in the input text will have a vector of values the length of which is 

equal to the number of categories in WordNet. Given this, there are multiple synsets 

for each category in WordNet-Affect, and the similarity is calculated as the 

maximum similarity of any of these synsets, keen on the same concepts of using 

Lesk for disambiguation, in the previous stage. At the end of this stage, the input text 

is represented by WordNet-Affect labels instead of words. 

Fig. 3. WordNet-Affect Hierarchy [14] 

3.4 Feature Vector Construction 

For each input text, a feature vector of 310 elements is created. The feature vector 

constructed in this process corresponds to the number of concepts in WordNet-Affect, 

which is 309, while the last element in the vector corresponds to the class value (non-

reflective/reflective/highly-reflective). The feature vector, of each input text is filled by 

the maximum values for its synsets. To avoid underfitting, as the number of features, 

are huge, feature selection is implemented after the feature vectors of all input texts 

are extracted.  

3.5 Classification 

The feature vectors of RW texts and non-RW texts are fed into the classifier, and a 

model is trained to be used in the prediction phase. The classification algorithms can 
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be broadly classified into decision tree based algorithms, probability based 

algorithms, and instance based algorithms and support vector machines. 

A classification algorithm for each of these categories is utilized in the proposed 

work. Decision tree classification [30] algorithms construct a model in the form of a 

tree, in which the internal nodes denote a single feature in the feature vector, the 

branches going out from each internal node represents the values of that feature, and 

the leaf nodes represent class labels. 

In the model construction, the training examples are used recursively, based on the 

values of their features to construct the best tree that can fit with these examples. 

Similar models are constructed in the support vector machine and the probability-

based algorithms. An instance-based model does not construct a trained model and 

uses the instances in the training phase to predict the class of given samples in the 

testing phase. Among these categories, using a decision tree-based classification will 

allow a determination of the influence of each feature on the task of RW detection. 

Moreover, a decision tree classifier can be implemented easily [31, 32, 33]. 

3.6 Experiments and Results Analysis  

To evaluate the proposed approach for RW detection, a dataset, which is 

formulated for the evaluation, and a program for processing text and analyzing the 

generated results, are presented. After obtaining the results, the efficiency of using 

WordNet-Affect is evaluated accordingly. 

4 Experiments and Results  

The first step in the experiments was to give a precise definition to each category in 

the model. Accordingly, Table 1 summarizes the definition of the model and maps it 

to the Bloom’s taxonomy. 

Table 1 Reflective Classes Description adopted from Plack et al. model [16] 

Class Bloom’s 

Activity 

Description 

Non- 

Reflective 

Knowledge 

 

Comprehension 

The writer attempts to describe the fact of the 

experience rather than analyzing the experience, 

related literature, existing techniques, theories, other 

concepts. 

 

 Reflective 
Application 

Analysis 

The writer attempts to deconstruct the 

investigation experience, analyze evidence, and 

differentiate/contrast results and causes. 
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Highly- 

Reflective 

Synthesis 

Evaluation The writer attempts to draw conclusions, propose 

suggestions and/or new ideas, and evaluate alternative 

solutions. 

4 .1  Dataset  

Overall, there is a lack of RW corpora to support RW research. For the evaluation 

purposes, British Academic Writing English Corpus (BAWE), is used [34]. The corpus 

includes a set of student writings in various fields of study, including Architecture, 

Chemistry, and Computer Science. Each assignment is graded with M (Merit) and D 

(Distinction). The corpus involved 13 different assignment formats, including case 

study, critique, and literature survey.  

This dataset was not created for reflection studies and does not classify the type of text into 

reflective/non-reflective. Subsequently, in this paper, pre-analysis of this corpus was conducted 

in order to use this corpus in the proposed approach. First, a single file from each assignment 

format was selected, from various fields of study. Second, only assignments with distinction 

mark (D) were considered in the experiments to ensure that the involved text met the 

description given by the corpus. The total number of sentences were used in the experiments 

was 979. The constructed dataset summary is given in Table 2. 

Table 2. Description of the Constructed Dataset 

Format Field Langua

ge 

Ma

rk 

No.Sentences 

Case Study Engineering English D 42 

Critique Computer Science English D 105 

Design Specification Computer Science English D 115 

Empathy Writing Engineering English D 39 

Essay Economics English D 100 

Exercise Computer Science English D 64 

Explanation Engineering English D 49 

Literature Survey Philosophy English D 20 

Methodology 

Recount 

Engineering English D 31 

Narrative Recount Engineering English D 44 

Problem Question Engineering English D 114 

Proposal Engineering English D 140 

Research Report Economics English D 116 

The pre-analysis of this corpus is as follows: the text was normalized to remove any markup, 

then sentences from each document were extracted. The sentences were annotated manually 

by experts with one of the following classes: non-reflective, reflective and highly-reflective, 

and examples are given in Table 3. The numbers of sentences in each category were as 

follows: non-reflective had 529 sentences, reflective had 427 sentences and highly-reflective 

had 23 sentences based on Plack et al. model [16], see Table 1. 
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Table 3. Example Sentences in the Dataset 

Sentence    Category 

“I read quite a wealth of journals and papers before embarking, so the 

content just flowed when actually writing the essay.” 

 

 

 

 

 

Non-Reflective 

“I think the thing I found most difficult was remembering to use the 

right brackets all the time in the functions, and remembering which 

variables contained lists, and which contained single variables.” 

 

Reflective 

“I now better understand how focusing questions maximises search 

results (Thompson & Dowding, 2002) as I found that I needed to refine 

my search as I went along, so having a better idea of how to find 

relevant information would have improved my searching and made 

better use of time; however I do feel I was able to access adequate and 

appropriate information.” 

Highly-

Reflective 

4.2 Evaluation Measures 

The output of the detection and classification tasks are evaluated using classification 

accuracy, precision, recall, and the F-measure. These measurements are based on the 

proportions, which are True Positive, True Negative, False Positive and False Negative, and 

relate the ground truth and the predicted solution by the assessed method, as follows. True 

Positive is the size of the correctly detected portion, False Positive is the size of the wrongly 

detected portion, True Negative is the size of the correctly unpredicted portion, and False 

Negative is the size of the wrongly unpredicted portion. 

Accuracy is the ratio between True Positive and True Negative to the number of overall 

items. Precision is the ratio between True Positive and the overall number of predicted 

items by the underlying approach or method. 

The overall predicted portion combines both the True Positive and the False 

Positive. The recall is the ratio of the True Positive to the true solution represented 

by the True Positive and the False Negative. F-measure combines precision and 

recall as a mean of a single indication of efficiency.  

4.3 Experimental Design  

The design of the experiments was conducted using the Java programming lan-

guage and a set of libraries and resources. The input text is tokenized, and all non-

word tokens are removed. Tokenization is implemented using the delimiter list, 

which involves the set of delimiters commonly used in the tokenization process. 

Next, the regular expressions are used to distinguish letters from non-letters and 

remove non-words accordingly. 
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Stanford Tagger is used to determine the part of speech for each word and its 

correct lemma. JWNL (Java WordNet Library) [35] is used to map the words into 

their association synsets in WordNet [18]. The synsets are then labeled based on 

WordNet-Affect labels (version 1.1). 

The results of these process are vectorized and arranged in ARFF (Attribute-

Relation File Format) to be used with the WEKA Tool and Library [36], which 

implements various classification algorithms. As mentioned before, several forms 

of the feature vector are generated and will be used in the classification process. 

The classification is conducted using a 10-fold process, where in each fold the 

input samples are divided into training and testing sets. 

4.4 Result Analysis 

Experiments with four classification algorithms were conducted, and the accu-

racy of the outputs are given in Fig. 4. As noted, in the first task, in which only 

reflective vs. non-reflective classification is considered, SVM gives the best 

accuracy that slightly outperforms Bayesian, which falls in the second rank. 

Dividing the reflective data into reflective and highly reflective categories in the 

second task, reduces the results slightly for SVM and Bayesian, and surprisingly 

enhances the accuracy of the rest. Subsequently, using SVM for detection and 

classification of reflective text, obtained the best accuracy. 

 

Fig. 4. Accuracy Comparison between Classification Algorithms 

 

The discriminating ability of the WordNet-Affect concepts are examined in two ways: 

the first one is by drawing part of the tree that is constructed in the learning phase of 

the decision tree classification. The presence of most of the concepts (the edges with 

values greater than zero), such as “comfortableness”, indicates, mostly, the presence of 

reflection (class with value of one in the rectangle) and vice-versa. Second, a randomly 
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selected feature selection algorithm, which is the best first algorithm that selects a sub-set 

feature of the original set, was executed. The output of feature selection was a sub-set of 19 

concepts out of the 309, as given in Table 4. The classification task using these compact set 

was re-implemented. 

 

Table 4. Compact Subset of WordNet Affect Concepts 

Levity comfortableness Gloat soft-spot 
negative-fear Humility Apprehension Timidity 

shyness Downheartedness Despondency annoyance 

aggravation Misogyny Discomfiture hopelessness 

pessimism ambiguous-agitation buck-fever   

The proposed approach for detecting reflection writing text is compared with the string-based 

approach, based on a set of keywords that are listed and experimented by Ullmann [20]. The 

results of the proposed approach and the string-based approach are summarized in Table 5. 

The results of the proposed approach slightly outperform the results of the string-based 

approach. Besides the accuracy, as mentioned, the proposed approach can be extended to 

analyze the content as it is based on semantic concepts. 

Table 5. Reflective Text Detection Results Comparison 

 The Proposed Approach String-based 

Accuracy 0.616 0.606 

Precision 0.627 0.547 

Recall 0.715 0.846 

F-Measure 0.668 0.664 

5 Limitation 

 

There are some limitations faced during this paper; one particular challenge is 

applying NLP approaches.  In order to understand the meaning of natural language; 

machines have to learn how to do Machine Learning within NLP. Because ML 

algorithm is a wide range of basic complex algorithms. Which apply these to a 

specific domain is a relative exercise, are integrated with a text-based approach to 

reach the target of this work. Human ability outperforms the automatic approaches 

regarding reliability and accuracy of RW detection. The boundaries are used to 

convert sentences into features that are required to train the machine learning 

approach. 
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6 Conclusion 

Automatic reflective analysis based on semantic concepts concerning WordNet 

and WordNet-Affect and using machine learning classification algorithms is 

conducted in this paper. The use of semantic features forms the core of semantic and 

intelligent reflective writing analysis and presents an in-depth analysis of the 

reflection activities in the text. As such, while these semantic features are used, in 

this paper for the detection task, it can be further utilized in evaluation, 

categorization or advancing the reflective writing tasks. 

Semantics are obtained in the proposed approach by mapping words into 

WordNet concepts and then locating these concepts in WordNet-Affect. These 

concepts are then used to create a feature, which is forwarded as input to the 

classification algorithm that labels the text with a reflective or non-reflective label. 

In order to evaluate the proposed approach, we use the British Academic Writing 

English Corpus (BAWE), which includes a set of student writings in various fields 

of study and various assignment formats, including case study, critique, and 

literature survey. However, a pre-analysis for this corpus was required in order to fit 

with the task at hand. The results showed that WordNet-Affect for RW detection 

was sufficient. 

The analysis of the examined discriminating ability of the WordNet Affect 

concepts showed that the presence of most of the concepts, such as “ambiguous” or 

“negative-fear”, indicates, mostly, the presence of reflection and vice-versa. 

However, a subset of 19 concepts out of the 309 was sufficient to detect reflection 

with mostly identical accuracy, rather than using the whole set of 309 concepts. 

The results showed that the proposed approach outperformed the string-based 

approach. This indicated that classification reflection depends on the probability of 

presence/absent of some concepts in WordNet-affect that comes in line with the 

current non-semantic RW detection, and which depends on presence/absent of exact 

words. However, this is unlike non-semantic RW detection, which depends on 

locating words.  
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