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Abstract. The aim of this paper is twofold: firstly, to use ultrasonic sensors to 
detect obstacles and secondly to present a comparison of machine learning and 
deep learning algorithms for pedestrian recognition in an autonomous vehicle. 
A mobility scooter was modified to be fully autonomous using Raspberry Pi 3 
as a controller. Pedestrians were initially simulated by card board boxes and 
further replaced by a pedestrian. A mobility scooter was disassembled and 
connected to Raspberry Pi 3 with ultrasonic sensors and a camera. Two 
computer vision algorithms of histogram of oriented gradients (HOG) 
descriptors and Haar-classifiers were trained and tested for pedestrian 
recognition and compared to deep learning using the single shot detection 
method. The ultrasonic sensors were tested for time delay for obstacle 
avoidance and were found to be reliable at ranges between 100cm and 500cm at 
small angles from the acoustic axis, and at delay periods over two seconds. 
HOG descriptor was found to be a superior algorithm for detecting pedestrians 
compared to Haar-classifier with an accuracy of around 83%, whereas, deep 
learning outperformed both with an accuracy of around 88%. The work 
presented here will enable further tests on the autonomous vehicle to collect 
meaningful data for management of vehicular cloud.  

Keywords: Pedestrian recognition, Obstacle avoidance, Ultrasonic sensors, 
Haar classifier, HOG descriptor, deep learning 

1 Introduction 

According to a recent report from the Department of Transport, from October 2015 to 
September 2016, there were around £183,000 casualties resulting from traffic 
accidents of which 1,800 were fatal and over 25,000 were life changing [1]. The 
vision for the autonomous car revolution is to reduce this figure by at least 76%. Cars 
are undergoing a revolution just like mobile phones did twelve years ago. They are 
increasingly becoming intelligent agents that have the capability to learn from their 
environment and be driven in an autonomous manner. Therefore, to improve road 
safety and traffic congestion, fully or partially autonomous vehicles offer a very 



promising solution. Most modern vehicles are equipped with advanced driver 
assistance systems (ADAS) that assists in driving in a number of ways such as lane 
keeping support, automatic parking, etc. More recently, traffic sign recognition 
systems are becoming an integral part of ADAS.  

Most new vehicles are capable of some form of autonomy e.g. automatic parking, 
lane recognition, etc. Raspberry Pi 3 is a small low cost computer and offers 
opportunity for research towards the roadmap of autonomy. Therefore, the objective 
of this paper is to use Raspberry Pi version 3 as a microcontroller for an autonomous 
vehicle connected with ultrasonic sensors and a camera and discusses the suitability 
of using Raspberry Pi as a controller. The mobility scooter was acquired from 
Betterlife healthcare [19] and adapted such that its controller communicated with the 
Pi which was connected to ultrasonic sensors and a camera.  Ultrasonic sensors are 
cheap and have less power consumption and measures the accurate distance from the 
obstacle and transmits the measured data to the system. The ultrasonic sensor are 
connected to the Raspberry Pi in a way so that obstacles present in the front, back and 
side of the vehicle are being detected. The obstacles in the blind zone are also 
detected by the ultrasonic sensors. This emulates obstacle detection on the road. 
Presence of pedestrians is detected by computer vision using Haar-classifier and HOG 
descriptors and further by deep learning. 

 
Therefore, the contributions of the paper are two-fold: 
 

• To convert a mobility scooter to be fully autonomous with ultrasonic sensors 
and camera to detect an obstacle and find the reliable range. 

• To present comparative analysis between HOG descriptors, Haar-classifiers 
and deep learning for pedestrian recognition. 

The rest of the paper is organised as follows. Section 2 presents related work; 
Section 3 presents the conversion of the mobility scooter to an autonomous vehicle. In 
Section 4, the computer vision and deep learning algorithm implementation on 
Raspberry Pi 3 is presented. Section 5 presents the experiments, results and 
discussions. Section 6 concludes the paper highlighting areas of future work.  

2 Related Work 

An important feature of autonomous driving is recognizing pedestrians and 
obstacles. Computer vision allows autonomous vehicles to process detailed 
information about images that would not be possible with only sensors and has been 
increasingly used to study facial recognition. Two methods in computer vision have 
been widely applied in image recognition as firstly, the Haar feature like classifier [2] 
where a set of positive and negative images are used and Haar-like features are 
applied to each set. Critical analysis of the technique has shown that the background 
complexity plays a role in the quality of the classifier and can be easily corrupted by 
lighting [3]. This method was originally used for facial recognition, the same 
principles can be applied to almost any other object therefore a pedestrian cascade can 
be made using this method and has been presented here. Secondly, the Histogram of 
Oriented Gradients (HOG) descriptor and has been used in [4] for pedestrian 



recognition. The principles behind the HOG descriptor [5] is that it is a type of 
‘feature descriptor’ that has been trained using a Support Vector Machine (SVM), a 
type of supervised machine learning that works on the classification of positive and 
negatives samples of data. The HOG feature descriptor, unlike conventional 
techniques applies a general feature as opposed to a localized one to the image area. 
This is sent to the SVM which would then classify it as a pedestrian. 

The authors in [6] present an efficient hardware architecture based on an improved 
HOG version and linear SVM classifier for pedestrian detection for full high 
definition video with a reduced hardware resource and power consumption. Image 
processing algorithms have been used in [7] to remove unwanted noise from the 
image based sensor. A vision optical flow based vehicle collision warning system is 
proposed in [8] based on computer vision techniques.  

Raspberry Pi is a credit card sized single board low cost computer and provides the 
flexibility of using it as a microcontroller and is increasingly used in academic 
research, e.g. in [7] authors present the implementation of image processing 
operations on Raspberry Pi. In [9] ultrasonic sensors are used for object detection 
from the moving vehicle. In [10] authors have combined Haar detection with laser 
distance to recognize pedestrians. The work presented in [11] concludes that 
codebook representation of Haar and HoG features outperform detection based on 
only HoG and Haar. The codebook is generated from a set of features given by the 
Bag of Words [12] model. More recently, deep learning based on deep convolutional 
neural networks has been used for image classification of road signs [13] with 97% 
accuracy and for pedestrian recognition [14]. The work presented in [15] uses 
detection based on Haar features and classification based on HOG features with 
support vector machine. Pedestrian recognition using OpenCV on Raspberry Pi was 
implemented in [16]. In [17] authors have used Raspberry Pi for detecting road traffic 
signs using image processing techniques, whereas, in [18] a combination of 
MATLAB with Raspberry Pi is used for face detection using Haar classifier. 

There has been an increasing interest from the research community in image 
classification for pedestrian recognition. Most modern vehicles now have some form 
autonomous features, confidence level in obstacle detection and pedestrian 
recognition has to increase towards the roadmap of fully autonomous vehicles. In 
addition, utilizing the computational capability of Raspberry Pi in research is still in 
its early stages.  The novelty of our work from the work presented in literature is that 
we are implementing our pedestrian recognition algorithms on Raspberry Pi 3, 
comparing them and testing its suitability from a research point of view.  

3 Autonomous Vehicle using Raspberry Pi 

The vehicle used for this project is a Capricorn Electric Wheelchair from Betterlife 
Healthcare [19] as shown in Fig. 1(a). It is a small, four wheeled vehicle with caster 
type front wheels, two fixed driven rear wheels and powered by two 12V batteries. It 
is driven by two separate electric motors, which are connected directly to each of the 
rear wheels. It has a maximum speed of 4mph, a maximum incline of 6° and a turning 
circle of radius 475mm. The maximum range of the wheelchair is 9.5km. The tyres 



are solid and have a larger radius than many other models of its type, helping to 
improve performance on rough or uneven surfaces. 

This section will present the conversion of the mobility scooter into an autonomous 
vehicle controlled by Raspberry Pi 3. It will further describe the connection of 
ultrasonic sensors and camera.  

 
3.1 Connecting the Raspberry Pi 3 

The autonomous vehicle was built from a mobility scooter as shown in Fig. 1(a). The 
scooter had an inbuilt microcontroller shown in Fig. 1(b) which was used as a 
communicative tool between the Raspberry Pi version 3 and the vehicle’s motors. The 
directional actions of the joystick voltage levels for each pin are shown in Fig. 1(c) 
(shown in the red circle in Fig. 1(b)) and are presented in Table 1. 

 

               
 
 
 
 
                   Table 1. Voltage directional values. 
Direction Voltage applied (volts) Pin colour 
Forward 3.97 Green/Grey 
Reverse 1.13 Green/Grey 
Right 3.97 Purple/Yellow 
Left 1.13 Purple/Yellow 
Static/Stop 2.5 All 
Turn ON 2.5 Black 

 
In order to make space for a platform on which the system can be installed, the 

chair was removed, as was the housing surrounding the frame of the vehicle. The 
central column between the chair and the frame was also removed, allowing the new 
chassis to be placed over the frame. The new chassis is shown in Fig. 2(a), whereas, 
the block diagram is presented in Fig. 2(b) showing the connections of the Raspberry 
Pi with the sensors and the vehicle’s controller. The chassis shown in Fig. 2(a) has 

Fig. 1(a). Original mobility 
scooter       

Fig. 1(b). Autonomous 
vehicle microcontroller 

Fig. 1(c). Autonomous 
vehicle pins 



enough space for the control panel – rewired to connect the Raspberry Pi directly to 
the joystick input, the Pi itself, and two breadboards with which the circuitry could be 
modified during the built and testing process. The chassis is designed so additional 
components and sensors can be added. Two digital to analogue converters were 
installed, controlling both forwards/backwards motion and the yaw of the vehicle, 
respectively. The front wheels were fixed in place by the removal of the bearings 
contained in the shafts. This allowed the connecting bolts to be tightened fully and 
restricting the motion of the vehicle to forwards and backwards. 

                                           
Fig. 2(a). The 
autonomous vehicle 
modified from the 
mobility scooter 

 
            Fig. 2(b). Block diagram of the autonomous vehicle 
 

For the vehicle to be autonomous it would have to be controlled by the General-
Purpose Input Output (GPIO) pins on the Pi which would send signals emulating the 
joystick. The GPIO pins work with digital signals therefore a Digital to Analogue 
Converter (DAC) (Fig. 2(b)) would be required to alter the signal type. An Adafruit 
MCP4725 DAC [20] was used and functioned well with the Raspberry Pi. 

To use the DAC effectively the Inter-Integrated Circuit (I2C) bus on the Raspberry 
Pi had to be operated. This is an interface that utilises data exchange between 
components and microcontrollers, there are many ‘slave’ devices (the DAC/s) 
controlled by a ‘master’ device (the Raspberry Pi). The Pi’s GPIO pins can only 
output 5V or 3.3V and the DAC is a 12-bit controller which means it ranges in values 
from 0 to 4096, Equation 1 shows the formula used, 

𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �
𝑉𝑉𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣𝑑𝑑
𝑉𝑉𝑚𝑚𝑣𝑣𝑚𝑚

�𝑋𝑋212      (1) 

This formula can then be applied directly to the DAC through a Python script. The 
DAC contains two inputs, Vdd and A0 allowing two different I2C bus addresses to be 
used on the Raspberry Pi at once which could then be referred to as parameters in a 
function as 0x62 and 0x63 for forwards/backwards and left/right, respectively.  

 
3.2 Connecting Ultrasonic Sensors to the Raspberry Pi 3 

Ultrasonic sensors provide basic object-detection autonomy to the vehicle. The HC-
SR04 sensor was used which could work with the Pi’s GPIO pins through jumper 
wires. The principle of the HC-SR04 is that there are four pins: power, trigger, echo, 
and ground. The power and ground were connected directly to the Pi’s voltage and 
ground pins, the trigger acts as a ‘starting gun’ for the sensor signifying when to 
produce a soundwave and the echo receives the soundwave. While these are binary 



input/output functions they can be used on Python to determine the distance of the 
closest object. The programming logic is shown in Flowchart in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Ultrasonic sensor function flowchart 
 
This ultrasonic object detection function can be imported into the DAC script and 

tell the Pi to fire a STOP (2.5V) or ‘Reverse’ (1.13V) command to the vehicle through 
the DAC if the sensor function detects an object that is below a predefined threshold 
(e.g. < 2m) as shown in the flowchart in Fig. 4. 



The script was modified for multiple sensors to incorporate multiple echo 
variables, however, a single trigger can be used to activate them all simultaneously 
and add each echo onto an array. Python has clocking functions which enable a user 
to determine the length of time between two points in a function, this is important to 
determine the latency of sensors and reaction time of the autonomous vehicle. A 
voltage divider was used to protect the Pi’s GPIO pins from excessive signals 
generated by the ultrasonic sensors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Object detection function flowchart 
 

 To ensure the vehicle was mobile, a portable battery producing 5V was powering 
the Pi and a laser-cut housing was designed to hold the system in place and absorb 
forces from potential collisions (Fig. 2(b)). It is recognised that this methodology of 
using an autonomous vehicle is limited in that it is not the size of an autonomous 
commercial vehicle however the value comes from testing the principles. 

In order to connect the ultrasonic sensors to the Raspberry Pi, the circuit was 
adjusted so that all of the triggers were controlled by the same i/o pin on the Pi, 
keeping the amount of i/o pins used to a minimum of x+1, where x is the number of 
sensors used in the design. Each of the sensors outputs the result to an array which is 
continually updated, and it is this array which can be communicated to an 
infrastructure hub. 



4 Computer Vision and Deep Learning on Raspberry Pi  

Computer Vision on the Raspberry Pi was run by importing the OpenCV (Open 
Source Computer Vision) [21] module through a stream. Open-CV is a library by 
Intel that consists of functions used for computer vision. The digital image is 
processed pixel by pixel, applying convolution and smoothing through a local 
operator, which operates threshold on the histogram. Python programming language 
has been used in this paper.  

A pre-trained pedestrian Haar-classifier [2] was used where a cascade function is 
trained from a number of positive and negative images.  This is based on the detection 
stage that generates the rectangular regions which may contain pedestrians. These 
regions of interest (ROI) are then classified and confirms the presence of a pedestrian 
or discard the ROI if the classification is negative. The system output consists of 
bounding boxes describing size and position of the pedestrians in each frame. 



Computer Vision was run on the Raspberry Pi by importing the OpenCV module 
and run through a stream. A pre-trained pedestrian Haar-classifier was used that 
contains 19 Stages of Haar-training [21]. This included 5000 positive images and 
3000 negative images [22]. 

 
Fig. 5. Still images comparison flowchart 

The Haar-classification uses an integral method that takes each rectangle as the 
sum of pixels and reduces them to an array of four values massively decreasing the 
time for a detection to take place. The Adaboost (Adaptive Boosting) machine 
learning algorithm [23] is used to sum all weak classifiers into a final strong classifier 
which is then applied to an image.The video stream from the Pi camera was parsed 
through this cascade and ROI returned a 4-index array which was used to determine 
the presence of a pedestrian. The Pi’s Frames Per Second (FPS) on the camera was 
low even without running an algorithm for each frame, therefore a method called 



threading was implemented to increase the FPS allowing for faster reaction times 
from the Pi. Threading (or Multi-threading) is the method of having processes run 
parallel independently with one another but transferring data, therefore instead of one 
main thread, there are multiple threads which while require more computational 
resources allow an increase in process quality, such as passing frames per second. The 
programming logic to execute the computer vision algorithms for still images and 
frames from a video stream are shown in Fig. 5 and 6, respectively. 

 
Fig. 6. Raspberry Pi 3 video comparison flowchart 

Deep learning was applied with single shot detection method [21] based on a single 
neural network. The method [21] discretises the output space of bounding boxes into 
a set of default boxes over different aspect ratios and scales per feature map location. 
The scores are generated by the network at prediction time for the presence of each 
object category in each default box and produces adjustments to the box to better 
match the object shape. In addition, predictions from multiple feature maps are 
combined by the network with different resolutions to naturally handle objects of 



various sizes. The deep learning algorithm was trained with COCO and VOCO712 
datasets [24] with a total of 82,943 images. 

5 Experiments, Results and Discussions 

The experiments comprised of two parts. The first part tests the hardware and 
software of the autonomous vehicle. This will include the evaluation of the vehicle’s 
stopping properties on the Raspberry Pi and sensor connections along with the Python 
script to recognise obstacles and react accordingly. This has been tested by laying out 
an obstacle for the autonomous vehicle and sending it from two arbitrary points while 
avoiding solid objects which would translate in the real world as parked cars or 
pedestrians. The metrics used as results of this test are stopping distance, speed of 
recognition, accuracy, sensor latency and sensor clock of the ultrasonic sensors.  

The second part of the investigation examines the quality of computer vision 
methods used for recognising pedestrians, the Haar Classifier, HOG Descriptor and 
deep learning, and their detection rates recorded. The computer vision methods will 
then be transferred onto the Raspberry Pi 3 and test distances will be run to measure 
the quality of the frames per second (FPS) on the Pi running the algorithms. 
Sub-sections 5.1, 5.2 and 5.3 presents the ultrasonic sensor testing, Section 5.4 
presents pedestrian recognition testing using Haar-classifier, HOG descriptors and 
deep learning on the vehicle, whereas, discussion of results is presented in 
Section 5.5. 
 
5.1 Sensor Testing for Stopping Distance 

The first test was performed with two different scenarios – a cardboard box and 
‘real’ pedestrian. The dimensions of the cardboard box were 29cmx21cmx8cm. The 
vehicle is programmed to run at five different speeds as 0.2, 1.6, 2.4, 3.2 and 4 mph 
(maximum speed) and was tested for these speeds. 

The two sets of data retrieved from the first test are shown in Fig. 7 and 8 at 
different speeds. Fig. 7 shows the results with simulated pedestrians (cardboard 
boxes), whereas, in Fig. 8, the cardboard boxes were replaced by a pedestrian. The 
black trend line signifies the minimum stopping distance showing that 7 tests resulted 
in a collision. These collisions occurred at higher speeds and lower ultrasonic sensor 
distances however for distances above 150cm all speeds have a successful object-
detection result and no collisions were recorded. 

To simulate real-world environments more effectively the cardboard box was 
replaced with a pedestrian. The results from the box and the pedestrian were 
compared. Analysis of results show that the data points remain in a similar position as 
shown in Fig. 7; however, as speeds increase the performance marginally decreased, 
specifically, at 200cm in the box test where it passed although results show a collision 
in the pedestrian test.  

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
  
 
 

Fig. 7. Simulated pedestrians (rectangular boxes) stopping distances at different speeds of 
the autonomous vehicle 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8. Pedestrian stopping distances at different speeds of the autonomous vehicle 
 

An additional test was passed on the final distance (300cm) for each speed, where 
the pedestrian stood front facing with their legs apart in contrast to a side facing pose 
(to simulate crossing the street) which demonstrated to no difference.  

It can be concluded from Fig. 7 and 8 that the ultrasonic sensors combined in the 
autonomous vehicle working at practical speeds would work sufficiently at 100cm but 
for optimum use, 250cm would be the ideal distance range.  
 
5.2 Sensor Latency Testing 

Sensor latency directly affects the response time of the whole system and therefore 
was chosen as a parameter for testing. Sensor latency was tested according to the 
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flowchart of Fig. 9 where the program was allowed to run with the minimum 
allowable distance (MAD) set so that the forward sensor would not cause the program 
to terminate early. Initially, the test was run ‘as-is’ without changing any of the code. 
This was in order to obtain a baseline cycle time for comparison. Once the program 
had been running for approximately 3 minutes, the program was stopped by placing 
an obstacle in front of the forward sensor below the MAD. Initially, the main control 
panel attached to the motors was kept off for the duration of the experiment. This is 
because the Pi output signals via the input/output pins regardless of whether the board 
on the other end of the circuit is powered, this was not considered to be a potential 
factor in how long the sensors take to output data. 

To set up the test, the vehicle was placed in the middle of the testing area, with 
obstacles placed at known distances from each of the four sensors locations as shown 
in Table 2. Table 2 describes the details of the tests conducted at four distances 
respective to the four ultrasonic sensors connected in four locations as Forward, 
Starboard, Aft and Port. This was not only to establish whether the cycle time had an 
effect on the accuracy of the ultrasonic sensors, but also to allow further analysis on 
the accuracy of the sensors at a variety of ranges. 

Table 2. Obstacle distances. 

Sensor location Measured distances (cm) 
Tests 1.1-1.3  Tests 2.1-2.2 Tests 3.1-3.5 

Forward 120 200 350 
Starboard 80 40 10 
Aft 100 150 150 
Port 50 30 20 

 
The baseline cycle time was 2.58s. The cycle time was reduced for forward 

statement in the code. The default setting was at 0.5s. For each test it was decreased to 
0.1s and then increased to 1s in order to test see the effect of changing known factors 
in the code. 

Further, the cycle time was reduced for all of the four sensors as calling all four 
sensors adds a delay to the program due to the sleep time of 0.5s which allows the 
sensors to settle and receive the echo from any detected obstacle. This is not desirable 
from a design point of view since it introduces an unnecessary source of inconsistency 
into the readable results, especially if the sensors have an inherent inconsistency cycle 
to cycle. Fig. 10 shows the average cycle time for each test. 



 
 

Fig. 9. Flowchart for sensor latency testing 
 

                         
 

Fig. 10. Cycle time by test number 
 
In Fig. 10 the red, blue and green bars show the cycle time for a series of different 

distances, none of which seem to have an appreciable effect on the cycle time. Each 
distance runs the forward statement for 0.5s, 0.1s and 1s, respectively from left to 
right. Tests 1.1-1.3, 2.1-2.2 and 3.1-3.5 were taken at the same distances as shown in 
Table 2. This has made a large difference to the cycle time of the program and would 
improve the response time of the program, thus improving the stopping distance.  
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Fig. 11. Program clock time verses sensor distance 
 

5.3 Sensor Clock Testing 

The test measuring the clock time of the Python program is shown in Fig. 11 and 
shows the time taken from the sensor detecting that the vehicle is too close (under the 
distance threshold) to a complete stop function from the Python script at varying 
vehicle speeds. Immediate analysis of the data shows that there are two outliers 
(Speed 3 at 50cm and Speed 1 at 200cm), possible causes for these anomalies are 
sensor failures due to inconsistent connections which is the most likely reason. Trend 
lines show that the speed of the vehicle and sensor distance have negligible effects on 
the speed of the program, they are all generally inline between 2.05 and 2.15 seconds.  

 Five data points appear to be above the ideal trend line indicating that the system 
is stopping at a sensor value greater than the threshold suggesting a sensor error. This 
could potentially have been caused by overlapping soundwaves sent from previous 
triggers. 

 
5.4 Pedestrian Recognition 

The Haar-classifier and HOG descriptor were compared against one another initially 
to determine the more suitable computer vision algorithm for pedestrian detection. All 
images were converted to 300 pixels wide (with aspect ratios remaining constant) to 
ensure integrity of results. An example of the images with the ROI is shown in Fig. 12 
(left, right and bottom). For the experimental results, confirmed bounding boxes 
would only be a success if they identified pedestrians, therefore an identification of a 
cyclist or a dog would be counted as a false positive (as they should have their own 
classifiers/descriptors). These methods were compared against further twelve images 
taken from a number of webpages and can be found in [25]. The results from Haar-
classifier and HOG descriptors were then compared to deep learning on the same 
twelve images using the Single Shot Detection method [26] described earlier. 
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Fig. 12. Computer vision algorithm for Haar-classifier (left), HOG descriptor (right) and Deep 
learning (bottom) 

 
Table 3 shows the numerical results for the comparisons of the two computer vision 

methods against deep learning. The bounding boxes refer to the rectangular boxes 
indicating the ROIs (Fig. 12 – blue for Haar (left), green for HOG (right) and red for 
deep learning (bottom)). The false positives refer to any bounding box that is outside 
a pedestrian or repeating an ROI that has already been identified. The detection 
failures indicate that there was no bounding box (or not sufficient to qualify as an 
ROI). The results show that out of 41 pedestrians, the Haar correctly identified 22 
pedestrians giving it an accuracy of 53.66%, HOG achieved a success rate of 82.93% 
and deep learning outperformed both by achieving a success rate of around 88%. 

Both Haar and HOG had high amounts of false positives and struggled when given 
an image of multiple pedestrians scattered across the image. However, comparison 2 
in Table 3 shows that the deep learning algorithm recognised pedestrians that were 
not recognised by the HOG and Haar as they were deemed unnecessary because they 
were too far away. Similarly, detection failures in comparison 11 and 12 are due to 
the algorithm recognising multiple pedestrians together as a single pedestrian. To 
ensure the same pass parameters were taken for Deep Learning as well as HOG and 
Haar, these were taken as a detection failure even though practically the system would 
avoid those pedestrians.  



                                                                                                           
The HOG and Haar-Classifier were further compared on the Raspberry Pi 3. The Pi 

camera was used and results from the FPS were taken and displayed in Table 4. 

Table 4. FPS comparison. 

 Haar (FPS) HOG (FPS) 
Comparison 1 3.974 0.808 
Comparison 2 3.623 0.780 
Comparison 3 3.776 0.815 
Comparison 4 3.580 0.783 
Comparison 5 3.603 0.792 
Average FPS 3.711 0.796 

 
Analysis of the results shows that the Haar-Classifier performs significantly better 

than the HOG Descriptor for maximising the FPS. This is likely due to the quality of 
HOG requiring more computational resources thus slowing down the frames being 
passed through the Pi per second. The test also showed repeated false positives with 
the Haar-Classifier which could be caused by lighting while the HOG descriptor 
could be fooled (Comparison (HOG) 4) if the pedestrian’s clothing was of similar 

Table 3. Comparison of Haar-classifier, HOG descriptor and Deep learning  
 
 Bounding Boxes Pedestrians False positives Detection Failures    

Com
-parison 

 

Haar HOG Deep 
learning 

Haar/HOG
/Deep 

learning 

Haar HOG Deep 
learning 

Haar HOG Deep 
learning 

   

1 4 4 4 4 0 0 0 0 0 0    
2 3 3 13 1 2 3 13 0 1 0    
3 3 6 2 2 2 4 0 1 0 0    
4 4 3 2 1 3 2 2 0 0 0    
5 1 2 2 1 0 1 2 0 0 0    
6 4 5 3 4 1 3 3 1 1 1    
7 5 4 4 4 3 1 0 2 1 0    
8 2 1 1 1 1 0 0 0 0 0    
9 1 4 2 2 0 1 0 1 0 0    
10 6 2 4 4 2 0 0 0 0 0    
11 2 6 6 8 0 0 1 6 1 2    
12 2 3 9 9 1 0 2 8 3 2    
Total    41 30 30 23 19 7 5    
Succ

-ess     
Rate 

       53.66
% 

82.93
% 

87.8
% 

   

 



colour to the background. All images on the Raspberry Pi comparison in Table 4 can 
be found in [27]. 

The implementation of pedestrian recognition via computer vision and deep 
learning demonstrates the effectiveness that the different machine learning algorithms 
have for autonomous cars. Computer Vision and deep learning however, can produce 
an accurate description of an object but it is a relatively new technology that has only 
recently had machine learning methods applied to it.  The results had shown that both 
methods of computer vision worked poorly on images of dispersed pedestrians, 
however, was much improved with deep learning.  

 
5.5 Discussion of Results 

The stopping distance results have shown the need for a factor of safety to protect 
against the inconsistency of the ultrasonic sensors and the clock time results support 
this. The speed of the software and hardware play an important role in the stopping 
time. The sensor accuracy results have shown that while the ultrasonic sensors in 
most test runs avoided an obstacle, they cannot be used in this form in real systems. 
For example, the use of breadboard and jumper wires was adding to the delay for 
stopping the vehicle.  Although ultrasonic sensors are simple to use and can give 
results sufficient enough for the system to avoid collisions they are unable to 
differentiate between objects or give detailed data back to the Raspberry Pi for 
analysis. Similarly, Raspberry Pi is running Raspbian which is not optimised for real 
world performance.  

Our results agree with current studies [28] where HOG outperforms Haar-
Classifiers, however, other peer-reviewed comparisons have shown a significantly 
higher number of false detections in the Haar-Classifier [29] compared to our study, 
however, a larger dataset would have to be used to confirm this difference. Results 5 
from Table 3 demonstrate the Haar-Classifier’s limits with lighting thus agreeing with 
[30] analysis although their study was performed on faces compared to ours where we 
are detecting pedestrians the principles behind the constraints are still valid. 

The pedestrian recognition using computer vision and deep learning demonstrates 
the effectiveness and potential that machine and deep learning algorithms have for 
autonomous cars. The machine learning results have shown that both methods worked 
less effectively on images of dispersed pedestrians, however, deep learning 
outperformed machine learning.  

6 Conclusions 

This paper has presented results from converting a mobility vehicle to be fully 
autonomous with computer vision and deep learning implemented for pedestrian 
recognition. We further present results on ultrasonic sensors for obstacle detection. 
Our results show that at short distances ultrasonic sensor shows a delay, however, for 
distances above 100cm the sensors react very well.  

The comparison between computer vision algorithms of Haar-classifier and HOG 
descriptor with deep learning show that deep learning outperform both algorithms, 
whereas, HOG descriptor gave better results than Haar-classifier. We conclude that 



Raspberry Pi 3 is well suited as a microcontroller for research purposes, however, a 
more bespoke device would be recommended for ‘real’ vehicles.  

The construction and evaluation of the autonomous vehicle shows that the 
Raspberry Pi functions as a possible microcontroller option for an autonomous system 
[31]. The speed is the main concern with the Raspberry Pi as it is running Raspbian 
which is not optimised for real world performance. However, Raspberry Pi as a 
microcontroller from our results has shown the benefits of autotomizing a system, the 
feasibility of use allows access to data which can be extrapolated to deduce problems 
within the system. 

Future work will include increasing the training images on all algorithms to 
improve their performance, getting test data from the vehicle for vehicular cloud data 
management.  
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