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Abstract. The estimation of the motor torque and friction parameters
are crucial for implementing an efficient low level joint torque control.
In a set of coupled joints, the actuators torques are mapped to the out-
put joint torques through a coupling matrix, such that the motor torque
and friction parameters appear entangled from the point of view of the
joints. As a result, their identification is problematic when using the same
methodology as for single joints. This paper proposes an identification
method with an improved accuracy with respect to classical closed loop
methods on coupled joints. The method stands out through the following
key points: it is a direct open loop identification; it addresses separately
each motor in the coupling; it accounts for the static friction in the ac-
tuation elements. The identified parameters should significantly improve
the contribution of the feed-forward terms in the low level control of
coupled joints with static friction.

Keywords: rigid body dynamics, friction models, least squares opti-
mization, electrical motors

1 INTRODUCTION

Some tasks require highly dynamic motions like running, jumping or even walk-
ing on uneven terrains, and for that, the robot has to account for the dynamic
properties of the low level joint actuation. In typical torque control architec-
tures composed by two nested control loops, this concern lies within the inner,
low level control loop, which guaranties that the desired torque computed by the
outer loop is generated at the joint level as expected within a delay that doesn’t
compromise the stability of the controller.

The feed-forward control allows to anticipate the changes in the controller
setpoint, which in the case of low level joint torque control, would be the desired
joint output torque. At that point, the only errors left to be corrected by the
feedback controller are the model errors, the sensors noise and the external
disturbancies applied to the system. This improves the stability of the controlled
system, and the ability to use a wider range of gains in the feedback control
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(a) (b)

Fig. 1: CAD view of the iCub right arm with the three coupled shoulder joints
(a) and CAD view of the shoudler joints actuated by the differential drive and
three motors. Source: [1, Fig.4 & 5]

depending on the desired stiffness of the joints. This type of control design is
one among other model based control designs which benefit from the accurate
identification of the joint low level actuation subsystem.

Commonly, identifying the feed-forward parameters goes through the break-
down of the overall transfer function relating the motor input parameter to the
output torques, by modeling the sub-elements of the joint actuation system as
well as their interaction. Throughout this paper, we will consider electrical joint
actuation subsystems typically powered by a Direct Current (DC) motor, or a
higher performance brush-less motor. It is actually the case for most of the hu-
manoid robots 40cm tall or above, apart from those equipped with hydraulic
actuators.

DC motors, or brush-less motors are typically driven by current or voltage
PWM—Pulse Width Modulation—duty cycle. The generated torque is then mul-
tiplied in a reduction drive (gearbox or harmonic drive), then transmitted to the
load on the output shaft, directly or through a coupling system, for instance as
the one used on the humanoid robot iCub’s torso or shoulders depicted in Figure
1. Some torque is wasted in the process, through friction in each of the transmis-
sion components. The output torque on the shaft is what we define as the joint
torque. The identification process then consists in quantifying the parameters of
the PWM to joint torque model.

A commonly used simple model defines the generated motor torque as a
linear function of the motor input voltage duty cycle, and an overall friction
term as an affine function of the joint velocity.

A large range of models have been employed to describe the friction dynamics,
from static models like the Coulomb, the viscous and Stribeck models, to more
complex ones, like the switching models (seven parameters model, Dahl model),
or the most advanced dynamic models (LuGre model) accounting also for stick-
slip phases transitions and other properties inherent to the interaction of surfaces
in contact [2].
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More recent works proposed improvements on joint torque and external forces
estimation, while the joints were not moving [3], or were moving at very low
velocities [4]. The presented methods accounted for the significant torque dis-
turbances due to static, Coulomb and viscous friction, modeling them either as
a deterministic affine function [5], either as a uniformly distributed noise, with a
range (the Coulomb ”friction band”) dependent on the velocity, combined to a
Gaussian noise of zero mean, with a variance increasing with joint velocity [4]. In
both cases, the respective parameters were identified manually and few details
were given on the procedure. In [6], a more thorough spectral-based identifi-
cation is performed, accounting for a position dependent torque variations due
to multiple parts in the transmission contributing to the overall friction. This
paper addresses the identification of the static and dynamic friction parameters
on coupled joints, using a deterministic model, but avoids the complexity arising
from the combination of the friction effects in the coupled motors and gearboxes.
While addressing each motor transmission at a time, the paper focuses on the
automatic identification the static friction, without any manual tuning as seen in
previous works. The paper is organized as follows: we first present an overview
of the joint actuation architecture implemented on the major joints of iCub
(the platform we used for performing our identification tests); after describing
the model of each component composing one typical joint actuation sub-system,
we build the model of the full transmission chain and pose the Newton-Euler
equations describing its dynamics; based on those equations, we define the iden-
tification framework and methodology; we then address the case of the coupled
joints and present the experiment results.

2 BACKGROUND

2.1 Notation

The notation used for describing the models and the algorithms in this paper is
summarized as follows:

bτm,l Motor torque applied on point B of link l;

bτf,l Generalized friction torque applied on point B of link l;

bτc,l Coulomb friction torque applied on point B of link l;

bτv,l Viscous friction torque applied on point B of link l;
Fn Force normal to a contact surface;
µ, σ Respectively Coulomb and viscous friction coefficients;
sign(ω) Sign of the angular velocity;
τJ Output joint torque (applied to the joint child link);
In Identity matrix of dimension n.

2.2 Friction Models

While modeling the multiple components in the joint transmission chain, we will
often come across friction torques that can be found in the bearings, reduction
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(a) (b)

Fig. 2: Representation of the friction force Ff on an object M moving relative to
a flat surface at velocity v (a), or the friction torque τf on an object rotating
about a rotary joint axis at velocity ω (b). Fn is the force normal to rotation
axis.

drives, coupling systems or result from electromotive forces. Before addressing
the friction modeling specific to each component, we present in this section the
general concepts and typical models. There is a fair list of candidate friction
models: The most simple and common are the static ones (constant parameters
and structure) and are not defined for a zero relative velocity between the two
surfaces in contact; the ”switching” models (seven parameters model, Dahl model
described in [2]), and the most advanced dynamic models (LuGre model) switch
between two distinct ”stick” and ”slip” states applying specific parameters for
each of them; the dynamic models account for the transition between stick and
slip phases in a continuous function. We list and describe below the two most
common.

The Static/Coulomb/Viscous friction model We represent in Figure 2 a
moving object M , either sliding over a flat surface or revolving about a rotary
joint (Figure 2b). In the rotary joint case, we can see the load force Fn on the
joint rotation axis (Fn is normal to the axis), the rotation velocity ω and the
total friction torque τf due to the rotary contact.

The friction torque can be written as a composition of three models: the
Coulomb, the Viscous and the Static friction, as defined in (2.2),

τf = τc + τv + τs (1)

= −µFn sign(ω)− σω − Ts(ω), (2)

where the Coulomb friction τc is linear with respect to the load force Fn on
the rotation axis, and the viscous friction τv is a linear function of the axis
angular velocity ω. µ and σ are respectively the Coulomb and viscous friction
coefficients and are positive, such that the friction is always opposed to ω . The
static friction τs, initially expressed here as a general function of ω, Ts(ω), is
the torque required to set the axis into motion starting from a null velocity,
and typically is higher than the Coulomb and Viscous added components close
to a null velocity. The first simple model would consider the static friction as
a constant, usually higher than the Coulomb friction, as described in [2] and
illustrated in Figure 3(a). This approximation creates a discontinuity when the
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Fig. 3: Models of friction force versus angular velocity. (left) Static, Coulomb and
viscous friction model. (right) Negative viscous, Coulomb and viscous friction
model (Stribeck). Source: [2].

system velocity crosses zero, and thus can cause numerical issues and torque
instabilities.

The Stribeck/Coulomb/Viscous friction model In this approximation the
transition from static to Coulomb+viscous friction is progressive: the friction
first decreases with increasing velocity from rest state, before increasing again
following the Viscous friction model. This is called the Stribeck effect, as shown
in Figure 3(b). In some cases, the initial friction drop can be significant, and the
overall friction appears not to have the Coulomb component.

Remark: The previous models are all static, i.e. the model parameters are the
same for all working regimes (joint velocities). They are unable to properly
describe what happens at zero velocity (stick phase) or in the transition from
stick to slip phase. Considering the joints of a humanoid robot, they operate
near zero velocity or cross zero velocity quite often. In this case a dynamic or
switching model is preferred. Some models, more complex, deal with hysteresis
and have a local memory of previous slip/stick states, but this is out of the scope
of this thesis, and will be addressed in a future work.

2.3 The Brushless Motor Control and Modeling

Motor Control and PWM to Torque Transfer Function The BrushLess DC mo-
tor (BLDC) is a ”synchronous” motor: the rotor is composed of a hub holding
permanent magnets arranged in alternating pole pairs; the stator generates a
magnetic field that can be rotated through electronic commutation or modula-
tion of the current in the stator windings [7]. The motor driver uses the feedback
on rotor position for aligning the stator field always along the rotor quadrature
axis, which results in maximum constant torque for a given PWM setpoint, and
independent from the rotor angular position. This can be achieved through Si-
nusoidal Commutation Control or Field Oriented Control if the loop is closed
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on the Park Transform of the measured phase currents [8] [9]. In this case, the
motor torque , the amplitude of the rotating magnetic field, the common ampli-
tude of the sinusoidal currents on all three phases of the stator and the motor
input parameter PWM are all linearly dependent.

The rotation of the magnetic field generated by the rotor induces an elec-
tromotive force (Faraday’s law) in the stator windings, Ev , also called Back
ElectroMotive Force (Back EMF), and therefore an induced current. The Back
EMF is proportional to fixed parameters like the number of winding turns per
phase N , the rotor radius r, length l and magnet flux density B, and to a variable
parameter which is the rotor velocity θ̇ [7]:

Ev = 2NlrBθ̇ = kbemf,v θ̇ (3)

We can then write:

τpwm,m = kpwm,τ PWM−kbemf,τ θ̇ + τf,m (4)

Where PWM is the motor driver input parameter, θ̇ the rotor angular velocity,
kpwm,τ is the PWM to torque coefficient and kbemf,τ is the velocity to Back EMF
torque coefficient. Here we added a residual generalized friction term τf,m which
could be the friction on the axis bearings. We can assume τf,m to be negligible
compared to the Back EMF counter torque which can be considered as a viscous
friction, since it acts as a counter torque proportional to the rotor velocity.

2.4 Velocity, Torque and Power Conversions by Reduction or
Coupling Drives

Harmonic Drives Close after the motor in the actuation chain, the harmonic
drive is the next component to transform the transmission dynamics variables,
namely the angular velocity, the torque and the rotor apparent inertia in the
sub-system [motor]-[harmonic drive]. We describe in 4 a spinning mass m with
the respective rotational inertia mḣm and angular velocity mω both expressed on
the point M of the shaft. We can apply this model to an humanoid robot main
joint motor group, where G is the harmonic drive and m is the lumped mass
of the fast rotating parts—the rotor and the harmonic drive wave generator.
We observe a torque mτ across the point M of the shaft. The harmonic drive
transforms the three dynamics quantities mḣm, mω and mτ depending on the
step-down ratio ρ, such that from its output point of view, i.e. on point G, the
mass m is seen rotating at an angular velocity gω = ρ−1 mω, the output torque is

gτ = ρ mτ , and the rotational inertia is gḣm = ρ2 mḣm. We give a more detailed
explanation on these conversions further on.

Axiom 1.1 A reduction drive doesn’t inject power into a mechanical system: it
is conservative with respect to the power of the torques applied to input shaft,
except for the power loss due to friction and the potential power stored in the
elastic deformation of the drive components. The same principle is applicable to
cable driven coupling mechanisms like the differential drives on humanoid robot.
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Fig. 4: Reduction drive dynamics conversions.

Note 1. In the harmonic drive, the friction lies in the contact between the wave-
generator and the flex-spline, and in the contact between the flex-spline and the
circular spline gear teeth.

Conversion of angular velocity and torque: We write the identity between the
input power and the output power. We consider the effect of the generalized
friction in the reduction drive as a negative power added to the input:

Win +Wfriction = Wout (5)

⇔ mτ
mω + mτf,g

mω = gτ
gω, (6)

and in view of the unaltered input to output velocity ratio, we get:

gω = ρ−1 mω ⇒ gτ = ρ mτ + ρ mτf,g (7)

⇔ gτ = ρ mτ + gτf,g (8)

⇔ gτ =

(
ρ+

gτf,g

mτ

)
mτ (9)

Where mτf,g is the generalized friction in the reduction drive expressed on M
and gτf,g the generalized friction expressed on G. We can either consider that

the resulting input to output torque ratio is changed from ρ to
(
ρ+ gτf,g

mτ

)
< ρ

or consider an ideal friction-less reduction drive with torque ratio ρ in series with
a friction brake applying gτf,g.

Conversion of angular momenta: Since the derivative of an angular momentum
is equivalent to a torque, it is converted by the gearbox ratio the same way, as
follows:

gḣm = ρ mḣm = ρ (mIm
mω̇)

⇔ gIm
gω̇ = ρ (mIm ρ gω̇)

⇔ gIm = ρ2 mIm (10)

Which makes gIm be the apparent inertia of the spinning mass m. We then
realize that in the case of a motor group on a humanoid robot, even when
the standalone inertia of the rotor is negligible, it might not be the case of
its apparent inertia if the actuation chain is using a high ratio gearbox and
performing fast rotations: gIm is then four orders of magnitude greater than

mIm.
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Static friction and stiffness in Harmonic drives In the study [10], the authors
characterized the friction and stiffness in harmonic drives by running load tests
on the drives, and observe that the static friction, referred to in the article as
“dry friction torque”, depended on the applied load and on the angular position
of the rotating shaft. This dependency was highlighted by the hysteresis in the
experimental results. They defined multiple hypothetical mechanical models of
the harmonic drive in order to match the experimental observations. The mod-
els were always composed by three dynamic parameters: the friction between
the gear teeth; the stiffness of the flexspline; and the play in the gears. These
parameters were then combined in different, sequential arrangements: friction
(F) - play (P) - Stiffness (S); F-S-P; S-P-F; and so on. They concluded verifying
their initial observations and retained the model best matching the experimental
results: stiffness-friction-play, with an almost null play and a friction torque of
2.6N m.

Differential Cable Drives

Power, velocity and torque conversion: Differential drives, when used, are com-
monly placed at the front end of a transmission chain for routing and coupling
the transmission power from a set of motors to a set of joints. They can be
found on a humanoid robot for coupling the waist yaw roll pitch joints to three
motors 0B4M0, 0B3M0 and 0B3M1 as shown in Figure 5 and illustrated in the
functional sketch 5. The same principles apply here as for the reduction drives.
We define the vectors of motor velocities ωm and torques τm as being the drive
input, and the vectors of joint velocities ωj and torques τj as being the drive
output. The mapping between motor and joint velocities is defined through a
bijective linear transformation T : ωm ∈ RN 7→ ωj ∈ RN , as done in [11, 3.3.3].
T can be expressed as an invertible coupling matrix defined as follows:

ωj = T ωm, (11)

The identity between the input and output mechanical power still holds [11,
section 3.3.3]:

τ>j ωj = τ>m ωm ∀ωj, ωm

=⇒ τ>j ωj = τ>m T−1 ωj

⇐⇒ τ>j = τ>m T−1

⇐⇒ τj = T−>τm . (12)

Static friction and stiffness We will not analyze the effect of the cables stiffness
or the friction in the differential drive, instead we will assume that effect can
be modeled the same way we did for the harmonic drives model, only this time
with higher static friction and lower stiffness.
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Fig. 5: Differential drive coupling on the waist joints: the yaw, roll and pitch
joints are actuated by the motors 0B4M0, 0B3M0,and 0B3M1 in differential
configuration. Source: [11, Fig.5, 6].

Fig. 6: Kinematic chain representing a single joint.

3 METHODOLOGY

3.1 Assembling the Joint Actuation Model

We consider a joint actuation chain composed of a single motor M, a gearbox
(or harmonic drive) G , and a rotary joint, as shown in Figure 6. A PWM input
voltage feeds the motor, and the actuation chain delivers a joint torque τJ . For
building the full joint transfer function mapping the input PWM to the output
joint torque, we concatenate the sub-models described in the previous section—
the motor model (4) and the harmonic drive model (7, 8, 10)—and integrate
them in the system Euler equation.

Angular momenta and Euler equation We can write the Euler dynamics
equation for the system, which equates the sum of torques applied on the system
to the time derivative of the added angular momenta of the rotating elements.
In this analysis we consider the child link rotating with the joint as an external
element with respect to the joint actuation system:
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τpwm,m + τf,g + τf,j − τj = (Im + Ig)ω̇ (13)

where Im and Ig are respectively the rotational inertia of the motor and the
gearbox projected on the rotation axis such that Im ω̇g and Ig ω̇ are scalars.
In the above equation, all the derivatives are defined with respect to the same
inertial frame, and expressed on the same point of the axis G at the reduction
drive output. In view of 7, 8 and 10, we expand the motor torque and reorder
the terms as illustrated in Figure 7, and rewrite the equation solving for τJ :

τpwm,m + τf,g + τf,j − (Im + Ig) ω̇j = τj (14)

⇐⇒ρkpwm,τ PWM−ρ2kbemf,τ ωj + ρτf,m

+ τf,g + τf,j − ρ2 (Im + Ig) ω̇j = τj
(15)

Fig. 7: Parallel representation of the physical model of a single joint actuation
and the respective transfer function PWM 7→ τj in the Laplace domain. M∗

represents the motor block grouping the brush-less motor and the harmonic
drive.

Equivalent Motor PWM Torque We define the motor PWM torque as the
torque produced after the PWM input parameter and applied on the rotor, not
accounting for any friction effect of mechanic or electric nature, i.e. the linear
term ρKpwm,τ PWM = K∗pwm,τ PWM, K∗pwm,τ being the equivalent parameter
of the [motor + harmonic drive] block:

K∗pwm,τ = ρKpwm,τ (16)

Equivalent Friction model We can see that a series of terms contribute to
the overall friction torque applied to the shaft: the friction on the rotor bearings
ρτf,m, the Back EMF torque ρ2kbemf,τ ωj, the friction in the reduction drive τf,g,
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and the friction on the joint bearings τf,j. The approach adopted in this method-
ology consists in grouping all these friction terms in a single friction model, which
could be the Static/Coulomb/Viscous or the Stribeck friction model.

All the terms are grouped in a single Static friction term τs, a single Coulomb
friction term τc and a single viscous friction term τv: all the friction on the
bearings contributes to the terms τc and τv, although we could consider them
negligible with respect to the friction in the harmonic drive and the Back EMF;
the Back EMF in particular is a linear function of ωj and so has the properties
of a viscous friction; the friction in the harmonic drive contributes to the three
terms τs, τc and τv, with a significant static friction component as we will observe
in the experiment results.

Assumption 1.1 For professional grade bearings, or at least in the case of
iCub’s brushless motors and joints bearings, the static friction on those bearings
is negligible with respect with all the other friction terms and will be ignored.

We can write the three terms τc, τv and τs as follows:

τc = τc,m + τc,g + τc,j = −Kc sign(ωj)

τv = τv,m + τbemf + τv,g + τv,j = −Kv ωj

τs = τs,g(ωj, σs)

τf (ωj, σs) = τc(ωj) + τv(ωj) + τs(ωj, σs),

(17)

Where τc,·, τv,· and τs,· relate to the nature of the friction—respectively
Coulomb, viscous and static—and τ·,m, τ·,g, τ·,j relate to the origin of the
friction—respectively the motor bearings, harmonic drive (gearbox) and joint
bearings. σs is the maximum static friction measured at zero velocity.

Identification of The Equivalent Model Parameters In view of (15), (16)
and (17), we can rewrite the output joint torque as:

gτj = K∗pwm PWM− (gIm + gIg)
gω̇ −Kc sign(gω)−Kv

gω + τs (18)

The identification of the motor and gearbox inertial parameters Im + Ig is
out of the scope of this thesis, so we assume they are given. We then need to
identify the motor parameter K∗pwm and the friction parameters τs, Kc and Kv.

The identification will be performed in two phases: the first phase identifies
the viscous friction parameters τs, Kc and Kv; the second phase identifies the
motor parameter K∗pwm. This approach allows to simplify the fitting of the model
parameters by reducing the problem dimension for each phase of the identifica-
tion.

3.2 First phase - friction parameters identification
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Symmetric Coulomb/viscous Friction Model We initially only consider
the Coulomb and viscous friction components, for describing the base estimation
algorithm, and will later introduce the static friction component. We need to
place the system in a condition where only the friction torques are present and
acting on the shaft. This is achieved by setting the motor input PWM to zero,
canceling the motor PWM torque and leaving only the motor internal mechanical
friction and the counter torque due to the Back EMF. In normal operating
conditions, the Back EMF adds a significant contribution to the overall joint
actuation friction, and for this reason, it’s crucial to account for that contribution
in this phase of the identification. The Back EMF creates induced currents in
the motor electromagnetic coils circuit 1 which result in a torque opposed to the
motor PWM torque. Setting the PWM parameter as mentioned above, instead
of turning off the motor, allows to keep the stator circuit closed and the Back
EMF current to flow. In view of (18) and PWM = 0, we express the joint torque
as follows:

gτj + (gIm + gIg)
gω̇ = −Kc sign(gω)−Kv

gω (19)

Where the joint velocity gω and acceleration gω̇ are respectively measured
from joint encoders or inertial sensors. The joint torque gτJ is measured by a
joint torque sensor or estimated from Force-Torque sensors measurements and a
modified inverse dynamics algorithm as seen in [12, Chapter 4 section 4.4.2]. We
get the training data from a set of measurements, and then fit the model (19)
by defining and solving the over-constrained linear system below:

X Θ = y (20)

With,

y = gτj + (gIm + gIg)
gΩ̇

X =

[
sign(ω1) sign(ω2) . . . sign(ωn)
ω1 ω2 . . . ωn

]>
Θ =

[
−Kc −Kv

]>
(21)

where ωi is the measured velocity at instant i, gΩ̇ is the column vector of the
joint angular acceleration measurement samples and gτj is the column vector of
the joint torque measurement samples. Obtaining the system (21) is straight-
forward as it’s just the matrix formulation of (19). The linear least squares
solution can be computed by inverting the matrix X through a Moore-Penrose
left pseudo-inverse:

Θ =
(
X>X

)−1
X> y (22)

X is of full column rank since the second column is an evenly distributed set
of velocities and so cannot be a multiple of the first column which is a series
of ±1 elements. The matrix X>X is well conditioned, assuming that we use a

1located in the stator in the case of brushless motors
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reasonable range of joint velocities and have a low level of noise in the encoder
measurements. In any case, we verify numerically the condition number of that
matrix in the experiments in section 4.

Stribeck/Coulomb/viscous friction model If the static friction in the re-
duction drive is significant, for instance around 2 N m or higher, the results ob-
tained with the models proposed above will not result in an accurate fitting,
giving a good approximation at higher velocities, and a poor approximation
near zero velocities, where the friction torque curve appears to be quite non lin-
ear, and right before the state transitions to a “stick” phase, as we will observe
in the experiment results (4.1). The non linearity and the unaccounted effects
of the “slip-stick” phase transitions are aggravated when the joint reaches or
crosses the zero velocity.

For that reason we now integrate in the estimation algorithm the model
combining the Coulomb and Viscous friction components with the Stribeck effect
τs(ω) [2] [13]. The Stribeck effect is modeled here with an empiric non linear
function, but still linear with respect to the fitting parameters. The function we
are looking for has to approximate the torque response characterized by the plot
in Figure 10, which strongly resembles the Stribeck model depicted in 3 and
analyzed closer in this section. For that and in view of (17), the overall friction
function τf (ω) has to meet the following properties:

lim
ω→0−

τf (ω) = σ−s lim
ω→+∞

τf (ω) = τc(ω) + τv(ω)

lim
ω→0+

τf (ω) = σ+
s lim

ω→−∞
τf (ω) = τc(ω) + τv(ω)

By applying (17) in each of the above equations we get:

lim
ω→0−

τs(ω) = σ−s − τc(ω)− τv(ω) = σ−s − τc(ω) (23)

lim
ω→0+

τs(ω) = σ+
s − τc(ω) (24)

lim
ω→∞

τs(ω) = 0 (25)

We could have chosen for τs(ω) an hyperbolic function ∝ 1
ωn but such function

would have a singularity at ω = 0 that could be avoided with the shifted function:
τs(ω) ∝ 1

(ω−ω0)n
, only this introduces a new parameter ω0 with respect to which

τs would be non-linear. The good candidate we found is an exponential function
linearly parameterized. Let’s consider the function g(x, σ) = (σ −Kc) e

−x. τs(ω)
is symmetric with respect to the origin, coincides with g(ω, σ+

s ) in the half-plane
ω > 0, and coincides with −g(−ω, σ−s ) in the half-plane ω < 0, as illustrated in
figure 8. We can then write:

τs(ω) = u+(ω)
(
σ+
s −Kc

)
e−ω − u+(−ω)

(
σ−s −Kc

)
eω

= −
(
u+(ω) e−ω + u−(ω) eω

)
Kc

+ u+(ω) e−ω σ+
s

+ u−(ω) eω σ−s

(26)



14 -

Fig. 8: Decomposition of Stribeck model into Coulomb/Viscous + exponential
function.

where u+ , u−, r+ and r− are respectively the step and ramp functions such
that:

u+(x) :=

{
0, x < 0

1, x ≥ 0
u−(x) :=

{
−1, x < 0

0, x ≥ 0
(27)

r+(x) :=

{
0, x < 0

x, x ≥ 0
r−(x) :=

{
−x, x < 0

0, x ≥ 0
(28)

So the overall friction can be posed as the linear system:

y = gτJ + (gIm + gIg) Ω̇g

X = X1 +X2

Θ =
[
−Kc −Kv −σ+

s −σ−s
]>
,

(29)

with X1 and X2 defined as follows:

X1 =


u+(ω1) (1 + e−ω1) . . . u+(ωn) (1 + e−ωn)

r+(ω1) . . . r+(ωn)
u+(ω1) e−ω1 . . . u+(ωn) e−ωn

0 . . . 0


>

= diag
(
u+(ω1) . . . u+(ωn)

)
(1 + e−ω1) . . . (1 + e−ωn)

ω1 . . . ωn
e−ω1 . . . e−ωn

0 . . . 0


> (30)

X2 =


u−(ω1) (1 + eω1) . . . u−(ωn) (1 + eωn)

r−(ω1) . . . r−(ωn)
0 . . . 0

u−(ω1) eω1 . . . u−(ωn) eωn


>

= diag
(
u−(ω1) . . . u−(ωn)

)
(1 + eω1) . . . (1 + eωn)

ω1 . . . ωn
eω1 . . . eωn

0 . . . 0


> (31)
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3.3 Second phase - Motor Parameter Identification

Algorithm The friction coefficients having been identified, we can now use them
in the joint dynamics equation (18) for identifying K∗pwm. The approach is then
equivalent, defining a system correlating this time the input duty cycle PWM
and the output joint torque τj, where K∗pwm is the only unknown parameter.
From (18) we can write (20) with:

y = gτj + (gIm + gIg)
gΩ̇ +Kc sign(gΩ) +Kv

gΩ− gτs

X =

[
1 1 . . . 1

PWM1 PWM2 . . . PWMn

]>
Θ =

[
τ0 K

∗
pwm

]>
,

(32)

where sign(gΩ) =
[
sign(ω1) . . . sign(ωn)

]>
. τ0 accounts for an eventual offset

current in the stator windings. A null motor current and torque could then be
obtained from an input value PWM = −K−1pwm τ0. The system is solved as the
previous one, through the computation of a Moore-Penrose left pseudo-inverse.

3.4 The Coupled Joints Case

The kinematic and dynamic coupling implemented by the differential drives has
to be accounted for when correlating joint with motor torques. this aspect sig-
nificantly impacts the measurement procedures and the estimation results. Let
us consider three joints J1, J2, J3 actuated by three motors Ma,Mb,Mc through
a differential coupling. We depict in Fig. 9 the respective actuation system.

Velocities and torques transformation We’ve seen in section 2.4 how to
transform velocities (11) and torques (12) between the input and the output of
a coupling system like the differential drive on the torso. If we apply (11) and
(12) to the quantities illustrated in the figure 9, we get:

ωj = T gω, with ωj =

ωj,1

ωj,2

ωj,3

 , gω =

gωa
gωb
gωc

 , (33)

τj = T−> gτ, with τj =

τj,1τj,2
τj,3

 , gτ =

gτa
gτb
gτc

 , (34)

Decorrelating the coupled motors At this point we have the choice between
two methods: either we express all the quantities at the joint level in the algo-
rithms proposed in this section like (21) and (32), either we express them at the
point G of each motor group shaft (a), (b) and (c) and apply the algorithms
on the torques gτa or gτb or gτc. This second approach is indeed simpler: we
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Fig. 9: Kinematic chain representing three coupled joints, the gearboxes and mo-
tors. mωc,

gωc and gτc are respectively shaft angular velocities and the measured
or estimated torque on the motor C transmission chain. τj,3 is the output joint
torque estimated on the joint J3.

first transform all the joint velocities and torques measurements ωj and τj, into
the respective transformed quantities gω and gτ expressed in the point G of the
motor group shaft (a), (b) and (c), as illustrated in 9. We then just have to apply
the proposed methodology described in sections 3.2 and 3.3, using gτ in place
of gτj. This converts the problem into three independent problems, each on a
single motor actuation chain.

The first method is motivated by the choice to perform the estimation joint
wise, each joint ”seeing” a virtual motor resulting from its interaction with the
coupled motors. In this case, each joint is moved alone, which results in the
coupled motors moving simultaneously. The second method instead, is motivated
by an estimation motor wise, which then requires to constrain the motors to
move one by one and to focus on the estimation of that motor’s actuation chain
parameters.

The idea is to constrain all the power to be exchanged only between one
motor and the three coupled joints. Let’s consider the actuation chain between
the motor Mc and the three joints for the friction and motor parameters identi-
fication. We first block the remaining motors Ma and Mb in any desired position
(e.g. position initially giving the origin position of the three joints). We then
apply the torque transformation to get the joint torque projected on the motor
Mc actuation chain gτc illustrated in Fig. 9 and defined as follows:

gτc = T>c
[
τj,1 τj,2 τj,3

]>
,

where Tc is the column of T related to motor Mc. We then apply the dynamics
equation 18 to Mc, replacing gτJ by τg,c and ωg by ωg,c. At last we solve the
system for the friction and motor parameters following the algorithms proposed
in 3.2 and in 3.3.
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We followed the second method, which presents the following benefits: it is
less sensitive to model uncertainties that can arise from bad estimates of the
coupling reduction ratios and the cables elongation in case of a cable driven
differential; it allows to track unexpected slip/stick phase transitions separately
for each of the three motor actuation chains; whatever the complexity of the
coupling it will be easier to cover a desired range of velocities on each motor.

Note 2. In platforms having Field Oriented Control motor drives, the motor
velocity can be estimated from the measurements of a high resolution encoder
placed on the motor stator, which benefits from much higher accuracy compared
to the typical three hall-effect sensors used in motors driven by a Trapezoidal
Control.

4 EXPERIMENTAL RESULTS

We have tested the estimation algorithms proposed in section 3, on the robot
iCub. We have estimated the joint friction and motor parameters on the right
leg knee and on the coupled joints—yaw, roll, pitch—connecting the waist to the
torso. The sensors data were captured at 100Hz sampling rate: joint positions,
velocities, torque and motor velocities.

4.1 First Phase - Friction Parameters Identification

Procedure After setting the PWM to zero, we apply an external torque to the
joint in an oscillating motion 2. It is preferred to avoid significant accelerations
in order to minimize and eventually neglect the inertial terms, otherwise we
use the inertial sensors measurements for estimating and accounting for the
inertial terms. We then apply the method described in 3.2 on the acquired data.
When applying the model, we verified numerically that the matrix X>X is well
conditioned, which is a requirement for the pseudo-inverse computation to give
an accurate solution.

Experiment Results The plot in Figure 10 shows the friction estimation re-
sults on the right leg knee, a single joint free of any coupling or cable driven
actuation.

As we can observe in the plot 10, the model (cyan color line) doesn’t seem
to fit well the data near the zero velocity: while at zero velocity the model gives
a Coulomb friction Kc ∼ 1N m, the measured torque is twice as high, rising up
to ∼ 2N m.

Later tests on most of the joints on the right leg of iCub—hip pitch/roll/yaw,
knee—revealed the same consistent increase of friction when the joint velocity
decreases to zero, similar to the Stribeck effect, as can be observed in all the
plots of friction torque in this section. When the surfaces are in solid-to-solid

2This can be done manually or with an external actuation.
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Fig. 10: Friction model fitting results on the right leg knee. Coulomb/Viscous
model parameters: Kc ∼ 1N m, Kv ∼ 0.30Nms/ deg. Stribeck model pa-
rameters: static frictions σ+

s ∼ 1.27N m, σ−s ∼ 1.95N m; Kc ∼ 0.85N m;
Kv ∼ 0.31Nms/deg. 1©: Boundary Lubrication regime, 2©: Full Fluid Lubri-
cation regime (viscous friction).

contact, we are in a regime called “Boundary Lubrication”, the sheared solid
surfaces being the boundary lubricants.

Unlike the Coulomb/Viscous model, the Stribeck model (as seen in the same
figure) gives a good estimate of σ+

s and σ−s . Although we get approximately the
same coefficient Kv, Kc differs significantly between the two models.

A better fit of the “Boundary Lubrication”: The constraint on the derivative
of the model function at zero velocity, [δτf/δq̇]q̇=0 = 0, ensures that we better
fit the “Boundary Lubrication” plateau. we can observe the fitting improve-
ment in Figure 10, where we applied the constraint on the right derivative, i.e.
[δτf/δq̇]q̇=0+ .

We have run a friction estimation trial on all the right leg joints, listed in the
table 1. These results haven’t been validated yet with the low level controller.
On top of that, the present low level controller doesn’t integrate yet static nor
Coulomb friction compensation.

The Coupled Joints Case The PWM-to-torque identification results are il-
lustrated in Figure 11, showing the impact of the Harmonic Drive hysteresis on
the measured output torque. The motor velocity-to-friction torque model iden-
tification results are equivalent to those obtained for a single joint and will not
be illustrated in this paper.
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Fig. 11: Hysteresis in the PWM to torque characteristics due to static friction in
the harmonic drive.

Joint σ+
s (N m) σ−

s (N m) Kv (Nms/ deg)

right hip pitch 1.31 2.24 1.16
right hip roll 2.49 0.96 0.50
right hip yaw 1.30 2.58 1.22
right knee 1.27 1.95 0.69
right ankle pitch 2.90 0.71 1.32
right ankle roll 2.05 1.29 1.20

Table 1: Friction parameters extimation results on the iCub right leg joints.

5 CONCLUSIONS

The paper first defines a detailed model of a typical joint low level actuation
sub-system used on a humanoid robot with electrical actuators, then extends
the model to coupled joints. It then highlights how a linear PWM-to-torque
model (before the conversion in the Harmonic Drive), free of ripples, depends on
the motor hardware and a Field Oriented Control mode for tracking the motor
current. The Back EMF and the friction in the Harmonic Drive are identified as
the main sources of friction. The method uses a least squares fitting algorithm for
identifying the parameters of the Stribeck model, with three dynamic regimes:
elastic deformation, Boundary Lubrication, Full Fluid Lubrication. This model
fits the better the measured friction torques. Unlike previous works on friction
identification, the method presented here was performed in open loop control,
relying on the joint torque estimations based on force-torque sensors instead of
motor currents adjusted by a closed loop control. This guarantees a simpler and
more reliable control of the motor input, avoiding any quantization in the motor
torque response, and better revealing in the plots the static friction from the
Harmonic Drive. In a future work, the identified friction parameters shall be
used on a dynamic friction model.



Bibliography

[1] Parmiggiani, A., Maggiali, M., Natale, L., Nori, F., Schmitz, A., Tsagarakis,
N., Victor, J.S., Becchi, F., Sandini, G., Metta, G.: The design of the
icub humanoid robot. International Journal of Humanoid Robotics 09(04),
1250,027 (2012). DOI 10.1142/S0219843612500272

[2] Van Geffen, V.: A study of friction models and friction compensation. DCT
118, 24 (2009)

[3] Stolt, A., Robertsson, A., Johansson, R.: Robotic force estimation using
dithering to decrease the low velocity friction uncertainties. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3896–
3902. IEEE, Seattle, WA, USA (2015). DOI 10.1109/ICRA.2015.7139742

[4] Linderoth, M., Stolt, A., Robertsson, A., Johansson, R.: Robotic force es-
timation using motor torques and modeling of low velocity friction distur-
bances. In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3550–3556. IEEE, Tokyo (2013)

[5] Stolt, A., Carlson, F.B., Ardakani, M.M.G., Lundberg, I., Robertsson, A.,
Johansson, R.: Sensorless friction-compensated passive lead-through pro-
gramming for industrial robots. In: 2015 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 3530–3537. IEEE,
Hamburg, Germany (2015). DOI 10.1109/IROS.2015.7353870

[6] Popovic, M., Goldenberg, A.: Modeling of friction using spectral analysis.
IEEE Transactions on Robotics and Automation 14(1), 114–122 (1998).
DOI 10.1109/70.660854

[7] Akin, B., Bhardwaj, M., Warriner, J.: Trapezoidal Control of BLDC Motors
Using Hall Effect Sensors p. 34 (2011)

[8] Kiran, Y., Swamy, D.: Field Oriented Control of a Permanent Magnet Syn-
chronous Motor using a DSP. International Journal of Advanced Research
in Electrical, Electronics and Instrumentation Engineering 03(10), 12,364–
12,378 (2014). DOI 10.15662/ijareeie.2014.0310008

[9] Yousef, A.Y., Abdelmaksoud, S.M.: Review on Field Oriented Control of
Induction Motor 2(7), 13 (2015)

[10] Chedmail, P., Martineau, J.P.: Characterization of the friction parameters
of harmonic drive actuators. WIT Transactions on The Built Environment
22 (1970)

[11] Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., Pucci, D.: icub
whole-body control through force regulation on rigid non-coplanar contacts.
Frontiers in Robotics and AI 2, 6 (2015). DOI 10.3389/frobt.2015.00006

[12] Traversaro, S.: Modelling, estimation and identification of humanoid robots
dynamics (phd thesis). Italian Institute of Technology. Retrieved from
https://traversaro.github.io/preprints/traversaro-phd-thesis.pdf (2017)

[13] Harnoy, A., Friedland, B., Cohn, S.: Modeling and measuring friction effects.
IEEE Control Systems Magazine 28(6), 82–91 (2008). DOI 10.1109/MCS.
2008.929546


	Identification of Motor Parameters on Coupled Joints

