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Abstract. A novel machine learning optimization process coined Restric-
tive Federated Model Selection (RFMS) is proposed under the scenario,
for example, when data from healthcare units can not leave the site it
is situated on and it is forbidden to carry out training algorithms on
remote data sites due to either technical or privacy and trust concerns.
To carry out a clinical research in this scenario, an analyst could train
a machine learning model only on local data site, but it is still possible
to execute a statistical query at a certain cost in the form of sending a
machine learning model to some of the remote data sites and get the
performance measures as feedback, maybe due to prediction being usually
much cheaper. Compared to federated learning, which is optimizing the
model parameters directly by carrying out training across all data sites,
RFMS trains model parameters only on one local data site but optimizes
hyper parameters across other data sites jointly since hyper-parameters
play an important role in machine learning performance. The aim is to
get a Pareto optimal model with respective to both local and remote
unseen prediction losses, which could generalize well across data sites.
In this work, we specifically consider high dimensional data with differ-
ent distributions over data sites. As an initial investigation, Bayesian
Optimization especially multi-objective Bayesian Optimization is used
to guide an adaptive hyper-parameter optimization process to select
models under the RFMS scenario. Empirical results shows that solely
using the local data site to tune hyper-parameters generalizes poorly
across data sites, compared to methods that utilize the local and remote
performances. Furthermore, in terms of hypervolumes, multi-objective
Bayesian Optimization algorithms show increased performance across
multiple data sites among other candiates.

Keywords: Federated Learning, Multi-objective Bayesian Optimization,
High Dimensional Data, Differential Privacy, Distribution Shift, Model
Selection
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1 Introduction

1.1 Background

Federated Learning [20, 24] has drawn increasing attention recently due to over-
whelmingly growing data volume and an emerging request for privacy protection
from the perspective of individuals, as well as the perspective of data owners,
e.g. due to GDPR [26]. Usually in federated learning, a server moderates several
data sites to carry out optimization iterations, like gradient descent updates, on
each data site. Each data site then sends an intermediate result to the server.
The server side aggregates the results and distributes it, so that each data site
obtains an updated model. This distributed model training process circumvents
the bottleneck of data transmission and prevents private data from leaving the
data center. To further increase privacy security against attacks [26], differential
private federated learning algorithms have been proposed [19, 37].

Current federated learning algorithms rely on an efficient and synchronized
communication protocol [20, 25] across the server and different data sites as
well as the availability that data on each data site can be used for training.
However, it might also be expensive to meet the technical requirements to have
a synchronized communication framework needed by federated learning.

From a privacy protection perspective, several attacks and defenses that
undermine privacy in a federated learning context have been proposed [27], [32],
[3]. Differential private federated learning algorithms [12, 26, 37] are based on
standard Federated Learning algorithms, with some detail being tailored to fit
the need for differential privacy.

However, there might be restrictions that the data from the remote data site
can not be used for training at all. Especially when there is no established trust
between parties, privacy protection and attack becomes an arm race, in which
case, data owners might want to restrict the access of the data to a maximum
extent but still want to participate in the community to build a predictive model
that could benefit all sides. To the best of our knowledge, this is a problem that
current differential private federated learning algorithms do not address yet.

In both restricted cases, sending a model to the remote data sites and asking
for how good the sent model performs on the remote data sites comes at a certain
cost (transmission cost and prediction computation cost for instance). This is
comparably acceptable, as only aggregated statistics (typically a single number)
need to be reported back.

We coin this new learning scenario Restrictive Federated Learning, emphasiz-
ing the point that only data situated locally could be used for model training,
while data on the other data sites are partially observed in the sense that the
analyst could only observe a scalar performance measure of a sent model on the
remote data site, which is restrictive.

In this restrictive learning scenario, we could only access limited data locally
for training a machine learning model, but still want to have a model that could
generalize well across the data sites. Therefore, how to do model selection in this
special restricted federated learning scenario is of significant interest.
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Bayesian Optimization has proved to be really successful in optimizing machine
learning hyper-parameters [34]. In this work, we want to investigate how it works
under the RFMS scenario.

1.2 Challenges

A critical challenge in federated learning is unevenly distributed data. For example,
there are situations where most features are not available on all data sites [19]
or the class distribution is extremely unbalanced across different computation
nodes [43].

In RFMS, there is also the challenge that data can be differently distributed on
each data site. Specifically, in this work we consider the challenge that distribution
of features from one data site might be considerably different from another, due
to different sub-populations frequenting a given clinic for example.

Furthermore, the number of observations in clinical research is usually rela-
tively small, while with the inclusion of genetic data, the number of features can
be rather large. This makes model selection [6, 14] quite challenging. Finding
stable predictive models that could generalize well to data collected from different
clinical studies or cohorts is difficult.

2 Problem Statement

2.1 Terminology and Notation

To clearly address the problem, at the first step, terminologies and notations
used throughout the remainder of this paper are explained.

Data site: Data of a specific domain, clinical research for example, could
be located in different places and it is expensive to carry data from one site to
another due to technical or privacy concerns. We denote one of such a integrated
data unity as a data site. There is a need to train a specific machine learning
model for the domain, which requires collaboration across data sites. We consider
data sites of following types.

Openbox data site Dob: On the openbox data site, the analyst has full
access to the data. A machine learning model can be trained locally using the
data situated on openbox data site.

Curator data site Dcu: From the openbox side, curator data site can be
queried for model performance, which can assist the analyst on the openbox data
site to get a better model that might generalize across data sites. The curator
data site Dcu can only be queried with respect to predictive performance, i.e. a
single aggregate statistic, but the analyst from the openbox side can not access
the data in any other way. This name stems from the field of differential privacy
[9] where there is a curator that controls the data flow which acts like a firewall
to Dcu. The curator has full access to Dcu but decides on its strategy w.r.t.
which feedback value to give to the statistical query by actively perturbing and
coordinating the answers given to the queries. In this work, we assume a honest
answer to the query except otherwise specified.
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Lockbox data site Dlb: Lockbox [13] data site refers to data sites which the
analyst from the openbox side can not access by any means. In practice, lockbox
correspond to data sites that could not contribute in the process of building
a machine learning model due to various reasons, but are likely to participate
in the future or simply benefit from the model built. From a model evaluation
perspective, Dlb on the other hand could measure how good a machine learning
model generalizes to completely unseen data.

Inbag and outbag: For evaluation purposes, we hold out a fraction (say
20%) of the curator and openbox data which we call outbag, denoted by Dog

cu

and Dog
ob , the leftover is called inbag, which is Dig

cu and Dig
ob. For simplicity, we

use Dob to represent Dig
ob when the context is about learning and use Dob to

represent Dog
ob when the context is about evaluating how good a method is. Also,

we define the inbag and outbag of lockbox to be identical to lockbox itself, i.e.
Dlb = Dig

lb = Dog
lb .

Model parameter θ and hyper-parameter φ: A machine learning al-
gorithm, given a dataset Dl, where l means ”learn” or ”local”, Dl = Dig

ob, for
example, and a set of hyperparameters φ, learns a model specified by a set of
model parameters θ = L(Dl | φ) where L represent the learning process to map
a dataset Dl associated with a set of hyper-parameter φ to a set of machine
learning model parameter θ.

Model performance and loss: The performance of a model characterized
by θ to a data site D is given by

F (D | θ = L(Dl | φ))

where F computes an estimate of predictive performance on D, under model
parameter θ trained from dataset Dl, based on hyper-parameter φ. By convention,
we use J to represent a regret that need to be minimized, which could be
1− accuracy for example.

Restricted Federated Model Selection (RFMS) Scenario: The ana-
lyst from the openbox side want to initiate a study to a specific domain(clinical
studies like cancer research for example). A machine learning model that fits
the data well on the openbox side, as well as one that could generalize to a
certain extent across the other data sites is required. Due to privacy sensitivity
or technical difficulty, some data sites could only collaborate in a model selection
process in the form of curators. Each query to the curator from the openbox side
is at a certain cost. Note that all forms of data sites including openbox, curator
and lockbox should be used to evaluate the selected model whenever possible.

2.2 An example of RFMS on high dimesional unevenly distributed
data

Gene Expression Omnibous (GEO) is a public available functional genomics data
repository with array and sequence based data that researchers from around
the world could contribute to. Although the data in GEO is publicly available
instead of privacy sensitive, the origin that the datasets in GEO comes from
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different sources makes it a perfect example of RFMS. We use the breast cancer
datasets GSE16446, GSE20194, GSE20271, GSE32646, and GSE6861 from the
GEO database [8, 23]. Each dataset we consider here could be regarded as a
data site due to the fact that they come from different sources, by different
contributors.

The publicly available microarray gene expression datasets were accessed via
tools provided by the Gene Expression Omnibus (GEO) data repository. Frozen
robust multiarray analysis (fRMA) [23] was used for normalization. All breast
cancer datasets were checked for duplicates and a pair of patients was considered
duplicate when the correlation of their expression values was at least 0.999.
Duplicates were removed. The response variable is binary (classes ”pathological
complete response” and ”residual disease”) for all datasets. The six observations
with a missing value for the response variable are omitted. The resulting numbers
of observations per dataset are displayed in Table 1. The datasets contain clinical

GEO-ID 16446 20194 20271 32646 6861
Observations 114 211 178 115 161

Table 1: Number of observations per GEO dataset

and gene expression data. We do not consider the clinical variables because
many values are missing. The gene expression data has been measured on three
different types of microarray chips (HG-U133-Plus2 for GSE16446 and GSE32646,
HG-U133-A for GSE20194 and GSE20271, and HG-U133-X3P for GSE6861). As
the measured genes differ between the three chips, we only consider the genes
that are measured on all of the chips. Out of these 1965 genes, we only use the
1000 genes with the highest variances across all patients and datasets.

It can be assumed that the relation between the response variable and the
covariates is not identical across the datasets and the features distribution also
varies from data site to data site. This is typical for gene expression data, especially
if it has been measured on different chips, at different times, at different places
and after different times until the tissue was frozen. A T-SNE [22] plot by pooling
the feature part of the data together from these data sites can be found in Figure 1
where the colors indicate different data sites. From Figure 1, it is obvious that
the data sites lie on different locations in the low dimension embedding, which is
a clear indicator of distribution shift across data sites. We will use this example
as a major case in this paper.

2.3 Evaluation Criteria

To further explain the problem, before discussing any potential solution, we first
address the question of how to evaluate model performance, which will help
deeper understanding of the problem.

In RFMS, we want to obtain a model that genaralize well for the openbox,
curator and hopefully for the lockbox as well, which is a multi-objective problem.
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Fig. 1: T-SNE plot for the GEO datasets over data sites.

Accordingly, the selected model should also be evaluated with method that could
take different objectives into consideration.

Dominated hypervolume: A natural criterion is to measure the Dominated
Hypervolume[2] of the model performance on the outbag part of openbox and
curator site, as well as the lockbox, as in Equation (1)

Jhv(φ | Dog
ob , Dog

cu, Dlb) = H
[
fog

ob , fog
cu , flb

]
,

fog
ob = F

(
Dog

ob | θ = L(D
ig
ob | φ)

)
,

fog
cu = F

(
Dog

cu | θ = L(D
ig
ob | φ)

)
,

flb = F
(
Dlb | θ = L(Dig

ob | φ)
)

. (1)

where, H represent the calculation of the Dominated Hypervolume, and the
performance on each data site outbag part is represented as fog

ob , fog
cu , flb respec-

tively. Dominated Hypervolume Indicator is also known as Lebesgue Measure
or S-Metric which is the hypervolume between a non-dominated front and a
reference point. Due to space limit, we invite readers who are not familiar with
these multi-objective concepts to refer to the references.

3 Related Work

In this section, we review recent works that has connections with RFMS.
Nested Cross Validation(NCV): NCV [14] uses an outer loop cross vali-

dation to safe guard the risk of overfitting during the hyper-parameter tuning
process. However, RFMS does not allow cross validation due to the constraint
that remote data site can not be used for training.

Federated Learning: Federated learning [24] also consider situations where
data is distributed non-i.i.d. across several data sites and possibly unbalanced,
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but they assume scenarios where data is fully accessible over a huge amounts
of data sites compared to a smaller number of data points available at each
site. This is different from RFMS, where we consider data can only be accessed
through prediction. Moreover, in RFMS, we consider a relatively small amount
of data sites with less instances but high dimensional data.

Distribution Shift: Distribution Shift refers to a mismatch in distribution
between the data an algorithm was trained on, and data used for model validation
or prediction. Detecting and characterizing such shift remains an open problem [29,
42]. In this work, we do not drive deeper in theory of the data shift problem, but
provides an empirical study which partially addresses the data shift problem,
especially when feature distribution varies across data sites.

Train On Validation: In [36] the authors use parts of the validation dataset
for training to generate a stable algorithm. In [41], a progressive resampling
process is used. However, both works assume that all the data in question is
available for training, which is not possible in RFMS.

Thresholdout Family: [7] showes that differential privacy is deeply associ-
ated with model generalization and propose the Thresholdout algorithm to avoid
overfitting on the validation set due to repetitive usage. [13] extends the instance
wise Thresholdout to AUC measures. However, these methods rely on the i.i.d
assumption of data which does not fit our scenario here.

Adaptive Regularization: In [30], the author proposed an alternative
update method for model parameter θ and hyper-parameter φ = λ of a recom-
mendation system[21], where the λ is the regularization parameter. In adaptive
regularization, the update for the λ is based on the ”future” value of performance
which is also similar to the EM algorithm update process. However, adaptive
regularization only works with gradient based algorithms. Especially, it is only
implemented for Factorization Machine in libFM. So in general it does not work
for non-gradient based optimization typed machine learning models.

Model Agnostic Meta Learning (MAML): Model Agnostic Meta Learn-
ing [10] originates from few shot learning. It aims at adapting to new instances,
in which sense is similar to RFMS. However, MAML works only with gradient
based method and pre-assumes that the algorithm could see the full subsequent
dataset which is not possible in RFMS problem setting.

4 Methods

In this section, we first describe the general RFMS process in 4.1, then in 4.2, we
propose how to handle the RFMS process with Bayesian Optimization.

4.1 Restrictive Federated Model Selection

The general process of RFMS is illustrated in Figure 2, which depicts an asyn-
chronous communication process during optimization. At step i, based on hyper-
parameter φi, the machine learning model is trained on Dob to get the model
parameter θi = L(Dob | φi).
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Local:Dob Remote: Dcu

φi

J l
i (φi | Dob) = cv(Dob | φi)

J l
i+1(φi+1 | Dob) = cv(Dob | φi+1)

END

propose φi+1

propose φi+2

θi = L(Dob | φi)

Jr
i (φ

i | Dcu, Dob) = F(Dcu | θi = L(Dob | φi))

θi+1 = L(Dob | φi+1)

Jr
i+1(φi+1 | Dcu) = F(Dcu | θi+1 = L(Dob | φi+1))

......

Fig. 2: Restrictive Federated Model Selection starting from step i

With the same hyper-parameter φi, a 10-fold cross validation is carried out
on the openbox inbag part Dob, which gives us one loss function in Equation (2).

J l
i (φi | Dig

ob) = cv(Dig
ob | φi) (2)

where cv(Dig
ob | φi) represent the average loss of the cross validation and J l

i means
local loss at the ith step.

Another loss function is obtained by sending the model parameters θi to the
remote side as shown in Equation (3)

Jr
i (φi | Dig

cu) = F(Dig
cu | θi = L(Dig

ob | φi)) (3)

Here Jr
i means loss on the remote curator at the ith step.

At the next step, a decision process β (see Algorithm 1) based on all historical
observations will propose a new hyper-parameter to be tried out for a potential
better performance. This process is repeated until budget reached. The process
should return the optimal hyper-parameters. The complete procedure is listed
in Algorithm 1, where the the decision process β to generate the proposal is
approximately greedily taking the optimal of a Gaussian Process originated
surrogate µ(φ | R, Φ), Expected Improvement [33], for instance. We use Φ (with
an inital design sized nini) to represent the hyper-parameter buffer and R to
represent the corresponding objective(s) buffer.
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4.2 Bayesian Optimization and Baselines

Bayesian optimization tries to solve the problem of optimizing (often expensive-to-
evaluate) black-box functions by using an internal empirical performance model
which learns a surrogate model of the objective function while optimizing it. A
widely used application for Bayesian Optimization [16] is the optimization of
hyperparameters [1, 33] of machine learning algorithms. Its aim is to find an
optimal configuration φ? from the feasible region. The choice of hyperparameters
for a machine learning model influences the learned model and can thus result in
different performances (cf. [28, 31]).

Since the distribution of the data across different data sites is unknown,
we propose to treat the model selection approach as a black box optimization
problem. Specifically, we use Bayesian Optimization in Algorithm 1 to solve the
Restrictive Federated Model Selection problem with the following variants.

Local Single Objective (lso) Bayesian Optimization: In local single
objective (lso) Bayesian Optimization, we set objective function as cross validation
performance on the local openbox data site, hyper-parameters are tuned based
on J lso(φ) = J l = cv

(
Dig

ob | φ
)

where J l is defined in Equation (2).
Federated Single Objective (fso) Bayesian Optimization: In Feder-

ated Single Objective Bayesian Optimization, we combine the openbox cross
validation aggregated results in Equation (2) and curator performance in Equation
(3) linearly as objective function, hyper-parameters are tuned based on

Jfso(φ) = α J l(φi | Dig
ob) + (1− α) Jr(φi | Dig

cu)

α ∈ [0, 1] . (4)

Specifically, we use fso2 to represent α = 0.2 and fso8 to represent α = 0.8 and
so on. Note that α = 1 corresponds to lso. We use different α to check if there is
an obvious effects by changing α.

Federated Multiobjective Objective (fmo) Bayesian Optimization
: Multiobjective Bayesian Optimization [15] optimizes multiple objectives si-
multaneously, by random linear combination or optimization a S-metric based
objective, which avoid deciding which linear combination parameter α to choose.
In this work, we use the Parego algorithm [18] to optimize the local objective in
Equation (2) and remote objective in Equation (3) jointly.

Random Search Multiobjective (rand mo): To evaluate whether Bayesian
optimization makes sense, we randomly search the hyper-parameter space and
select the pareto front [38] as final output, which we call random search multi-
objective.

4.3 Semi-simulation of Data sites

Publicly available datasets which could fit into the RFMS scenario intrinsically
are rare. To get data from a diversified source aside from the Gene Expression
Ominbus, we turn to approximate the RFMS scenario by splitting an existing
dataset into different parts as if each part sits on a different data site. In practice,
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Algorithm 1 RFMS with Bayesian Optimization (RFMS-BO)
1: procedure RFMS-BO . data site notation here refer to the inbag part
2: Φ1:nini = {φ1, . . . ,φnini} . initial design as hyper-parameter buffer
3: R0 = ∅ . objective buffer
4: for i in 1 : nini, φi in Φ1:nini do
5: J l

i (φi | Dob) = cv(Dob | φi) . Cross validation performance aggregation as
loss

6: θi = L(Dob | φi) . training on Dob with φi

7: Jr
i (φi | Dcu,Dob) = F(Dcu | θi) . test on curator

8: Ri = Ri−1‖
[
J l

i , Jr
i

]
. populate objective buffer

9: end for
10: fit µ(φ | Ri, Φ1:nini ) . train Surrogate Function
11: j = i+ 1
12: while budget not reached do
13: φj = β(µ(φ | Rj−1, Φ1:j−1)) . propose new hyper-parameter
14: Φ1:j = Φ1:j−1‖ [φj ] . populate hyper-parameter buffer
15: J l

j(φj | Dob) = cv(Dob | φj)
16: θj = L(Dob | φj)
17: Jr

j (φj | Dcu) = F(Dcu | θj)

18: Rj = Rj−1‖
[
J l

j , Jr
j

]
. populate objective buffer

19: j ← j + 1
20: update µ(φ | Rj , Φ1:j) . update surrogate
21: end while
22: i∗ = arg maxi(R)
23: {φ∗} = Φi∗
24: {θ∗} = L(Dob;φ∗)
25: return φ∗, θ∗

26: end procedure

we always split an existing dataset into 5 parts to keep consistence with our GEO
datasets.

Since we use real data, but kind of simulate to split the dataset into different
data sites to fit into the RFMS scenario, we call this semi-simulation of data
sites. We propose the following strategy to semi-simulate the data sites.

Stratified Random Split (SRS): First, split the dataset into two parts
according to a factor column. Specifically, we use the target column in a clas-
sification dataset. Then, each factor part is randomly split into 5 buckets. The
positive class part got bp

1, . . . , bp
5 and the negative class part got bn

1 , . . . , bn
5 , where

bn
i and bp

i represent the ith bucket in the negative part and positive part respec-
tively. Lastly, sort the buckets in each factor part according to the number of
instances and combine the buckets in reversing order to form each data site, i.e.,
di = bn

sn(i)‖b
p
sp(6−i)

, where di represents the ith combined data site, sn and sp

are the sorted index vector of each part. We use ‖ to denote pooling two data
buckets.
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Dimension Reduction and Clustering(DRC): First, carry out a dimen-
sion reduction technique on the dataset like Principal Component Analysis. Then
split the dataset into positive class part and negative class part. Cluster each
part into 5 clusters, .i.e. cn

1 , . . . , cn
5 for the negative class part and cp

1, . . . , cp
5

for the positive class part. Sort the clusters with respect to the cluster size
in each part and combine them in reversed order to form each data site, i.e.,
di = cn

sn(i)‖c
p
sp(6−i)

, where di represent the ith combined data site, sn and sp

are the sorted index vector of each part. We use ‖ to denote pooling two data
together.

We choose Mixture of Gaussian Model (MOG) for the clustering, due to
consideration that MOG could also serve as a density estimator.

p(X) = Σ5
k=1ckN (X|µk, Σk) (5)

In MOG, each cluster is represented by a Gaussian distribution N (X|µk, Σk)
with its own parameters µk(mean) and Σk(covariance), as shown in Equation (5),
ck is the mixing coefficient of each cluster. For each of the chosen datasets in Table
2, we model the data distribution as p(X) in Equation(5) and approximately,
each cluster resulted data site represent a different distribution. For simplicity, we
assume all clusters are with different mean vectors but share the same covariance
matrix to assemble a distribution shift. The T-SNE plot is done to the SRS
scenario (Figure 3) and the DRC scenario. In DRC, we use PCA as dimension
reduction, keeping 10% (Figure 4) and 50% (Figure 5) of the total variance to
tell if the reduced dimension makes a big difference in generating an unevenly
distributed data sites scenario). From these figures, we do not observe a big
difference between different percentage of variance to reserve in PCA, but observe
a big difference between SRS and DRC where SRS generates a more evenly
distributed data sites, while DRC generates more uneven distributions across
different clusters(data sites).
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Fig. 3: Stratified Ran-
dom Split (SRS)
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Fig. 4: DRC with PCA
and keep 10% variance
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5 Experiment

5.1 Settings

Since we have selected 5 datasets from the Gene Expression Ominibus to represent
5 data sites, we will consider the exemplary problem of 5 data sites for the
remainder of the paper.

In the experiment, one of the 5 data sites is used as openbox Dob, another
one as lockbox Dlb and the three left over are used as curators Dcu. We choose
to have only one openbox to simulate the scenario, that usually only local data
at the current data sites are fully available to the analyst. We choose to have 3
curators and only 1 lockbox to simulate the scenario that more data sites want
to collaborate with the openbox data site. Curator data site losses are weighted
by the size of the each curator data site during optimization. With this strategy,
there are in total 5× 4 = 20 combinations of openbox-curator-lockbox on the
5 datasets. Each openbox and lockbox combination defines one scenario. Each
scenario is repeated 10 times (10 replications) where we call each replication one
experiment. We sequentially run all RFMS methods, described in Section 4.2,
with 3 machine learning algorithms (kernel support vector machine, random
forest and elastic net). Thus, we have in total 20× 10× 3 = 600 experiments
given a RFMS problem with 5 data sites. All Bayesian Optimization procedures
share the same initial design of 20 randomly selected configurations, and are then
run for another 40 iterations. Thus in total we have a budget of 60 evaluations.
To have a fair comparison, Random Search use the same number of evaluations.

In order to evaluate our method, we randomly partition openbox and the
curator into two parts, namely an inbag part(80%) and an outbag part(20%).
Replications mentioned above could average out the random splits and other
stochastic factors. We use Dig

ob for training a model, and use Dig
cu as well as Dig

ob
for model selection. The outbag parts of openbox and curator are reserved for
post-hoc analysis. This allows us to assess, whether our methods overfit in each of
the two boxes. Additionally, performance is also recorded on the lockbox site for
another aspect of evaluation. We then compare the different methods described
in Section 4.2 on the outbag portion of the respective boxes (as noted in 2.1, all
data of lockbox belongs to outbag).3

5.2 Selection of Dataset for semi-simulation

In order to validate our results on different data sources, we obtain additional
data sets from OpenML [39]. As no datasets with an intrinsic splitting mechanism
such as the GEO dataset (where each dataset comes from a particular source) are
available, we simulate the RFMS scenario according to the strategies described
in Section 4.3.

Model generalization becomes more difficult when there are comparatively
more features than instances. Therefore, we restrict ourselves to datasets with a
3 source code in https://github.com/compstat-lmu/paper 2019 multiobjective rfms

https://github.com/compstat-lmu/paper_2019_multiobjective_rfms
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relatively high-dimension characteristics: Since we intend to split a dataset into 5
parts as 5 data sites, the number or instances in each data site is approximately
reduced by 5 times compared to the original dataset (we rebalanced cluster
results which generate too small clusters but adding instances to the smallest
cluster from the biggest cluster until the smallest cluster reaches 10 percent of
the total number of instances), but the number of features over the number of
instances get to be approximately 5 times of the original ratio, so a p (number
of features) over n (number of instances) ratio of more than 0.2 in the original
dataset corresponds to p

n = 1 in each data site, thus we consider datasets with p
n

ratio around 0.2 to be high-dimensional.
Too few instances is more prone to problems in data resampling processes

like cross validation. For example, one fold of the cross validation might contain
no instance from the underrepresented class. Thus we do not want too extremely
unbalanced classification datasets. In order to have a sufficient amount of data
in each of the 5 boxes, we select only data sets with more than 500 instances.
For the purpose of simplicity, we additionally restrict our data set selection to
data sets that are i) binary class, ii) do not have missing values. As a result,
we use the data sets in Table 2 to provide additional validation of the proposed
methods.

Table 2: List of datasets from OpenML
name n p p/n class ratio
gina agnostic 3468 970 0.28 0.97
Bioresponse 3751 1776 0.47 0.84
fri c4 500 1004 500 100 0.2 0.77

5.3 Machine learning algorithms and hyper-parameters

We choose 3 machine learning algorithms(which we call learner) based on the
consideration that the learners should be representative to different mechanisms of
various machine learning algorithms. Elastic net logistic regression (implemented
in R package glmnet [11]) is a good representative for linear classifier which could
deal with high dimensional data(classif.glmnet), thus chosen because according
to [35], one should not rule out simple models prematurely. R package ranger [40]
implements a random forest(classif.ranger) which is a state of art non-linear
learner that has shown outstanding performance. Kernel support vector machine
(ksvm)(classif.ksvm) implemented in [17], is a nonlinear classifier which could
deal with high dimensional data. The hyper-parameters to be optimized with
their ranges are shown in Table 3. Hyper-parameter tuning is done with mlr[4] and

4 https://www.openml.org/d/742
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mlrMBO[5]. Meaning of hyper-parameters can be found in respective packages.
5

Table 3: List of Hyperparameters
Classifier Hyperparameter Type Range

glmnet alpha numeric (0,1)
glmnet s numeric (2−10,210)
ksvm C numeric (2−15,215)
ksvm sigma numeric (2−15,215)
random forest num.trees integer (100,5000)
random forest min.node.size integer (1,50)
random forest sample.fraction numeric (0.1,1)

5.4 Results and Discussion
In this section, we compare different candidates of RMFS methods proposed in
section 2.3 with respect to their predictive performance. Our aim is to obtain
machine learning models, that generalize well across data sites. As an aggregate
measure, we choose the dominated hypervolume of the data kept out-of-bag
in the openbox Dog

ob , curator Dog
cu and lockbox Dlb respectively as shown in

Equation (1). We consider the average performance on the curators for calculating
the hypervolume. Lockbox data measures how our methods generalize to sub-
populations not considered at all during the training and model selection process.
Using hypervolume results in a comprehensive overview of them.

Results on the GEO datasets As shown in Figure 6, we compare the mean
dominated hypervolume from Equation (1) of 3 machine learning algorithms
(corresponding to the 3 panels in the plot) and several RFMS methods. We
aggregate over 10 replications and 20 combinations of possible openbox-lockbox
combinations.

From Figure 6, we can observe that lso performs the worst among other
candidates, showing that in the RFMS scenario, solely tuning hyper-parameters
on the local openbox data site will usually not lead to a model that generalizes
well across data sites, which is in accordance with intuition. The other candidates
methods including fmo and several fso variants, that predicting on the data of
the curator and using this performance as a feedback performs better, showing
that the feedback could help in arriving at models which generalize better.
However, the considered Bayesian Optimization approaches do not overrate
the multi-objective random search rand mo, nor do we observe any effect of
changing α in the performance of fso . In order to make a more precise comparison,
5 https://github.com/mlr-org/mlr/blob/3edac9f65ed5c157a3d868fe8d2908eaa2a09ebd/

R/RLearner classif glmnet.R#L7

https://github.com/mlr-org/mlr/blob/3edac9f65ed5c157a3d868fe8d2908eaa2a09ebd/R/RLearner_classif_glmnet.R#L7
https://github.com/mlr-org/mlr/blob/3edac9f65ed5c157a3d868fe8d2908eaa2a09ebd/R/RLearner_classif_glmnet.R#L7
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GEO datasets
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we compare the pairwise wins and losses of all the RFMS methods in terms
of dominated hypervolume. For each experiment, we build a 0− 1 matrix to
compare the win and loss of each algorithm pair (when method A is compared
against method B, we take 0 for loss, 1 for win, and 0.5 for tie) and aggregate
the matrix across all 600 experiments. Results are shown in Figure 7, where the
horizontal axis corresponds to winners and the vertical axis correspond to losers.
The elements in the matrix correspond to how many times the winner has won
against the loser. It is easily observable that both bi-criteria methods (fmo and
rand mo) are slightly better than other candidates, as they win more than half
of the experiments.

Results on the semi-simulated RFMS scenario To avoid single dataset
bias, we also analyze how the same algorithms compare under our semi-simulated
RFMS scenario described in section 4.3 over data of various sources.

Dimension Reduction and Clustering (DRC): We first simulate the
RFMS scenario with DRC explained in section 4.3, which could result in a
situation that data from different data sites are differently distributed, where we
keep 10 percent variance in the PCA step.

Figure 8 shows the dominated hypervolume by aggregating across all the
datasets in Table 2. Compared to Figure 6, it is more obvious here that the multi-
objective methods work better than the single objective Bayesian optimization
methods. In Figure 9, we have the Winner-vs-Loser plot for the aggregated results
on the OpenML datasets listed in Table 2, where the multi-objective candidates
outperform the rest by a large margin. Furthermore, fmo wins rand mo by
a considerable margin, giving confidence that Bayesian Optimization make a
difference compared to random search.

Stratified Random Split (SRS): To answer the question if a different
data splitting technique affects the comparison, we use the stratified technique
described in section 4.3 which corresponds to the situation that data being more
evenly distributed across data sites. Figure 10 shows the hypervolume plot, from
which we can still observe the pattern that the multi-objective candidates perform
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tained over OpenML datasets
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Fig. 9: Aggregated wins and
losses on the DRC scenarios ob-
tained over OpenML datasets

better in terms of hypervolume, while compared to Figure 8, all methods show
increased performance under this evenly distributed data scenario across data
sites, possibly due to the bonus of evenly distributed data scenario. In Figure 11,
we compare the wins and losses for each pair of candidates, where in this case,
the fmo wins rand mo by a larger margin, maybe because the SRS generate a
simpler RFMS scenario for the Bayesian Optimization.
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Fig. 10: Aggregated mean dominated
hyper-volume under SRS scenario ob-
tained over OpenML datasets
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losses over SRS scenario ob-
tained over OpenML datasets

Since close or even identical predicative performance values on a problem
can occur for varying machine learning hyperparameters, when the predicative
performance is used as the target for Gaussian Process regression, it can cre-
ate numerical difficulties, so hyperparameter tuning might fail for a particular
algorithm, even though we use a nugget value of 1e− 6. Therefore, to get fair
comparison, all algorithms are run sequentially over a problem on the same
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computing node. Only those experiments with all algorithms finished are used
for analysis, where in practice, we only get neglectable number of experiments
(around 100 out of 1800 experiments, which is 5 percent) within which at least
one algorithm is not finished, see Figure 9 and Figure 11. The Winner-vs-Loser
plots are more effective than carrying out statistical test.

6 Summary

We introduce a novel learning scenario, Restrictive Federated Model Selection
(RFMS), which could play an important role in clinical research, where privacy
sensitive immobile high dimensional data is differently distributed among various
data sites, in which case federated learning is not applicable due to a lack of
access to data from all data sites to be used for training. RFMS is a model
selection process in this scenario, with the aim to obtain a model that generalizes
comparably well across data sites with potential different distributions. Compared
to Federated Learning, RFMS can be carried out in an asynchronous fashion,
which is not communication hungry compared to standard federated learning
and much easier to be deployed. Additionally, the amount of information that
needs to be transferred for each query is comparatively small which takes less
efforts to be deployed.

As an initial investigation, we compare various methods for model selection
and hyper-parameter tuning using Bayesian Optimization. Empirical results
from various data sources indicate that Federated Multi-objective Bayesian
Optimization compares favorably against other single objective candidates as
well as multi-objective random search, in terms of better generalization across
data sites.
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