Skip to main content

Shape Reconstruction from a Monocular Defocus Image Using CNN

  • Conference paper
  • First Online:
Book cover Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

  • 1666 Accesses

Abstract

The paper addresses a new way to reconstruct the 3D shape from a single defocus image using convolutional neutral network (CNN) trained on fractals images. Our method employs point spread function (PSF) with two different degrees of defocus (DoD) to blur a single defocus image and pass them parallelly into CNN to predict the normalized degree of defocus map. Later matting Laplacian interpolation was used to refine the original depth map. Experiments with our own defocus dataset, illustrated that the proposed method achieves accurate shape map with less computing resources. Further network shows great adaptation to real scene defocus images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Lecun, Y.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26(2), 120–144 (2009)

    Article  Google Scholar 

  2. Lagüela, S., Dorado, I., Gesto, M., Arias, P., Gonzálezaguilera, D., Lorenzo, H.: Behavior analysis of novel wearable indoor mapping system based on 3d-slam. Sensors 18(3), 766 (2018)

    Article  Google Scholar 

  3. Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3d object proposals using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2016)

    Google Scholar 

  4. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  5. Oppenheim, A.V., Schafer, R.W.: Digital Signal Processing. Prentice Hall, Englewood Cliffs (1975). ISBN 0-13-214635-5

    MATH  Google Scholar 

  6. Ghita, O., Whelan, P.F.: A video-rate range sensor based on depth from defocus. Opt. Laser Technol. 33(3), 167–176 (2001)

    Article  Google Scholar 

  7. Claxton, C.D., Staunton, R.C.: Measurement of the point-spread function of a noisy imaging system. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 25(1), 159–170 (2008)

    Article  Google Scholar 

  8. Tu, X., Subbarao, M., & Kang, Y.: A new approach to 3D shape recovery of local planar surface patches from shift-variant blurred images. In: International Conference on Pattern Recognition. IEEE (2009)

    Google Scholar 

  9. Rajagopalan, A., Chaudhuri, S.: An MRF model-based approach to simultaneous recovery of depth and restoration from defocused images. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 577–589 (1999)

    Article  Google Scholar 

  10. Pentland, A.: A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987)

    Article  Google Scholar 

  11. Subbarao, M., Surya, G.: Depth from defocus: a spatial domain approach. Int. J. Comput. Vision 13(3), 271–294 (1994)

    Article  Google Scholar 

  12. Watanabe, M., Nayar, S.K.: Telecentric optics for focus analysis. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1360–1365 (1997)

    Article  Google Scholar 

  13. Chaudhuri, S., Rajagopalan, A.N., Grafik, D.: Depth From Defocus: A Real Aperture Imaging Approach. Springer, New York (1999)

    Book  Google Scholar 

  14. Hu, H., Haan, G.D.: Low cost robust blur estimator. In: 2006 IEEE International Conference on Image Processing. IEEE (2006)

    Google Scholar 

  15. Zhuo, S., Sim, T.: Defocus map estimation from a single image. Pattern Recogn. 44(9), 1852–1858 (2011)

    Article  Google Scholar 

  16. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2007)

    Article  Google Scholar 

  17. Levin, A., Hasinoff, S.W., Green, P., Durand, F., Freeman, W.T.: 4D frequency analysis of computational cameras for depth of field extension. ACM Transactions on Graphics (TOG). ACM (2009)

    Article  Google Scholar 

  18. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5162–5170 (2015)

    Google Scholar 

  19. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)

    Google Scholar 

  20. Anwar, S., Hayder, Z., Porikli, F.: Depth estimation and blur removal from a single out-of-focus image. In: BMVC (2017)

    Google Scholar 

  21. Joseph, K., Raj, A.N.J.: Reconstruction of 3-dimensional scenes using depth from defocus and artificial neural networks trained on fractals. In: International Conference on Soft Computing and Pattern Recognition, pp. 121–129. Springer, Cham, December 2016

    Google Scholar 

  22. Hecht, E.: Optics, 4th edn. Addison Wesley, New York (2001)

    Google Scholar 

  23. Claxton, C.D., Staunton, R.C.: Measurement of the point-spread function of a noisy imaging system. JOSA A 25(1), 159–170 (2008)

    Article  Google Scholar 

  24. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(LCAV-ARTICLE-2002-001), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 1. WH freeman, New York (1982)

    MATH  Google Scholar 

  27. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  28. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. In: ACM Transactions on Graphics (TOG), vol. 26, No. 3, p. 103. ACM, August 2007

    Google Scholar 

  29. Raj, A.N.J., Staunton, R.C.: Rational filter design for depth from defocus. Pattern Recogn. 45(1), 198–207 (2012)

    Article  Google Scholar 

  30. Raj, A.N.J.: Accurate depth from defocus estimation with video-rate implementation (Doctoral dissertation, University of Warwick) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Noel Joseph Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Joseph Raj, A.N., Ma, X., Zhuang, Z. (2020). Shape Reconstruction from a Monocular Defocus Image Using CNN. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_62

Download citation

Publish with us

Policies and ethics