Skip to main content

Assessing the Robustness of Arrival Curves Models for Real-Time Systems

  • Conference paper
  • First Online:
  • 442 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11750))

Abstract

Design of real-time systems is prone to uncertainty due to software and hardware changes throughout their deployment. In this context, both industry and academia have shown interest in new trace mining approaches for diagnosis and prognosis of complex embedded systems. Trace mining techniques construct empirical models that mainly target achieving high accuracy in detecting anomalies. However, when applied to safety-critical systems, such models lack in providing theoretical bounds on the system resilience to variations from these anomalies.

This paper presents the first work that derives robustness criteria on a trace mining approach that constructs arrival-curves models from dataset of traces collected from real-time systems. Through abstracting arrival-curves models to the demand-bound functions of a sporadic task under an EDF scheduler, the analysis presented in the paper enables designers to quantify the permissible change to the parameters of a given task model by relating to the variation expressed within the empirical model. The result is a methodology to evaluate a system to dynamically changing workloads. We evaluate the proposed approach on an industrial cyber-physical system that generates traces of timestamped QNX events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahrendts, L., Ernst, R., Quinton, S.: Exploiting execution dynamics in timing analysis using job sequences. IEEE Des. Test 35(4), 16–22 (2018). https://doi.org/10.1109/MDAT.2017.2746638

    Article  Google Scholar 

  2. Baruah, S.K., Mok, A.K., Rosier, L.E.: Preemptively scheduling hard-real-time sporadic tasks on one processor. In: Real-Time Systems Symposium, 11th Proceedings, pp. 182–190. IEEE (1990). https://doi.org/10.1109/REAL.1990.128746

  3. Bini, E., Buttazzo, G.: The space of EDF deadlines: the exact region and a convex approximation. Real-Time Syst. 41(1), 27–51 (2009). https://doi.org/10.1007/s11241-008-9060-7

    Article  MATH  Google Scholar 

  4. Cardenas, A.A., Stakhanova, N.: Analysis of metrics for classification accuracy in intrusion detection. In: Empirical Research for Software Security, pp. 173–199. CRC Press (2017). https://doi.org/10.1201/9781315154855

  5. Carvajal, G., Salem, M., Benann, N., Fischmeister, S.: Enabling rapid construction of arrival curves from execution traces. IEEE Des. Test 35(4), 23–30 (2018). https://doi.org/10.1109/MDAT.2017.2771210

    Article  Google Scholar 

  6. Chakraborty, S., Künzli, S., Thiele, L.: A general framework for analysing system properties in platform-based embedded system designs. In: DATE, vol. 3, p. 10190 (2003). https://doi.org/10.1109/DATE.2003.1253607

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: a survey. IEEE Trans. Knowl. Data Eng. 24(5), 823–839 (2012). https://doi.org/10.1109/TKDE.2010.235

    Article  Google Scholar 

  8. Jazdi, N.: Cyber physical systems in the context of industry 4.0. In: 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1–4. IEEE (2014). https://doi.org/10.1109/AQTR.2014.6857843

  9. Juba, B., Musco, C., Long, F., Sidiroglou-Douskos, S., Rinard, M.C.: Principled sampling for anomaly detection. In: NDSS (2015). https://doi.org/10.14722/ndss.2015.23268

  10. Knapp, A.W.: Basic Real Analysis. Springer, Boston (2005). https://doi.org/10.1007/0-8176-4441-5

    Book  MATH  Google Scholar 

  11. Knuth, D.E., Graham, R.L., Patashnik, O., et al.: Concrete Mathematics. Adison Wesley, Boston (1989)

    MATH  Google Scholar 

  12. Lampka, K., Forsberg, B., Spiliopoulos, V.: Keep it cool and in time: with runtime monitoring to thermal-aware execution speeds for deadline constrained systems. J. Parallel Distrib. Comput. 95, 79–91 (2016). https://doi.org/10.1016/j.jpdc.2016.03.002

    Article  Google Scholar 

  13. Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus. LNCS, vol. 2050. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45318-0

    Book  MATH  Google Scholar 

  14. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact characterization and average case behavior. In: Real Time Systems Symposium, 1989, Proceedings, pp. 166–171. IEEE (1989). https://doi.org/10.1109/REAL.1989.63567

  15. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM (JACM) 20(1), 46–61 (1973). https://doi.org/10.1145/321738.321743

    Article  MathSciNet  MATH  Google Scholar 

  16. Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.D.: Evaluating computer intrusion detection systems: a survey of common practices. ACM Comput. Surv. (CSUR) 48(1), 12 (2015). https://doi.org/10.1145/2808691

    Article  Google Scholar 

  17. Neter, J.: Applied linear regression models

    Google Scholar 

  18. Neukirchner, M., Axer, P., Michaels, T., Ernst, R.: Monitoring of workload arrival functions for mixed-criticality systems. In: IEEE 34th Real-Time Systems Symposium (RTSS). pp. 88–96, December 2013. https://doi.org/10.1109/RTSS.2013.17

  19. Neukirchner, M., Lampka, K., Quinton, S., Ernst, R.: Multi-mode monitoring for mixed-criticality real-time systems. In: 2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 1–10. IEEE (2013). https://doi.org/10.1109/CODES-ISSS.2013.6659021

  20. Punnekkat, S., Davis, R., Burns, A.: Sensitivity analysis of real-time task sets. In: Shyamasundar, R.K., Ueda, K. (eds.) ASIAN 1997. LNCS, vol. 1345, pp. 72–82. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63875-X_44

    Chapter  Google Scholar 

  21. Racu, R., Jersak, M., Ernst, R.: Applying sensitivity analysis in real-time distributed systems. In: Real Time and Embedded Technology and Applications Symposium. RTAS 2005. 11th IEEE. pp. 160–169. IEEE (2005). https://doi.org/10.1109/RTAS.2005.10

  22. Salem, M., Crowley, M., Fischmeister, S.: Anomaly detection using inter-arrival curves for real-time systems. In: 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pp. 97–106. IEEE (2016). https://doi.org/10.1109/ECRTS.2016.22

  23. Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Ann. 66(1), 141–144 (2017). https://doi.org/10.1016/j.cirp.2017.04.040

    Article  Google Scholar 

  24. Shin, I., Lee, I.: Compositional real-time scheduling framework. In: Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE International, pp. 57–67. IEEE (2004). https://doi.org/10.1109/REAL.2004.15

  25. Spuri, M.: Analysis of deadline scheduled real-time systems (1996)

    Google Scholar 

  26. Tavallaee, M., Stakhanova, N., Ghorbani, A.A.: Toward credible evaluation of anomaly-based intrusion-detection methods. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(5), 516–524 (2010). https://doi.org/10.1109/TSMCC.2010.2048428

    Article  Google Scholar 

  27. Vestal, S.: Fixed-priority sensitivity analysis for linear compute time models. IEEE Trans. Software Eng. 20(4), 308–317 (1994). https://doi.org/10.1109/32.277577

    Article  Google Scholar 

  28. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation using modular performance analysis: a case study. Int. J. Softw. Tools Technol. Transfer 8(6), 649–667 (2006). https://doi.org/10.1007/s10009-006-0019-5

    Article  Google Scholar 

  29. Zhang, F., Burns, A., Baruah, S.: Sensitivity analysis for EDF scheduled arbitrary deadline real-time systems. In: 2010 IEEE 16th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 61–70. IEEE (2010). https://doi.org/10.1109/RTCSA.2010.12

  30. Zhang, F., Burns, A., Baruah, S.: Sensitivity analysis of task period for EDF scheduled arbitrary deadline real-time systems. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 3, pp. 23–28. IEEE (2010). https://doi.org/10.1109/ICCSIT.2010.5564885

  31. Zhang, F., Burns, A., Baruah, S.: Task parameter computations for constraint deadline real-time systems with EDF scheduling. In: 2010 International Conference on Computer Design and Applications (ICCDA), vol. 3, pp. V3–553. IEEE (2010). https://doi.org/10.1109/ICCDA.2010.5541363

Download references

Acknowledgments

This work was supported by grants FONDECYT 11160375 and CONICYT-Basal Project FB0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salem, M., Carvajal, G., Liu, T., Fischmeister, S. (2019). Assessing the Robustness of Arrival Curves Models for Real-Time Systems. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29662-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29661-2

  • Online ISBN: 978-3-030-29662-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics