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3.1 Introduction

A dataspace is an emerging approach to data management which recognises that in
large-scale integration scenarios, involving thousands of data sources, it is difficult
and expensive to obtain an upfront unifying schema across all sources. Data is
integrated on an “as-needed” basis with the labour-intensive aspects of data integra-
tion postponed until they are required. Dataspaces reduce the initial effort required to
set up data integration by relying on automatic matching and mapping generation
techniques. This results in a loosely integrated set of data sources. When tighter
semantic integration is required, it can be achieved in an incremental “pay-as-you-
go” fashion by detailed mappings between the required data sources. This chapter
introduces dataspaces and the fundamentals of “best-effort” data management.

The chapter is structured as follows: Sect. 3.2 discusses big data and the challenge
of data integration with the long tail of data variety, Sect. 3.3 examines the cost of
data management, and Sect. 3.4 addresses the emerging trend of approximate, best-
effort and “Good Enough” approaches to data management. Section 3.5 provides a
detailed explanation of the fundamentals of dataspaces, including their principles
and a comparison to contemporary data management approaches. Section 3.6 covers
dataspace support platforms, support services, life cycle, and specific
implementations. Section 3.7 details the technical challenges for dataspaces, Sect.
3.8 sets out ongoing research challenges for dataspaces, and finally, a summary is
provided in Sect. 3.9.

© The Author(s) 2020 45
E. Curry, Real-time Linked Dataspaces,
https://doi.org/10.1007/978-3-030-29665-0_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29665-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-29665-0_3

46 3 Dataspaces: Fundamentals, Principles, and Techniques
3.2 Big Data and the Long Tail of Data

The emergence of new platforms for decentralised data creation such as the Internet of
Things and edge computing, the increasing availability of open data on the web [68§],
and the increasing number of data sources inside organisations [69] bring an unprece-
dented volume of data to be managed. In addition to coping with the volume of data, data
consumers in the big data era need to cope with data variety where data is created under
different contexts and requirements [25]. Consuming data comes with the intrinsic cost
of repurposing, adapting, and ensuring data quality for its new context. Data at large
scales coming from distributed sources can be erroneous, inconsistent, and incomplete
for some users’ requirements. Jagadish et al. state that “Big Data increasingly includes
information provided by increasingly diverse sources, of varying reliability. Uncer-
tainty, errors, and missing values are endemic, and must be managed” [70].

The growth in the number of data sources and the increasing scope of information
systems leads to a long tail of data variety [71]. The long tail of data variety (see
Fig. 3.1) reflects the distribution of the frequency of use of conceptual elements: in a
large domain of interest few entities and attributes have a high frequency of use,
followed by a long tail distribution of entities and attributes which have lower
frequencies of use. While some concepts are central across many different areas,
most of the concepts are specific to a context. In the scientific domain, for example,
the long tail of scientific data [72] reflects the conceptual distribution of scientific data.

Traditional relational data management environments were focused on data that
mapped to popular business processes and were regular enough to fit into a relational
model. The long tail of data variety expresses the shift towards the expanding coverage
of data that must be managed; it is less frequently used, more decentralised, and less
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Fig. 3.1 The long tail of data variety. Adapted from [71]
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structured. Given this shift in the data landscape, there has been an evolution in the
information processing landscape to meet these new challenges. Big Data technologies
are moving towards supporting the long tail of data variety to enable consumers to have
a richer and more comprehensive model of their domain that they can search, query,
analyse, and navigate. However, managing this long tail of data comes with a cost.

3.3 The Changing Cost of Data Management

Historically, the construction of information systems and databases has evolved
following a model dependent on the cost of formalising a domain and the associated
value derived from the efficiency gain. Data management practices for organisations
have prioritised the formalisation (conceptualisation) of domains within a centralised
model with high levels of control, which have resulted in high data management
costs. Propelled by the growth of data and the increasing number of systems and
devices producing data, data management requirements are shifting towards the need
to cope with data which is generated in a decentralised manner [73, 74], data which
is intrinsically heterogeneous, and data with varying levels of structure and different
contexts. These trends are contributing to the long tail distribution of data variety.
According to Brodie and Liu [69]:

The consistency of all views of the same tuple leads the underlying belief in a single version
of the truth and the concept of a global schema. The dramatic success of relational
technology has propelled data modelling and management requirements beyond the model-
ling and processing capabilities of the relational technology. The phrase ‘single version of
the truth’ seems intuitively correct and may assure in a confusing world, but it is almost
entirely false in the real world. The underlying assumption of the relational world is not just
semantic homogeneity but also ontological homogeneity while in reality, semantic hetero-
geneity dominates. Data management vendors promote the ‘single version of truth’ assump-
tion as a highly desirable objective and something that their products can provide. Our
Digital Universe is no longer a semantically homogeneous set of a few databases but
Information Ecosystems of 100s or 1000s of semantically heterogeneous databases to be
managed and integrated collectively [69].

Franklin et al. [2] highlight that “in data management scenarios today itis rarely the
case that all the data can be fit nicely into a conventional relational [database]”. Diving
deeper into the practical challenges of managing decentralised and heterogeneous data,
Franklin et al. [2] examine the problem along two problem dimensions (see Fig. 3.2):

* Administrative Proximity: Describes how data sources within a space of interest
are close or far in terms of control. A close control means that many assumptions
can hold concerning guarantees such as data quality and consistency, while a far
control refers to a loosely coupled environment and a lack of coordination on the
data sources within the data management system.

» Semantic Integration: Refers to the degree of how much the data schemas within
the data management system are matched up. That includes, for example, the
types, attributes, and names used within the data sources. On one end of the
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Fig. 3.3 Data management cost associated (administration and semantic) with increasing numbers
of schema and sources. Adapted from [71]

spectrum, all data conform to an agreed-upon schema, while on the other end of
the spectrum schema information is lacking. This dimension is relevant to how
much semantically rich querying can be done.

In this view, data management should be considered as a task that takes place in a
spectrum defined by these two dimensions. Within a Database Management System
(DBMS), administrative control and semantic homogeneity are key to the data
modelling, querying, and integration approaches that depend on the relational data
model. This results in a high upfront cost for DBMS, which only gets more
significant when dealing with the long tail of data, as illustrated in Fig. 3.3.
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The need to develop more effective and efficient approaches for dealing with
decentralised semantically heterogeneous environments is highlighted by the Lowell
Self-Assessment report [75], which is a roadmap for the future of research in the
database community: “A semantic heterogeneity solution capable of deployment at
Web scale remains elusive. At Web scale, this is infeasible, and query execution
must move to a probabilistic world of evidence accumulation and away from exact
answers. Therefore, one must perform information integration on-the-fly over per-
haps millions of information sources” [75].

3.4 Approximate, Best-Effort, and ‘“Good Enough”
Information

Not every situation or decision requires information that is 100% fresh and accurate
[76], as many information consumers can efficiently work with information at a
lower threshold. A perfect result is not always necessary, while a lower-quality or
less-than-optimal result is sufficient [77]. By relaxing the need for computing to the
highest quality, approximate approaches can be used to improve the throughput and
response time of services.

Many applications that require data processing can tolerate a reduced quality in
the result of the data analysis. Consider the rise of “Recognition” applications, a new
class of popular mobile edge applications that range from recognising a single user’s
surroundings and augmenting it with information, advice, and decision support, to
analysing an array of images from traffic cameras within a smart city to manage
traffic. Recognition applications may have the possibility to trade off the accuracy of
analysis with the responsiveness and computation necessary for the analysis.

The Pareto Principle (or the 80/20 rule) has wide application in many areas from
economics and market analysis to business strategy, where it has been observed that
20% of the effort delivers 80% of the results. Within computer science, the principle
has been observed within many problems from fixing bugs to writing code. The
principle can help us to prioritise actions, for example, focus on the 20% of software
bugs that cause 80% of the system crashes. Data management approaches can take
advantage of the fact that many users and applications can tolerate approximate
results; a trade-off between exact and approximate results can minimise data inte-
gration costs and the response time (both network and compute), and maximise
throughput. Relaxing the need for maximum quality reduces the required data
integration and computation workload, enables a significant reduction of response
time, and increases throughput.

Approximate approaches can reduce semantic integration costs due to their ability
to deal with the uncertainties of semantics. Approximate approaches can operate in
environments with low-cost agreements on administration proximity and semantic
integration, and at the same time, achieve acceptable levels of precision and recall
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comparable to exact models. These characteristics make these approaches suitable
for tackling the long tail of data variety.

Approximate “good enough’ approaches are distinguished by a matching model
that is not Boolean and supports one form or another of uncertainty, probability, or
ranking of the results. This gives the matching model more flexibility to deal with
data heterogeneity and thus, improves its ability to address lower levels of admin-
istrative control and semantic integration.

The classic relational paradigm defined the use of structured query languages
(such as SQL) as the primary mechanism for user—data interaction. SQL offers crisp
and accurate answers for relatively small numbers of homogeneous sources [76],
typically managed in a centralised and coordinated manner. Within the approximate
model, the underlying assumptions of user-data interaction and the use of structured
queries to cope with the long tail of data were revisited by [39, 76]:

From: Clean, semantically homogenous and centralised schema
To: Semantically heterogenous and decentralised schema

As schemas are managed in a decentralised way, different conceptualisations may
exist in the same schema. “We can no longer pretend to live in a clean world . ...”
[76]. “Unless the reader of a message or document is specifically programmed for it,
there will likely be confusion. The meaning of the message, the interpretation of its
fields, and much more, will be subject to approximation and a loss of clarity.
Different companies, different countries, and even different regions within a country
have different understandings of data” [76].

From: Manual query-schema mapping
To: Automatic query-schema mapping

Most of the interaction with structured data is dependent on manual mapping
among elements of a structured query and schema elements. With the growth in the
schema-size and the number of available data sources, the cost associated with this
manual mapping process becomes prohibitive (see Fig. 3.3) requiring automated and
semi-automated query-mapping techniques.

From: Absolute precision/full recall in a single query
To: Relaxed precision/recall in multiple queries

As schemas grow and as users cross database boundaries, the cost associated with
building structured queries grows exponentially. In this scenario, the expectation of
getting a correct and complete answer in a single interaction should be exchanged by
approximate answers which are obtained through multiple interactions. As Helland
states [76] “Too much, too fast—you need to approximate.”

By creating data management approaches that utilise approximate and best-effort
techniques, it is possible to reduce the cost of dealing with the long tail of data
variety. Approximate approaches trade off administrative and integration costs with
reduced accuracy of results. “Best-Effort” thinking is at the core of the new
dataspace paradigm of data management (Fig. 3.4).
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Fig. 3.4 The long tail of data and the improved scalability of data management with approximate
and best-effort approaches

3.5 Fundamentals of Dataspaces

A dataspace is an emerging approach to data management that is distinct from
current approaches. The dataspace approach recognises that in large-scale integra-
tion scenarios, involving thousands of data sources, it is difficult and expensive to
obtain an upfront unifying schema across all sources [2]. Dataspaces are not a data
integration approach [2]; they shift the emphasis to providing support for the
co-existence of heterogeneous data that does not require a significant upfront
investment into a unifying schema. Data is integrated on an “as-needed” basis
with the labour-intensive aspects of data integration postponed until they are
required. Dataspaces reduce the initial effort required to set up data integration by
relying on automatic matching and mapping generation techniques. This results in a
loosely integrated set of data sources. When tighter semantic integration is required,
it can be achieved in an incremental “pay-as-you-go” fashion by detailed mappings
among the required data sources. This section details the fundamentals of the
dataspace paradigm, including their core principles, comparison to existing
approaches, support platform, data services, life cycle, and research challenges.

3.5.1 Definition and Principles

First introduced by Franklin, Halvey, and Maier in 2005 [2], a dataspace can contain
all the data sources for an organisation regardless of its format, location, or model.
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Table 3.1 Definitions of a “Dataspace” from literature

Definition Source

“Dataspaces are not a data integration approach; rather, they are more of a data [78]
co-existence approach. The goal of dataspace support is to provide base functionality
over all data sources, regardless of how integrated they are.”

“A dataspace system manages the large-scale heterogeneous collection of data distrib- | [79]
uted over various data sources in different formats. It addresses the structured, semi-
structured, and unstructured data in coordinated manner without presuming the semantic
integration among them.”

“to provide various of the benefits of classical data integration, but with reduced upfront | [80]
costs, combined with opportunities for incremental refinement, enabling a “pay-as-you-
go” approach.”

“enable agile data integration with much lower upfront and maintenance costs.” [81]

“A dataspace system processes data, with various formats, accessible through many [82]
systems with different interfaces, such as relational, sequential, XML, RDF, etc. Unlike
data integration over DBMS, a dataspace system does not have full control on its data,
and gradually integrates data as necessary.”

“Dataspace Support Platforms envision data integration systems where the amount of | [83]
upfront effort is much smaller. The system should be able to bootstrap itself and provide
some useful services with no human intervention. Over time, through user feedback or
as sources are added and the data management needs become clearer, the system evolves
in a pay-as-you-go fashion.”

“Dataspace is defined as a set of participants and a set of relationships among them.” [84]

Each data source (e.g. database, CSV, web service) in the dataspace is known as a
participant. The dataspace can model the relations (or associations) between data in
different participants. In its purest form, a dataspace is a set of participants and the
inter-relations between them [2]. The modelling of the dataspace can capture
different types of relations among participants, from the mapping of the schemas
between two participants to capturing that Participant A is a replica of Participant B.

The dataspace concept has gained traction with a number of different groups
exploring its usefulness for managing data from different domains and investigating
the design of support services. These works have provided a number of definitions
for a dataspace as captured in Table 3.1; most of these build on the initial concept
from [2].

Dataspaces, as a paradigm of data management, push the boundaries of traditional
databases along the dimensions of administrative proximity and semantic integra-
tion, as discussed in Sect. 3.3. Within a dataspace, data sources are not tightly
controlled, and full semantic integration is not guaranteed. Data management within
a dataspace is defined by different principles, as described by Halevy et al. [78]:

* A dataspace must deal with data and applications in a wide variety of formats
accessible through many systems with different interfaces. A dataspace is
required to support all the data rather than leaving some out because they do
not yet conform to a specific schema or data constraint.
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Table 3.2 DBMS vs. Dataspace.

Adapted from [85]
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DBMS Dataspace
Model Relational All
Formats Homogeneous Heterogeneous
Schema Schema first, data later Data first, schema later or never
Control Complete Partial
Leadership Top-down Top-down/Bottom up
Query Exact Approximate
Integration Upfront Incremental
Architecture Centralised Decentralised
Real-time data processing No Applicable

e A dataspace must provide an integrated means of search, query, update, and
administration. The dataspace does not subsume participant data sources and is
not in full control of the data. The same data may also be accessible and
modifiable through an interface native to the system hosting the data.

* Queries to a dataspace may offer varying levels of service, and in some cases may
return best-effort or approximate answers. For example, when individual data
sources are unavailable, the best answers available are returned using the data
accessible at the time of the query.

» The dataspace must provide pathways to improve the integration among the data
sources in a “pay-as-you-go” fashion.

3.5.2 Comparison to Existing Approaches

Data sources in a dataspace co-exist, and co-evolve over time, and are not subsumed
by a rigid data management system. This is in stark contrast to the traditional data
management approach based on relational databases. A comparison of the dataspace
paradigm to traditional DBMS is provided in Table 3.2.

3.6 Dataspace Support Platform

The goal of a Dataspace Support Platform (DSP), as detailed in Fig. 3.5 [2], is to
provide a set of common related support services to all data sources within the
dataspace (e.g. keyword search). The DSP provides a base functionality needed for
data integration that enables developers to focus on application-specific challenges
instead of the common data integration tasks faced when working with multiple data
sources. To achieve this goal, the DSP must support all the data in the dataspace
requiring it to work, with a large variety of data formats and system interfaces. A
dataspace does not host data; the data resides in their native systems. As such, a
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Fig. 3.5 A dataspace support platform. Adapted from [2]

dataspace is not in full control of the data and may only provide weak guarantees of
consistency and durability. When stronger guarantees are desired, more effort can be
put into making agreements among the various systems. To this end, a DSP must
provide tools to support the tighter integration of data in a pay-as-you-go manner. As
a result of the varying levels of data integration, the DSP offers varying levels of
service and often will only be able to provide best-effort or approximate results using
the data accessible at the time of the query [2].

3.6.1 Support Services

Services within a DSP need to support heterogeneous data types and multiple access
methods to participants within the dataspace. A core set of support services, as
identified by [2] are:

* Catalog: A catalog is an inventory of data elements from participants containing
basic information about each one, including source, name, location, size, creation
date, and owner. A catalog service can provide a basic browse interface across the
dataspace for users. The catalog is a core infrastructure that is used by other
dataspace support services.

» Search: Search is the primary mechanism used by end-users to deal with large
collections of unknown data. Search is based on a similarity analysis of data that
results in a ranked list of results relevant to an end-user’s keywords. The search
service should examine all the contents of a dataspace, including metadata.
Search interfaces within a DSP should support the interactive refinement of the
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results (e.g. facets) so that users can explore a dataset and incrementally improve
the search results. The process of refinement could result in a database-style
structured query.

e Query: The level of support for expressive queries will vary across participants in
the dataspace, as some will provide expressive query languages, while others will
only have limited interfaces for querying (e.g., web services). The query service
of a DSP needs to provide for (1) metadata queries to support the discovery of
data sources, (2) monitoring of data sources, (3) local storage and indexing to
support associations among participants, increase query expressivity on sources
with limited querying functionality, and improve data source availability.

* Discovery: It locates participants in the dataspace and supports the creation of
relationships among them in an incremental manner.

Not every participant in a dataspace will support all DSP functions. Thus, there
will be the need to extend data sources in various ways (e.g. search and query). This
requires the services to support dataspace participants in an incremental manner that
can be applied in real time to existing as well as new participants joining the
dataspace. The incremental nature of the support services is a core enabler of the
pay-as-you-go paradigm in dataspaces.

3.6.2 Life Cycle

Similar to any other data management approach, a dataspace has a life cycle of
operation. Hedeler et al. [80] have proposed a conceptual life cycle for dataspaces,
illustrated in Fig. 3.6, consisting of seven phases with transitions between phases. As
dataspaces can be used within different contexts, only a subset of the phases and
transitions in the life cycle may be relevant to a specific implementation or deploy-
ment. The key phases in the life cycle are:

N|

~ >|  Initialise dataspace =<
Make necessary changes ‘l,
I Test/Evaluate dataspace |
React to changes 1’ React to
in sources Deploy dataspace | feedback
v v v
Maintain dataspace: Use dataspace: Improve dataspace: ||
React to changes in sources Search/query dataspace Gather and react to feedback
\ 4

Disband dataspace

Fig. 3.6 Conceptual life cycle of a dataspace [80]
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Initialise: Identification of the data sources to be accessible within the dataspace
and the integration of those resources. Sub-phases can include identifying data
sources, designing integration schema, identifying matchings, deriving map-
pings, and deriving integration schemas.

Test/Evaluate: Testing and evaluation of the dataspace before deployment.
Deployment: Enabling access to the dataspace for users and applications, includ-
ing the deployment of the dataspace on its physical computing infrastructure.
Use: Support users and applications accessing and using the dataspace, including
the search and query of sources in the dataspace.

Maintain: Supporting changes to the participants in a dataspace, including adding
and removing a source.

Improve: Improving the dataspace during its operation, including the integration
of participants. Explicit and implicit user feedback can be a key source of
improvement for the dataspace.

Disband: Gracefully close the dataspace by removing the participants and free
resources.

As noted by [80], the phases Use, Maintain, and Improve are co-existing to

support the “pay-as-you-go” model of data management.

3.6.3 Implementations

The dataspace approach has been implemented using several different technology
stacks and used within a number of different contexts, including:

Personal Dataspace: Focusing on the management of the information on a
person across various sources, from their desktop [86] and mobile devices to
their presence on social networks. Works include: iDM [87], SEMEX [88, 89],
iMeMeX [90, 91], CoreSpace [92], and PDSP [93].

Scientific Dataspace: Working with distributed sources of scientific data includ-
ing astronomy data [94], biomedical data [81, 95], life sciences data with
ALADIN [96] and LinkedScales [97], and process materials with the Virtual
Data Space [98, 99].

Enterprise/Industrial Dataspace: Targets the use of a dataspace to bring together
data from different organisations within the context of energy management [100],
air travel (Airbus Skywise), Industry 4.0 [101], or a digital library [102].
Global/Web Dataspaces (Web of Data): Efforts at global or web-scale dataspaces
include PayGo [103] and OCTOPUS [104]. The use of linked data technologies
to publish data on the web is enabling the linkage of records in distinct databases
that can be viewed as a global dataspace [43]. They can have a multi-domain
nature such as the Linked Open Data Cloud [105], or a domain-specific purpose,
such as financial data [56].

Software Development: The use of a dataspace to support software artefact
management [106].
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o Internet of Things/Smart Environment Dataspaces: Recent works have investi-
gated the use of dataspaces to support the Internet of Things or smart environ-
ments [4, 107] and the data they produce.

3.7 Dataspace Technical Challenges

The key technical challenges to realising a dataspace as identified by Halevy et al.
[78] centre around the need to answer queries, to introspect on the content of the
answers, and to leverage human interaction to enhance the semantic relationships
within a dataspace. In this section, we briefly summarise these challenges as detailed
by Halevy et al. [78].

3.7.1 Query Answering

In order to understand the fundamental challenges of querying a dataspace, we
briefly summarise modes in which we expect users to interact with a dataspace.

Participants and Relationships Dataspaces are modelled as a rich collection of
participants and relationships that contain all of the information relevant to a
particular organisation or entity regardless of its format, location, or data repository.

Queries Since multiple data models need to be supported within a dataspace,
queries will also come in a variety of languages; from keyword searchers to
structured forms and formal query languages. The dataspace support platform
needs to provide mechanisms for executing queries in different languages and return
results from all the relevant sources in the dataspace.

Answers Answers to queries within a dataspace follow a best-effort model which is
different from queries over traditional databases. Answers can come in the following
forms [78]:

* Ranked: A ranked set of answers to structured queries and/or keyword search.
Rankings may be based on different methods (e.g. relatedness, similarity) or
approximate matchings from different sources.

e Heterogeneous: Answers can come from different sources using different data
models and schemas.

* Sources as Answers: Answers can include pointers to sources where additional
answers can be found.

» [terative: User query interaction follows an iterative approach with the user
posing a sequence of queries, each being a refinement or modification of the
previous query.

* Reflection: Completeness of the query coverage and its accuracy is included in the
answer.
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* In situ: Answers can be references to, rather than copies of, the data.

Query Answering model
In order to support the above query answering model, dataspaces need to overcome a
number of challenges [78].

Challenge 1: Develop a formal model for studying query answering in
dataspaces

e (l.1: Develop intuitive semantics for answering a query that takes into consid-
eration a sequence of earlier queries leading up to it.

e (C1.2: Develop a formal model of information gathering tasks that include a
sequence of lower-level operations on a dataspace.

e (l.3: Develop algorithms that given a keyword query and a large collection of
data sources, will rank the data sources according to how likely they are to contain
the answer.

* Cl.4: Develop methods for ranking answers that are obtained from multiple
heterogeneous sources (even when semantic mappings are not available).

Obtaining Answers
Within a dataspace, the answers to queries come from heterogeneous data that
may use different terms at both the schema level and the data level. Dataspaces
do not rely on semantic mappings, and even when mappings exist, they may be
partial or approximate. This poses a significant challenge to answering queries in
a dataspace [78].

Challenge 2: Develop methods for answering queries from multiple sources that
do not rely solely on applying a set of correct semantic mappings

* (C2.1: Develop techniques for answering queries based on the following ideas, or
combinations thereof:

— Apply several approximate or uncertain mappings and compare the answers
obtained by each.

— Apply keyword search techniques to obtain some data or some constants that
can be used in instantiating mappings.

— Examine previous queries and answers obtained from data sources in the
dataspace and try to infer mappings between the data sources. Whenever we
have access to queries that span multiple data sources, try to infer from them
how the sources are related (e.g. the join attributes should provide some hint of
common domains).

e (C2.2: Develop a formal model for approximate semantic mappings and for
measuring the accuracy of answers obtained with them.

e (C2.3: Given two data sets that use the same terminology but for different data
models, develop automatic best-effort methods for translating a query over one
data set onto the other.
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3.7.2 Introspection

The data in a dataspace will be uncertain and often inconsistent. The uncertainty will
increase due to the best-effort query answering. Answers can be different, depending
on the level of latency and completeness within the dataspace. It is often the case that
inconsistencies lead to a very particular kind of uncertainty: which of a set of
conflicting data values is correct. Both uncertainty and inconsistency need to be
resolved, and lineage is often the only method available [78]. A dataspace needs to
be able to introspect about lineage, uncertainty, and inconsistency.

Lineage, Uncertainty, and Inconsistency
The challenge is for a dataspace to provide a single unified mechanism for modelling
uncertainty, inconsistency, and lineage [78].

Challenge 3: Develop formalisms that enable modelling uncertainty, inconsis-
tency, and lineage in a unified fashion.

e (3.1: Develop formalisms that capture uncertainty about common forms of
inconsistency in dataspaces.

e (3.2: Develop formalisms for representing and reasoning about external lineage.

e (3.3: Develop a general technique to extend any uncertainty formalism with
lineage and study the representational and computational advantages of doing so.

* (3.4: Develop formalisms where uncertainty can be attached to tuples in views
and view uncertainty can be used to derive uncertainty of other view tuples.

Finding the Right Answers

Given the challenges of lineage, uncertainty, and inconsistency of query answers in
the dataspace, it becomes necessary to determine a “good” answer. Candidate
answers can differ along multiple dimensions [78], including:

* Relevance to the query

e Certainty of the answer (or whether it contradicts another answer)
* Completeness and precision requested by the user

* Maximum latency required in answering the query

Challenge 4: Define metrics for comparing the quality of answers and answer
sets over dataspaces, and efficient query processing techniques.

e (4.1: Develop query-language extensions and their corresponding semantics that
enable specifying preferences on answer sets along the dimensions of complete-
ness and precision, certainty and inconsistency, lineage preferences and latency.

e (4.2: Define notions of query containment that take into consideration complete-
ness and precision, uncertainty and inconsistency and lineage of answers, and
efficient algorithms for computing containment.

e (4.3: Develop methods for efficient processing of queries over uncertain and
inconsistent data that conserve the external and internal lineage of the answers.
Study whether existing query processors can be leveraged for this goal.
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3.7.3 Reusing Human Attention

Every participant within a dataspace is provided with a basic level of service when
they join it. Over time the dataspace should evolve by forming tighter semantic
integration between participants as needed. One key mechanism to achieve this goal
is to leverage users’ attention as they interact with a dataspace. By analysing the
interaction of a user with different participants within the dataspace, we can gain
knowledge about the relationships between data sources [78].

Challenge 5: Develop methods that analyse users’ activities when interacting
with a dataspace and create additional meaningful relationships between sources in
a dataspace or other enhancements to the dataspace.

e (5.1: Develop techniques that examine collections of queries over data sources
and their results to build new mappings between disparate data sources.

e (5.2: Develop algorithms for grouping actions on a dataspace into tasks.

* (5.3: Develop facilities for explicit enhancement of dataspace information that
give a high return on the investment of human attention.

e (C5.4: Develop a formal framework for learning from human attention in
dataspaces.

3.8 Dataspace Research Challenges

The dataspace approach to data management raises several research challenges that
need to be tackled to create effective and efficient DSPs. Research challenges
include:

* Data Models, Search, and Query: A dataspace needs to support the various data
models and the different query languages of the participants with varying levels
of query expressivity [2]. Research is needed to support a broad view of data
modelling [83, 97, 108, 109] and to enable querying over the heterogeneous data
models, from basic queries to context-based queries [110] and schema-agnostic
question answering systems [111]. There has been limited work on addressing the
requirements of real-time processing of events and streams and the investigation
of relevant support services for dataspaces.

* Discovery: A key challenge within a dataspace is to locate relevant participants in
the dataspace, identify relationships among participants, and improve the under-
standing of existing relationships among participants. [2, 107, 112, 113].

* Reusing Human Attention: The primary focus of research in this area looks to
capture “user attention” to support management in the dataspace [114—
117]. Leveraging user’s attention for improving integration in dataspaces is
considered an integral part of any dataspace application or platform
[2, 78]. Roomba [118] exploits user feedback for improving integration of
dataspaces using a decision-theoretic technique to quantify the desirability state
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of a dataspace. DSToolkit [81, 119] uses end-user feedback for annotating,
selecting and refining schema mappings, and for estimating the precision and
recall of query results in a dataspace. MOBS [120] focuses on collecting feedback
from many users to make a decision based on the combined result.

e Storage and Indexing: A key challenge for dataspaces is dealing with the
heterogeneity of storage and indexing mechanisms of the various participants to
create a uniformly indexed dataspace [2, 121]. Creating local storage and the
placement of data and indices for optimal performance within a wide-area
deployment are also active areas of research [122].

* Correctness Guarantees: Enabling access to a set of disparate data sources with
confidence is a crucial challenge for dataspaces. To achieve this, there are a
number of challenges in the quality of results, the effects and permanence of
updates, and varying levels of service [2, 123], in a heterogeneous, highly
autonomous environment.

e Theoretical Foundations: The concept of dataspaces opens several questions on
their theoretical foundation. There is a need for research on the formal under-
standing of data governance [1], data models, relations among participants, and
queries in a dataspace [2, 81].

3.9 Summary

In this chapter, we explored the challenges associated with data management and
integration in the era of big data. Within large-scale integration scenarios that
involve thousands of data sources, it is difficult and expensive to obtain an upfront
unifying schema across all sources due to the challenge posed by the long tail of data
variety. We detailed the dataspace paradigm as an emerging data management
approach that embraces the notion of “good enough” and best-effort approximations
as a means of data management. Data is integrated on an “as-needed” basis with the
labour-intensive aspects of data integration postponed until they are required.
Dataspaces reduce the initial effort required to set up data integration by relying
on automatic matching and mapping generation techniques. When tighter semantic
integration is required, it can be achieved in an incremental “pay-as-you-go” fashion
by detailed mappings among the required data sources. This chapter detailed the
fundamentals of the dataspace paradigm, including their core principles, comparison
to existing approaches, support platform, support services, life cycle, and research
challenges.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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