Chapter 7 ®)
Querying and Searching Heterogeneous e
Knowledge Graphs in Real-time Linked
Dataspaces

André Freitas, Sean O’Ridin, and Edward Curry

Keywords Knowledge graphs - Query processing - Data search - Best-effort -
Dataspace

7.1 Introduction

As the volume and variety of data sources within a dataspace grow, it becomes a
semantically heterogeneous and distributed environment; this presents a significant
challenge to querying the dataspace. Approaches used for querying siloed databases
fail within large dataspaces because users do not have an a priori understanding of all
the available datasets. This chapter investigates the main challenges in constructing
query and search services for knowledge graphs within a linked dataspace. Search
and query services within a linked dataspace do not follow a one-size-fits-all
approach and utilise a range of different techniques to support different characteris-
tics of data sources and user needs.

This chapter is structured as follows: Section 7.2 explores the difference between
querying and searching knowledge graphs in a Real-time Linked Dataspace and
details the high-level functionality needed by the search and query service.
Section 7.3 introduces search and query over dataspaces, discusses the challenges
with data heterogeneity in a dataspace, and identifies the core requirement for the
search and query service. State-of-the-art analysis of existing approaches to
searching and querying is provided in Sect. 7.4. Section 7.5 details an analysis of
the emerging design features for creating schema-agnostics query mechanisms, and
the chapter concludes in Sect. 7.6.
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7.2 Querying and Searching in Real-time Linked
Dataspaces

Driven by the adoption of the Internet of Things (IoT), smart environments are
enabling data-driven intelligent systems that are transforming our everyday world,
from the digitisation of traditional infrastructure (smart energy, water and mobility),
the revolution of industrial sectors (smart autonomous cyber-physical systems,
autonomous vehicles, and Industry 4.0), to changes in how our society operates
(smart government and cities). To support the interconnection of intelligent systems
in the data ecosystem that surrounds a smart environment, there is a need to enable
the sharing of data among intelligent systems.

7.2.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among
a group of intelligent systems within a smart environment [1] (see Chap. 2). In this
book, we advocate the use of the dataspace paradigm within the design of data
platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management that is distinct from
current approaches. The dataspace approach recognises that in large-scale integra-
tion scenarios, involving thousands of data sources, it is difficult and expensive to
obtain an upfront unifying schema across all sources [2]. Within dataspaces, datasets
co-exist but are not necessarily fully integrated or homogeneous in their schematics
and semantics. Instead, data is integrated on an as-needed basis with the labour-
intensive aspects of data integration postponed until they are required. Dataspaces
reduce the initial effort required to set up data integration by relying on automatic
matching and mapping generation techniques. This results in a loosely integrated set
of data sources. When tighter semantic integration is required, it can be achieved in
an incremental pay-as-you-go fashion by detailed mappings among the required data
sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data
platform for intelligent systems within smart environments. The RLD combines the
pay-as-you-go paradigm of dataspaces with linked data and real-time stream and
event processing capabilities to support a large-scale distributed heterogeneous
collection of streams, events, and data sources [4]. In this chapter, we focus on the
search and query support services of the RLD.

Dataspaces assume that the querying capability of the participants in the
dataspace is not equal, and they do not assume the support of any specific standards
to support data sharing. By building on web (URIs and HTTP) and semantic web
standards (such as the Resource Description Framework and RDF Schema [RDFS]),
and vocabularies, RLD can effectively reduce barriers to data publication, consump-
tion, and reuse within a dataspace. Participants in a linked dataspace expose their
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data as Knowledge Graphs (KGs), which can be interlinked and integrated with
other datasets, creating an interlinked dataspace.

RLDs and generic dataspaces share more commonalities than differences, and the
analysis provided in this chapter is relevant to both. In this chapter, the scope of the
search and query service is mainly focused on non-streaming data sources with the
search and query of live data streams discussed in Part III of this book. The
discussion in this chapter builds on our earlier analysis of querying heterogeneous
linked data sources [111] by contextualising the challenges within Real-time Linked
Dataspaces [4].

7.2.2 Knowledge Graphs

Knowledge graphs pose challenges inherent to querying highly heterogeneous and
distributed data. To query, data users must first be aware of which datasets poten-
tially contain the data they want and what data model describes these datasets, before
using this information to create structured queries. This query paradigm is deeply
attached to the traditional perspective of structured queries over databases and does
not suit the heterogeneity, distributiveness, or scale we expect from the datasets and
KGs within a linked dataspace. It is impractical to expect users to have a previous
understanding of the structure and location of datasets within the linked dataspace.
Letting users expressively query relationships in the data while abstracting them
from the underlying data model is a fundamental problem for massive data con-
sumption, which, if not addressed, will limit the utility of dataspaces for consumers.

Consider a journalist compiling a list of facts regarding public personalities and
their family connections. The journalist can express his or her information needs as
natural language queries, such as “Who are the children of Marie Curie married to?”
Document search engines cannot currently provide a level of query interpretation
that could point directly to the final answer. With a traditional search engine, the
journalist must navigate through the links and read the content of each candidate
page the search engine returns.

The information that can answer this query may be available in the linked
dataspace. However, to access it, users must know the location and structure of
relevant datasets and the syntax of the query language. There exists a semantic gap
between the user’s information need, which is expressed in a generic natural
language query and the data representation in the target dataset. The query’s terms
and structure differ from the data representation in the dataset. The provision of
intuitive and flexible query mechanisms that can approximate users from an
unconstrained amount of data represents a fundamental challenge of querying
knowledge graphs in a linked dataspace.
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7.2.3 Searching Versus Querying

Query mechanism for structured data which supports data consumers with expres-
sive queries (queries which can make use of the conceptual structure behind the
database and the supported database operations) and abstracts them away from the
representation (being schema-agnostic) is an active research challenge.

The simplicity and intuitiveness of search engine interfaces, where users search
the web using keyword queries, was a crucial element in the widespread adoption of
web search engines and in the process of maximising the value of the information
available on the web. On the other side of the spectrum, from the perspective of
structured/semi-structured data consumption, users expect precise and expressive
queries. In this scenario, most users query data with the help of structured query
languages such as SQL or SPARQL. In a large-scale data scenario, structured query
approaches do not thoroughly address all search and query usability requirements
from all categories of users (such as being accessible to casual users and supporting
lower query construction times for expert users).

With the web, users have recognised search to be a first-class activity. The search
paradigm used in the web, however, cannot be directly transported for querying
structured data. Keyword search over data does not provide the desired expressivity,
while traditional structured query mechanisms have poor usability. Query expres-
sivity and usability are two dimensions of database querying which define trade-off
behaviour. Different categories of query/search approaches have emerged, targeting
the trade-off between usability and expressivity (see Fig. 7.1) and have achieved
some level of success.

| Expressivity >

@

Usability

Keyword Entity- Structure SPARQL
search centric search / sQL

Fig. 7.1 The expressivity—usability trade-off for querying over structured data. The green dots
indicate that an ideal query mechanism must provide both high expressivity and high usability
[111]. Adapted from [161]



7.2 Querying and Searching in Real-time Linked Dataspaces 109

7.2.4 Search and Query Service Pay-As-You-Go Service
Levels

The objective of the Search and Query service is to help developers, data scientists,
and users to find relevant datasets within the dataspace. Users can navigate the
dataspace by entities (if supported), or by performing a search or query on the
datasets. A key challenge in developing search and query services over heteroge-
neous sources in a dataspace is the expressivity—usability trade-off. An ideal
dataspace query mechanism must provide both high expressivity and high usability.
As data sources are more tightly integrated into the dataspace, and move towards
forming a knowledge graph, the search and query service can offer more sophisti-
cated functionality.

Dataspace support services follow a tiered approach to data management that
reduces the initial cost and barriers to joining the dataspace. When tighter integration
into the dataspace is required, it can be achieved incrementally by following the
service tiers defined. The incremental nature of the support services is a core enabler
of the pay-as-you-go paradigm in dataspaces. The functionality of the search and
query service follows the five star pay-as-you-go model (detailed in Chap. 4) of the
RLD. The search and query service offers the following levels of functionality:

1 Star  Browsing: Browsing of the datasets available in the dataspace catalog.

2 Stars  Keyword Search: Basic keyword search of the sources within the
dataspace.

3 Stars  Structure Search: A structured search is when the dataset has been
indexed by the search service to enable entity-centric searches over the
data and structure of the dataset.

4 Stars  Structured Queries: Structured queries are possible where the data
source supports a SPARQL interface, or the data source has been loaded
into the local RDF store of the query service. In order to write a structured
query (which can be entity-centric), the user must understand the
underlying schema of the data.

5 Stars  Schema-Agnostic Question Answering: A best-effort entity-centric
natural language interface to the dataspaces knowledge graph that allows
users to ask questions without understanding the underlying schema.

The provision of search and query services within a linked dataspace does not
follow a one-size-fits-all approach with a range of different techniques used to
support the different characteristics of the data sources and user needs. Running
queries over heterogeneous data sources is a particularly challenging proposition that
is an active area of research. The two initial levels, Browsing and Keyword search,
are well-understood techniques that have readily available solutions. The third level
is structured queries where keyword queries’ expressivity is enhanced to include the
structure of the data. This is achieved by extending existing inverted list indexes to
represent structural information present in datasets. The next level is structured
queries where SPARQL query support is provided over data sources via endpoints
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on the data source or by importing data into the local RDF store. These approaches
are suited to creating queries over homogenous and well-formed schemas that the
user understands. Working with heterogeneous sources at large scales requires a
different approach with the ability for the query mechanism to be agnostic to the
underlying diverse schemas. At the high-end of the search and querying service for
the RLD is schema-agnostic question answering over the interlinked knowledge
graph that simplifies user—data interaction. A famous example of this emerging style
of data interaction is the IBM Watson Question Answering (QA) system which
competed in the television game show Jeopardy or the Apple Siri virtual assistant.

7.3 Search and Query over Heterogeneous Data

The vocabulary problem for databases is a consequence of data heterogeneity [162],
that is, the multiple realisations in which data can be represented. Even if given the
same task, different database designers can materialise the same domain into a
database using different lexical expressions, conceptualisations, data models, data
formats, or record granularities [162]. This intrinsic variability in the construction of
a database defines a fundamental level of data heterogeneity between different
databases.

Similarly, there is an intrinsic heterogeneity between a specific data representa-
tion and the data consumer’s mental representation of a domain. If asked to mate-
rialise their information needs as free queries (e.g. using natural language), data
consumers would be likely to use different terms and structures in the query
formulation, a fact which is supported by Furnas et al. [163]. The intrinsic hetero-
geneity is mediated by the role of phenomena intrinsic to natural languages such as
synonymy, ambiguity, and vagueness. The vocabulary problem is a concrete
instance of the syntactic and semantic barriers in the knowledge boundaries identi-
fied in the Knowledge Value Ecosystem (KVE) Framework that exist when sharing
knowledge among systems. These boundaries to knowledge sharing are discussed in
more detail in Chap. 2.

7.3.1 Data Heterogeneity

Data heterogeneity becomes a more immediate concern as users start to query data/
KGs from different datasets built by independent parties. This is the scenario faced
by dataspaces (and Knowledge Graphs) where one starts to move from a centralised
schema and data model (where data is integrated under a single representation
model) to a decentralised scenario where data from different schemas and data
models are brought together into a different data consumption context [2, 74]. The
concept of data heterogeneity can be examined within different dimensions:
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* Conceptual Model Heterogeneity: Different domains can be conceptualised using
different abstractions and lexical expressions, which are dependent on the
intended use behind the database and the background of the individuals model-
ling the domain (the KVE knowledge boundary). Given a modelling task with a
minimum level of complexity, it is unlikely that two independent parties will
generate identical conceptual models [162, 163]. Semantic heterogeneity emerges
as a central concern in a dataspace when, data from multiple datasets, developed
by different third-parties, need to be accessed and processed in a different context.
Conceptual model heterogeneity includes distinct classes of differences which
define the conceptual gap.

* Format Heterogeneity: Covers different formatting assumptions for values. This
dimension covers the notational and measurement units’ differences. Examples of
value types dependent on data format are currency, numerical values, and date-
time values. Abbreviations and acronyms are also included in this category.

e Data Model Heterogeneity: Data models provide the syntactical model in which
different data objects are represented. Different data sources can be represented
using different data models (the KVE knowledge boundary). Examples of data
models include the relational model RDF and eXtensible Markup Language
(XML), among others.

The three data heterogeneity dimensions are orthogonal and impact the reconcil-
iation of model dimensions between different databases/KGs and the ability of users
to query a data source. The more significant the gap between the two models (data,
format or conceptual), the larger is the cost of querying or data integration.

The abstraction of users from the conceptual database model is intrinsically
connected with the provision of a principled semantic matching mechanism to
cross the conceptual gap between the user query and the data representation.
Query mechanisms with the ability to automatically bridge the gap between the
user and database conceptual models are described as schema-agnostic or
vocabulary-independent queries. A motivational scenario example is introduced
below.

7.3.2 Motivational Scenario

Suppose a user has an information need expressed as the natural language query
‘Who are the children of Marie Curie married to?” (Fig. 7.2). The person has access
to different databases/KGs within a dataspace which contain data that can help to
address the information need. However, the data representations inside the target
databases do not match the vocabulary and structure of the natural language query.

Figure 7.2 depicts an example of the semantic gap between the example user
query and possible representations for the knowledge graphs supporting answers for
the query. In (a), ‘child’ and ‘married to’ in the query map to ‘Child’ and ‘Spouse’ in
the knowledge graph; in (b), these query terms map to ‘motherOf’ and ‘wifeOf’
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Information Need: Who are the children of Marie Curie married to?

@

Semantic Gap

Possible Data Representations
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A | NobelPrizeWinner | B |Marie Curie|—>| Eve Curie | C | Scientist |
‘type :motherOf -wifeOf ‘type
—@— | Marie Curie |
| IréneJoIiot—Curiel | Henry R. Labouisse |
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|IréneJoIiot-Curie| | Eve Curie | wifeOf | 2 |
:Spouse :Spouse | Frédéric Joliot-Curie |

| Frédéric Joliot-Curie | | Henry R. Labouisse |

Fig. 7.2 Example of user information requirement expressed as a natural language query and
possible knowledge graph representations in different conceptual models

respectively; while in (c), the query information related to ‘child’ is given by the
predicate numberOfKids’ representing an aggregation in (c), not fully mapped to
the query information need.

To address query-data alignments, it is necessary to provide a query mechanism
which can support a semantic matching which copes with the semantic gap between
the user query and the knowledge graph representation.

7.3.3 Core Requirements for Search and Query

The dimensions of semantic heterogeneity are at the centre of the search and query
challenge within dataspaces and addressing them directly can define the semantic
matching requirements to provide robust search and query mechanisms. However, in
addition to the requirements related to the semantic matching, search and query
approaches need to satisfy requirements common to all search and query mecha-
nisms. These requirements are used as qualitative dimensions to evaluate the effec-
tiveness of search and query approaches:

* High Usability and Low Query Construction Time: Support for a simple and
intuitive interface for experts and casual users.

* High Expressivity: Queries referencing structural elements and constraints in the
dataset (relationships, paths) should be supported, as well as operations over the
data (e.g. aggregations, conditions).
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* Accurate and Comprehensive Semantic Matching: Ability to provide a principled
semantic matching addressing all the dimensions of the semantic heterogeneity
problem (abstraction, conceptual, compositional, functional) with high precision
and recall.

e Low Setup and Maintenance Effort: Easily transportable across datasets/knowl-
edge graphs without significant manual adaptation effort. The query mechanism
should be able to work under an open domain and across multiple domains.
Databases should be indexed with a minimum level of manual adaptations in the
construction of supporting semantic resources used in the semantic matching.

e Interactive Search and Low Query-Execution Time: Minimisation of user inter-
action/feedback effort in the query process. Users should get answers with
interactive response times for most of the queries. An interactive query execution
time is contrasted with a batch query execution time (seconds vs. minutes).

* High Scalability: The query approach should scale to large datasets/knowledge
graphs both in query execution and indexing construction time.

With a clear understanding of the challenges and requirements that need to be
overcome, we now examine state-of-the-art approaches for searching and querying
heterogeneous data.

7.4 State-of-the-Art Analysis

Three high-level categories of approaches for querying heterogeneous data within
dataspaces exist: (1) approaches employing strategies inherited from the Information
Retrieval (IR) space in which keyword search is mixed with elements from structure
queries, (2) approaches focusing on natural language queries, and (3) structured
SPARQL queries over distributed datasets. Leveraging existing work [111] we focus
on the usability and semantic matching problems, thus analysing approaches from
the first two categories.

7.4.1 Information Retrieval Approaches

We can categorise IR approaches according to the index type, which includes entity-
centric search approaches and structure search approaches. Although both types
provide hybrid search interfaces that merge keyword search with dataset structure
elements, only structure search targets indexing strategies focus on addressing the
expressivity—usability trade-off at the index construction level.

Entity-Centric Search

Entity-centric approaches let users search for entities (instances and classes) in
datasets, employing Vector Space Model (VSM) variations to index those entities.
Existing approaches range from less expressive queries, based on keyword search



114 7 Querying and Searching Heterogeneous Knowledge Graphs in Real-time. . .

Entity-centric Search
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Fig. 7.3 High-level architecture components for Sindice (entity-centric search) [111]

over textual information associated with the dataset entities, to star-shaped queries
and hybrid queries (i.e. queries mixing keyword search, and structured queries
centred on an entity).

The Semantic Web Search Engine (SWSE) is a search and query service that
implements an architecture with components for crawling, integrating, indexing,
querying, and navigating over multiple data sources [164]. The system architecture’s
main components include query processing, ranking, an index manager, and an
internal data store (YARS2), which focuses on scalability issues to enable federated
queries over linked data. SWSE uses an approach called ReConRank to rank entities
[164]; this approach adapts the PageRank algorithm to work over RDF datasets,
propagating dataset-level scores—computed from interlinking patterns—to data-
level entities. The Scalable Authoritative OWL Reasoner (SAOR) provides an
RDEFS and a partial Web Ontology Language (OWL) reasoning engine to address
scalability issues [164]. SAOR applies reasoning only on dataset fragments
supported by an authoritative ontological definition.

Sindice is a search and query service for the linked data web that ranks entities
according to the incidence of keywords associated with them [165]. It uses a node-
labelled tree model to represent the relationship among datasets, entities, attributes,
and values. Similar to SWSE, Sindice provides a comprehensive entity-centric
search and indexing approach. Figure 7.3 depicts Sindice’s architecture.

The SPARK [166] approach provides a ranking solution for translating keyword-
based queries to low complexity SPARQL queries, targeting low complexity RDF
datasets. The SPARK is based on three basic steps: term mapping, query graph
construction, and query ranking.

Entity-centric search approaches have developed comprehensive data manage-
ment strategies for linked data on the web, providing the infrastructure for managing
the complete crawl—index—search cycle. These approaches also developed services
complementary to the entity-centric search process that let users either visually
explore (via Visinav [164] and Sigma [165]) or execute full structured SPARQL
queries over the crawled data. Entity-centric approaches avoid significant changes in
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Fig. 7.4 High-level architecture components for Semplore (structure search) [111]

standard indexing strategies, inheriting index and search optimisation mechanisms
present in existing VSM frameworks. These approaches have avoided tackling the
expressivity—usability trade-off by aggregating multiple query interfaces; in practice,
to execute expressive queries, users must be aware of the vocabularies behind the
datasets. Also, most entity-centric approaches have only limited evaluation in terms
of the search result quality.

Structure Search

Structure search engines improve keyword queries’ expressivity, extending existing
inverted list indexes to represent structural information present in datasets. The main
difference between entity-centric search and structure search is that the latter
improves query expressivity with support from the extended index.

The search engine Semplore [167] uses a hybrid query formalism that combines a
keyword search with structured queries (i.e. a subset of SPARQL). Semplore uses
position-based indexing to index relations and join triples. It relies on three types of
inverted indexes: keyword, concept, and relation. Semplore also explores user
feedback strategies for improving search, providing a faceted and navigational
interface. Figure 7.4 depicts Semplore’s high-level architecture. Xin Dong and
Alon Halevy propose an approach for indexing triples to enable queries that combine
keywords and dataset structure elements [168]. To provide a more flexible semantic
matching, the authors propose four structured index types based on the introduction
of additional structural information and semantic enrichment in the inverted lists.
Taxonomies associated with the dataset vocabularies are used as a semantic enrich-
ment strategy.

Structure search approaches target the expressivity—usability trade-off by modi-
fying and extending traditional inverted index structures. They introduce a limited
level of semantic matching by considering the terminology-level information present
in datasets or by enriching the index with related terms using WordNet. No com-
prehensive evaluation of the search results’ quality exists, making it unclear how
these approaches perform in addressing the expressivity—usability trade-off.
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7.4.2 Natural Language Approaches

Approaches in the literature based on natural language queries target query mech-
anisms with high usability and expressivity. Although some approaches focus on the
question answering (QA) problem, in which, similar to databases, precise answers
are expected as the output. Others focus on a best-effort scenario that returns a
ranked list of results.

Question Answering

The investigation of QA systems focuses on the problem of allowing users to query
data using natural language queries. As opposed to IR techniques’ best-effort nature,
QA systems target crisp answers, as with structured queries over databases. Work on
QA approaches investigates the interpretation of users’ information requirement that
is expressed as natural language queries, applying Natural Language Processing
(NLP) techniques to parse queries and match them with dataset structures. Substan-
tial research efforts have focused on this problem. We look at two works on open
domain linked data.

PowerAqua is a QA system that uses PowerMap, a hybrid matching algorithm
comprising terminology-level and structural schema-matching techniques with the
assistance of large-scale ontological or lexical resources [169]. In addition to the
ontology structure, PowerMap uses WordNet-based similarity approaches as a
semantic approximation strategy.

Exploring user interaction techniques, FREyA is a QA system that employs
feedback and clarification dialogs to resolve ambiguities and improve the domain
lexicon with users’ help [170]. Compared to PowerAqua, FREyA delegates a large
part of the semantic matching and disambiguation process to users. User feedback
enriches the semantic matching process by allowing manual entries of query-
vocabulary mappings. Figure 7.5 depicts FREyA’s high-level architecture.

TBSL [172] exploits both natural language and information retrieval techniques
and explores corpus-based patterns to support schema-agnosticism. TBSL relies on
parsing the user question to produce a query template. The core rationale behind the
approach is that the linguistic structure of a question together with well-defined
expressions in the context of QA over structured data (such as more than and the

Question Answering Query Disambiguation
“Who are the interface dialog

children of Marie

Curie married to?”
ngry Ontology Consolidation ‘Ansm{grty.pe SPARQL SPAR(_IL
parsing lookup identification generation execution

Output:
SPARQL
answer set

Mapping dialog

Dataset

Fig. 7.5 High-level architecture components for FREyA (question answering) [111]
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most) define a domain-independent structure for the query, which then needs to be
filled in with domain-specific vocabulary elements.

Compared to IR-based approaches, QA approaches aim toward more sophisti-
cated semantic matching techniques because they target queries with high expres-
sivity and do not assume users are aware of the dataset representations (high
usability). In contrast to entity-centric and structure search approaches, QA systems
have a strong tradition of evaluating the quality of results and have concentrated less
on performance and scalability issues. Traditionally, QA approaches have focused
on limited semantic matching (WordNet-based) strategies, making them unable to
cope with high levels of heterogeneity. Most QA approaches apply limited semantic
matching techniques (e.g. synonymic, taxonomic similarity) for matching query
terms to dataset terms. Also, they depend on resources that are manually created
(WordNet) and difficult to expand across different domains.

Best-Effort Natural Language Interfaces

More recent approaches aim to merge natural language queries’ expressivity and
usability with IR models’ scalability and best-effort nature, targeting a best-effort
natural language search mechanism. As in QA systems, users can still enter full
natural language queries; however, instead of targeting crisp answers, these
approaches return an approximate ranked list of results.

The Treo natural language query mechanism for linked data uses semantic
relatedness measures derived from Wikipedia to match query terms to dataset
terms [171]. The use of semantic relatedness measures allows the quantification of
the semantic proximity between two terms, using semantic information which is
embedded in large textual resources available on the web such as Wikipedia.
Wikipedia-based semantic relatedness measures address previous limitations of
WordNet-based semantic matching. Treo’s approach combines entity search,
spreading activation search, and semantic relatedness to navigate over the linked
data/knowledge graph, semantically matching the parsed user query to the data
representation in the datasets. Figure 7.6 depicts Treo’s components.

The principles of the Treo approach are generalised by constructing a distribu-
tional semantic space (T-Space) for linked datasets [121]. The T-Space is built using
a distributional semantic model based on statistical semantic information derived
from Wikipedia. This model enables flexible semantic matching in the search

Natural Language Query | Query Entity Entity Query Spreading Graph | Output:
“Who are the children |interface recognition search parsing activation search merge Rgnked
of Marie Curie triple paths
married to?”

Semantic
Entity Datasets. relateqness
indexing service

Indexing
Wikipedial

WIKIPEDIA

Fig. 7.6 High-level architecture components for Treo (best-effort natural language) [111]
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process. The definition of the T-Space provides a principled representation of
datasets focused on addressing the expressivity—usability trade-off.

7.4.3 Discussion

Table 7.1 lists how each category addresses the key requirements for search and
query over heterogeneous knowledge graph within a linked dataspace. The practical
relevance of a search and query mechanism lies in the fact that structured data is a
fundamental component of data sources where the effort associated with accessing
this structured data is still significant and heavily mediated by database experts. The
dissolution of the expressiveness/usability trade-off is the goal of schema-agnostic
query approaches (see Fig. 7.7) that provide a semantic matching approach which
enables the alignment or semantic mapping of the data consumer’s query to the
database conceptual model elements. Based on the analysis in Table 7.1, we can see
that the Treo approach meets most of the requirements identified. Best-effort natural
language search approaches provide a robust semantic matching approach. How-
ever, they relax expectations in terms of query results, delegating the results’ final
assessment to end users.

Schema-agnostic queries

1
High 1
QA !
{PowerAqua, Freya) : Stéﬂgtrligsed
Natural Language | (SPARQL)
(TBSL; Trea) |
1
> 1 Structure
S 1 Search
‘@ 1 (Semplore,
e Entity Search _j Dong & Halewy) __ __ __ _
% (SWSE, Sindice, N
3 SPARK) X
= 1
g |
o] 1
1
1
1
1
Keyword 1
search 1
1
1
Low Query construction time High

Fig. 7.7 Query expressivity vs. Query construction time quadrant. Schema-agnostic queries allow
both high expressivity and low query construction time
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7.5 Design Features for Schema-Agnostic Queries

Leveraging existing work [111] we analysed the current approaches to determine the
design features present in search and query mechanisms over heterogeneous data to
determine the key features needed for a knowledge graph query mechanism for
RLDs. The result of this analysis is presented in Table 7.2, where we can see five key
design features emerging as clear trends for the creation of search and query services
over heterogeneous knowledge graphs [111].

Query Type Entity-centric search, keyword-based search, natural language
queries, and structured SPARQL queries represent complementary search and
query services that might suit users in different tasks and purposes. Search and
query platforms should explore this complementary aspect regarding heterogeneous
data to enable users to switch among different search and query strategies. SWSE
and Sindice explore this trend; however, the availability of natural language queries
is a key feature not present in these systems. As part of the search and query features,
users should be able to explore, understand, and refine search results by relying on
navigational, browsing, and filtering capabilities integrated into the process (this
functionality is present in SWSE, Sindice, and Semplore).

For many years, the difficulties associated with the hard constraints of the
question answering problem have overshadowed the potential for applying NLP
techniques for queries. NLP has developed a large set of techniques and tools for
parsing and analysing users’ information needs expressed as natural language
queries. Different flavours of syntactic parsers, morphological analysers, and
named entity recognition techniques are widely and effectively employed in QA
systems and natural language search interfaces (e.g. PowerAqua, FREyA, Treo, and
Treo T-Space). Recently, the efficacy of NLP techniques was demonstrated in the
IBM Watson system [174], which outperformed a human contestant in a “Jeopardy”
challenge. Watson heavily leverages standard NLP techniques to build a complex
information extraction and search pipeline. Search and query mechanisms can
explore NLP techniques to provide expressive and intuitive query interfaces.

Disambiguation The presence of ambiguity and incomplete information is intrinsic
to the search and query process. As already explored in systems such as FREyA and
Semplore, user feedback can help resolve ambiguities, enrich an application’s
semantic model, and filter and post-process results. Providing a supporting context
around the answers can help users assess the data’s correctness. In the Treo
approach, the path in the dataset generated during the querying process provides
contextual information for users. A best-effort approach can live together with
database operations, such as aggregations, via data filtering mechanisms that let
users remove incorrect entries from the results (e.g. using the associated type
information).

Ranking In “If You Have Too Much Data, then ‘Good Enough’ Is Good Enough”
[76], Pat Helland summarises the mindset shift that must occur in heterogeneous and
distributed data environments, where many still expect the accurate and crisp results



121

7.5 Design Features for Schema-Agnostic Queries

(panunuoo)
/onuewos (WAUOUAS [691]
‘wAuodAy ‘wAuradAy) S9100S enbyromog
VN JONPIOM Paseq-1aNPIOA | AJLIB[IWIS 9y} UO paseq QUON a3en3uey [eineu [[ng SwASAs vO
sayovo.ddp a3vn3uvy [panpN
(swiAuou4s) uorsuedxo UOT)RULIOJUT [891] :soxapur
XOpUl PAJIAAU] JONPIOM L) Joserep/A1ang) SOX QUON ImoONNSs PIM pIomAdY amonng
(souronb
padeys-oa1 pue ‘sauranb
Amua ‘sotronb padeys-reis
(xopur (QuauwyoLIud ‘sorronb yyed ‘souonb [£971] 2101dwog
uonrsod) [eoTIIOUOX®)) woje-9[3Uls) UORUWLIOJUT soXapul
XOpUl PAJIAAU] QuoN uorsuedxa wa) Jasereq SOX paseq-100.q [eImonns yim pIomAay] amonng
Suryojewr
Susqns ‘ooumisip 11pa [991] >1avdS
JONPIOA | /uorsuedxo uird) josere SOA QUON Paseq-pIomAdY] :0uRd-Anuyg
([s91]
Ppaseq-yuly ewSIS/201pUIg
XOpul PIJAUT QUON QUON + AdI/4.L PAYIPOIN QUON padeys-1e15/pIomAY 2ud-Anuyg
[+91]
paseq-juiy ABUISIA/HSMS
XOpul PIJAUT QUON QUON + AdI/4.L PAYIPOIN QUON TOYVIS/PromAad] mued-Anug
[PA211324 UODULIOfU]
WSTURYOW Qomosar | uonewrxoidde onuewog Sunjuey | uonenIiquIesiq ad£y K1on) sayoeoxddy
Aypiqeress onsm3ur|
/ROUBWLIONd] /saseq
a3pomouy]
Sunroddng

saInyes uIsaq

sydei3 o3pa[mouy| snoauagoIa1ay J0J SwWsIueydaw A1anb onsouFe-ewayos Jo saINed) usisog 'L dqeL



7 Querying and Searching Heterogeneous Knowledge Graphs in Real-time. . .

122

[epowt
ooeds 10} [121] @oeds-1,
-00A PaIMONNS [opouwt uopneuwrxordde QINSBAW SSAUPAJe[I 0a1], ‘[€L1] 0211,
[euore[ax VSH paseq ONUBWIAS [BUOT) |  ONUBLIAS [RUONINGLISIP :yoreas a3enSue|
-[euonnqrusiq -e1padiyip -NQLISIP Paseq-1XAJuo)) uo paseq Yorqpay 19sM) a3en3ue| [ermeu [[ng [eInjeN
[zLr]
paseq-sndio) IS4 :yoreds
SOX IONPIOM Sururr uroyed sndio) SOX a3en3ue] [einjeu [[ng | oFen3ue[ [eINEN
JUSWIYILIUD UOIIXI[
[enuew ‘uorsuedxo Sorerp [0L1] eAa1g
VN JONPIOA ur9) jasejep/A1ong) SOx | uonen3iquesiq 93en3ue] [eIjeu [N SwIsAs VO
'R OU) UI
SUOIB[aI [BOTWIOUOXE) UO
paseq ‘Aje[rwrs Juins
WSTURYOW Qomosar | uonewrxoidde onuewog Sunjuey | uonenIiquIesiq ad£y K1on) sayoeoxddy
Aypiqeress onsm3ur|
/OUBUIIONIO /soseq
a3pomouy]
Sunroddng

saInyes uIsaq

(ponunuoo) 7L dqe],



7.5 Design Features for Schema-Agnostic Queries 123

typical for siloed databases. This trade-off is discussed in more detail in Chap. 3. The
challenge of building query solutions with high usability and expressivity in a
dataspace is coping with the data’s semantic heterogeneity; this demands to relax
our expectations of the results into a best-effort solution. Ranked lists of results in
which users can assess those results’ suitability are widely used in document search
engines; web users have been extensively exposed to this approach and are thus
familiar with best-effort search models. However, although document search engines
can potentially return a long list of candidate documents, the best-effort query
[171, 175] and ranking [176, 177] mechanisms for dataspaces should leverage the
structure and types present in the data to target more concise answer sets. A number
of dataspace search and query approaches leverage associations and relations to rank
results [87, 168, 178-180].

Semantic Approximation The difficulty in effectively providing a robust semantic
matching solution has been associated with a level of semantic interpretation that
depends on fundamental and hard problems in artificial intelligence, such as
common-sense knowledge representation and reasoning. Dataspace query
approaches have considered both synonyms [181] and similarity [182] within the
matching process. Recently, distributional semantic approaches have emerged as
solutions to provide robust semantic matching by leveraging the use of semantic
information embedded in large amounts of web corpora.

Distributional semantic models assume that the context surrounding a given word
in a text provides essential information about its meaning [183]. Distributional
semantics focus on constructing a semantic representation of a word based on the
statistical distribution of word co-occurrence in texts. The availability of high-
volume and comprehensive web corpora has made distributional semantic models
a promising approach for building and representing meaning. However, the simpli-
fication of distributional semantic models implies some constraints on its use as a
semantic representation. Distributional semantic models are suitable for computing
semantic relatedness, which can act as a best-effort solution for providing robust
semantic matching solutions for linked data queries (present in the Treo T-Space
system).

Supporting Knowledge Bases/Linguistic Resources The availability of large
amounts of unstructured text and structured data on the web can help to bootstrap
a level of semantic interpretation based on available open and domain-specific
knowledge. It is possible to address the volume of unstructured text corpora neces-
sary to build distributional semantic models by using comprehensive knowledge
sources available on the web, such as Wikipedia (present in the Treo and Treo
T-Space systems). In addition, it is possible to use the semantically rich entity
structure of data sources such as DBpedia (http://dbpedia.org), YAGO (www.mpi-
inf.mpg.de/yago-naga/yago/), and Freebase (www.freebase.com) as a general-
purpose entity and entity typing system that can easily integrate to the target datasets
to provide a minimum level of structured common-sense knowledge, and which can
later be used to improve semantic interpretation and tractability. RDF’s standardised
graph-based format facilitates the reuse and integration of existing data sources into
target datasets.


https://doi.org/10.1007/978-3-030-29665-0_3
http://dbpedia.org
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://www.freebase.com
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7.6 Summary

The emergence of heterogeneous and distributed data environments such as the web
of data, knowledge graphs, and dataspaces, in contrast to small controlled schema
databases, fundamentally shifts how users search and query data. Approaches used
for searching and querying siloed databases fail within these large-scale heteroge-
neous data environments because users do not have an a priori understanding of all
the available datasets. This chapter investigates the main challenges in constructing a
query and search service for knowledge graphs within a dataspace. The search and
query services within a dataspace do not follow a one-size-fits-all approach and
utilise a range of different techniques from keyword search to structured queries and
question answering to support different characteristics of data sources, and user
needs in the dataspace. Our analysis of the state of the art shows that existing
approaches based on IR and natural language query interfaces have complementary
design features, which, if combined, can provide schema-agnostics solutions to
the wusability and semantic matching challenges of querying large-scale
heterogeneous data.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
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