Conjunction of Conditional Events and T-norms

Angelo Gilio^{1***} and Giuseppe Sanfilippo²*

¹ Department SBAI, University of Rome "La Sapienza", Rome, Italy angelo.gilio@sbai.uniroma1.it

² Department of Mathematics and Computer Science, University of Palermo, Italy giuseppe.sanfilippo@unipa.it

Abstract. We study the relationship between a notion of conjunction among conditional events, introduced in recent papers, and the notion of Frank t-norm. By examining different cases, in the setting of coherence, we show each time that the conjunction coincides with a suitable Frank t-norm. In particular, the conjunction may coincide with the Product t-norm, the Minimum t-norm, and Lukasiewicz t-norm. We show by a counterexample, that the prevision assessments obtained by Lukasiewicz t-norm may be not coherent. Then, we give some conditions of coherence when using Lukasiewicz t-norm.

Keywords: Coherence, Conditional Event, Conjunction, Frank t-norm.

1 Introduction

In this paper we use the coherence-based approach to probability of de Finetti ([1,2,7,9,10,13,14,16,17,18,22,25]). We use a notion of conjunction which, differently from other authors, is defined as a suitable conditional random quantity with values in the unit interval (see, e.g. [20,21,23,24,36]). We study the relationship between our notion of conjunction and the notion of Frank tnorm. For some aspects which relate probability and Frank t-norm see, e.g., [5,6,8,11,15,34]. We show that, under the hypothesis of logical independence. if the prevision assessments involved with the conjunction $(A|H) \wedge (B|K)$ of two conditional events are coherent, then the prevision of the conjunction coincides, for a suitable $\lambda \in [0, +\infty]$, with the Frank t-norm $T_{\lambda}(x, y)$, where x = P(A|H), y = P(B|K). Moreover, $(A|H) \wedge (B|K) = T_{\lambda}(A|H, B|K)$. Then, we consider the case A = B, by determining the set of all coherent assessment (x, y, z) on $\{A|H, A|K, (A|H) \land (A|K)\}$. We show that, under coherence, it holds that $(A|H) \wedge (A|K) = T_{\lambda}(A|H, A|K)$, where $\lambda \in [0, 1]$. We also study the particular case where A = B and $HK = \emptyset$. Then, we consider conjunctions of three conditional events and we show that to make prevision assignments by means of the Product t-norm, or the Minimum t-norm, is coherent. Finally, we examine the Lukasiewicz t-norm and we show by a counterexample that coherence is in general not assured. We give some conditions for coherence when the prevision assessments are made by using the Lukasiewicz t-norm.

 $^{^{\}star}$ Both authors contributed equally to the article and are listed alphabetically.

^{**} Retired

2 Angelo Gilio and Giuseppe Sanfilippo

2 Preliminary Notions and Results

In our approach, given two events A and H, with $H \neq \emptyset$, the conditional event A|H is looked at as a three-valued logical entity which is true, or false, or void, according to whether AH is true, or \overline{AH} is true, or \overline{H} is true. We observe that the conditional probability and/or conditional prevision values are assessed in the setting of coherence-based probabilistic approach. In numerical terms A|H assumes one of the values 1, or 0, or x, where x = P(A|H) represents the assessed degree of belief on A|H. Then, $A|H = AH + x\overline{H}$. Given a family $\mathcal{F} = \{X_1 | H_1, \dots, X_n | H_n\}$, for each $i \in \{1, \dots, n\}$ we denote by $\{x_{i1}, \dots, x_{ir_i}\}$ the set of possible values of X_i when H_i is true; then, for each *i* and $j = 1, \ldots, r_i$, we set $A_{ij} = (X_i = x_{ij})$. We set $C_0 = H_1 \cdots H_n$ (it may be $C_0 = \emptyset$); moreover, we denote by C_1, \ldots, C_m the constituents contained in $H_1 \vee \cdots \vee H_n$. Hence $\bigwedge_{i=1}^{n} (A_{i1} \vee \cdots \vee A_{ir_i} \vee \overline{H}_i) = \bigvee_{h=0}^{m} C_h$. With each $C_h, h \in \{1, \ldots, m\}$, we associate a vector $Q_h = (q_{h1}, \ldots, q_{hn})$, where $q_{hi} = x_{ij}$ if $C_h \subseteq A_{ij}$, $j = 1, \ldots, r_i$, while $q_{hi} = \mu_i$ if $C_h \subseteq H_i$; with C_0 it is associated $Q_0 = \mathcal{M} = (\mu_1, \ldots, \mu_n)$. Denoting by \mathcal{I} the convex hull of Q_1, \ldots, Q_m , the condition $\mathcal{M} \in \mathcal{I}$ amounts to the existence of a vector $(\lambda_1, \ldots, \lambda_m)$ such that: $\sum_{h=1}^m \lambda_h Q_h = \mathcal{M}, \sum_{h=1}^m \lambda_h = \mathcal{M}$ 1, $\lambda_h \ge 0$, $\forall h$; in other words, $\mathcal{M} \in \mathcal{I}$ is equivalent to the solvability of the system (Σ) , associated with $(\mathcal{F}, \mathcal{M})$,

$$(\Sigma) \quad \sum_{h=1}^{m} \lambda_h q_{hi} = \mu_i \,, \, i \in \{1, \dots, n\} \,, \\ \sum_{h=1}^{m} \lambda_h = 1, \, \lambda_h \ge 0 \,, \, h \in \{1, \dots, m\} \,.$$
(1)

Given the assessment $\mathcal{M} = (\mu_1, \ldots, \mu_n)$ on $\mathcal{F} = \{X_1 | H_1, \ldots, X_n | H_n\}$, let S be the set of solutions $\Lambda = (\lambda_1, \ldots, \lambda_m)$ of system (Σ) . We point out that the solvability of system (Σ) is a necessary (but not sufficient) condition for coherence of \mathcal{M} on \mathcal{F} . When (Σ) is solvable, that is $S \neq \emptyset$, we define:

$$I_0 = \{i : \max_{A \in S} \sum_{h: C_h \subseteq H_i} \lambda_h = 0\}, \ \mathcal{F}_0 = \{X_i | H_i, i \in I_0\}, \ \mathcal{M}_0 = (\mu_i, i \in I_0).$$
(2)

For what concerns the probabilistic meaning of I_0 , it holds that $i \in I_0$ if and only if the (unique) coherent extension of \mathcal{M} to $H_i|(\bigvee_{j=1}^n H_j)$ is zero. Then, the following theorem can be proved ([3, Theorem 3])

Theorem 1. [Operative characterization of coherence] A conditional prevision assessment $\mathcal{M} = (\mu_1, \ldots, \mu_n)$ on the family $\mathcal{F} = \{X_1 | H_1, \ldots, X_n | H_n\}$ is coherent if and only if the following conditions are satisfied:

(i) the system (Σ) defined in (1) is solvable; (ii) if $I_0 \neq \emptyset$, then \mathcal{M}_0 is coherent.

Coherence can be related to proper scoring rules ([4,19,30,31,32]).

Definition 1. Given any pair of conditional events A|H and B|K, with P(A|H) = x and P(B|K) = y, their conjunction is the conditional random quantity $(A|H) \wedge (B|K)$, with $\mathbb{P}[(A|H) \wedge (B|K)] = z$, defined as

$$(A|H) \wedge (B|K) = \begin{cases} 1, & \text{if } AHBK \text{ is true,} \\ 0, & \text{if } \overline{A}H \vee \overline{B}K \text{ is true,} \\ x, & \text{if } \overline{H}BK \text{ is true,} \\ y, & \text{if } AH\overline{K} \text{ is true,} \\ z, & \text{if } \overline{H}\overline{K} \text{ is true.} \end{cases}$$
(3)

In betting terms, the prevision z represents the amount you agree to pay, with the proviso that you will receive the quantity $(A|H) \wedge (B|K)$. Different approaches to compounded conditionals, not based on coherence, have been developed by other authors (see, e.g., [27,33]). We recall a result which shows that Fréchet-Hoeffding bounds still hold for the conjunction of conditional events ([23, Theorem 7]).

Theorem 2. Given any coherent assessment (x, y) on $\{A|H, B|K\}$, with A, H, B, K logically independent, $H \neq \emptyset, K \neq \emptyset$, the extension $z = \mathbb{P}[(A|H) \land (B|K)]$ is coherent if and only if the following Fréchet-Hoeffding bounds are satisfied:

$$\max\{x + y - 1, 0\} = z' \leqslant z \leqslant z'' = \min\{x, y\}.$$
(4)

Remark 1. From Theorem 2, as the assessment (x, y) on $\{A|H, B|K\}$ is coherent for every $(x, y) \in [0, 1]^2$, the set Π of coherent assessments (x, y, z) on $\{A|H, B|K, (A|H) \land (B|K)\}$ is

$$\Pi = \{(x, y, z) : (x, y) \in [0, 1]^2, \max\{x + y - 1, 0\} \le z \le \min\{x, y\}\}.$$
 (5)

The set Π is the tetrahedron with vertices the points (1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0). For other definition of conjunctions, where the conjunction is a conditional event, some results on lower and upper bounds have been given in [35].

Definition 2. Let be given n conditional events $E_1|H_1, \ldots, E_n|H_n$. For each subset S, with $\emptyset \neq S \subseteq \{1, \ldots, n\}$, let x_S be a prevision assessment on $\bigwedge_{i \in S} (E_i|H_i)$. The conjunction $\mathcal{C}_{1 \cdots n} = (E_1|H_1) \wedge \cdots \wedge (E_n|H_n)$ is defined as

$$\mathcal{C}_{1\cdots n} = \begin{cases}
1, & \text{if } \bigwedge_{i=1}^{n} E_{i}H_{i}, \text{ is true} \\
0, & \text{if } \bigvee_{i=1}^{n} \overline{E}_{i}H_{i}, \text{ is true}, \\
x_{S}, & \text{if } \bigwedge_{i\in S} \overline{H}_{i} \bigwedge_{i\notin S} E_{i}H_{i} \text{ is true}, \ \emptyset \neq S \subseteq \{1, 2 \dots, n\}.
\end{cases}$$
(6)

In particular, $C_1 = E_1|H_1$; moreover, for $S = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, the conjunction $\bigwedge_{i \in S} (E_i|H_i)$ is denoted by $C_{i_1 \cdots i_k}$ and x_S is also denoted by $x_{i_1 \cdots i_k}$. Moreover, if $S = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, the conjunction $\bigwedge_{i \in S} (E_i|H_i)$ is denoted by $C_{i_1 \cdots i_k}$ and x_S is also denoted by $x_{i_1 \cdots i_k}$. In the betting framework, you agree to pay $x_{1 \cdots n} = \mathbb{P}(C_{1 \cdots n})$ with the proviso that you will receive: 1, if all conditional events are true; 0, if at least one of the conditional events is false; the prevision of the conjunction of that conditional events which are void, otherwise. The operation of conjunction is associative and commutative. We observe that, based on Definition 2, when n = 3 we obtain

$$\mathcal{C}_{123} = \begin{cases}
1, & \text{if } E_1 H_1 E_2 H_2 E_3 H_3 \text{ is true,} \\
0, & \text{if } \bar{E}_1 H_1 \lor \bar{E}_2 H_2 \lor \bar{E}_3 H_3 \text{ is true,} \\
x_1, & \text{if } \bar{H}_1 E_2 H_2 E_3 H_3 \text{ is true,} \\
x_2, & \text{if } \bar{H}_2 E_1 H_1 E_3 H_3 \text{ is true,} \\
x_3, & \text{if } \bar{H}_3 E_1 H_1 E_2 H_2 \text{ is true,} \\
x_{12}, & \text{if } \bar{H}_1 \bar{H}_2 E_3 H_3 \text{ is true,} \\
x_{13}, & \text{if } \bar{H}_1 \bar{H}_3 E_2 H_2 \text{ is true,} \\
x_{23}, & \text{if } \bar{H}_2 \bar{H}_3 E_1 H_1 \text{ is true,} \\
x_{123}, & \text{if } \bar{H}_1 \bar{H}_2 \bar{H}_3 \text{ is true,} \\
x_{123}, & \text{if } \bar{H}_1 \bar{H}_2 \bar{H}_3 \text{ is true,} \\
x_{123}, & \text{if } \bar{H}_1 \bar{H}_2 \bar{H}_3 \text{ is true,} \\
x_{123}, & \text{if } \bar{H}_1 \bar{H}_2 \bar{H}_3 \text{ is true,} \\
x_{123}, & \text{if } \bar{H}_1 \bar{H}_2 \bar{H}_3 \text{ is true,} \\
\end{array}$$
(7)

We recall the following result ([24, Theorem 15]).

4 Angelo Gilio and Giuseppe Sanfilippo

Theorem 3. Assume that the events $E_1, E_2, E_3, H_1, H_2, H_3$ are logically independent, with $H_1 \neq \emptyset, H_2 \neq \emptyset, H_3 \neq \emptyset$. Then, the set Π of all coherent assessments $\mathcal{M} = (x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123})$ on $\mathcal{F} = \{\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_{12}, \mathcal{C}_{13}, \mathcal{C}_{23}, \mathcal{C}_{123}\}$ is the set of points $(x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123})$ which satisfy the following conditions

 $\begin{cases} (x_1, x_2, x_3) \in [0, 1]^3, \\ \max\{x_1 + x_2 - 1, x_{13} + x_{23} - x_3, 0\} \leq x_{12} \leq \min\{x_1, x_2\}, \\ \max\{x_1 + x_3 - 1, x_{12} + x_{23} - x_2, 0\} \leq x_{13} \leq \min\{x_1, x_3\}, \\ \max\{x_2 + x_3 - 1, x_{12} + x_{13} - x_1, 0\} \leq x_{23} \leq \min\{x_2, x_3\}, \\ 1 - x_1 - x_2 - x_3 + x_{12} + x_{13} + x_{23} \geq 0, \\ x_{123} \geq \max\{0, x_{12} + x_{13} - x_1, x_{12} + x_{23} - x_2, x_{13} + x_{23} - x_3\}, \\ x_{123} \leq \min\{x_{12}, x_{13}, x_{23}, 1 - x_1 - x_2 - x_3 + x_{12} + x_{13} + x_{23}\}. \end{cases}$ (8)

Remark 2. As shown in (8), the coherence of $(x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123})$ amounts to the condition

$$\max\{0, x_{12} + x_{13} - x_1, x_{12} + x_{23} - x_2, x_{13} + x_{23} - x_3\} \leqslant x_{123} \leqslant \\ \leqslant \min\{x_{12}, x_{13}, x_{23}, 1 - x_1 - x_2 - x_3 + x_{12} + x_{13} + x_{23}\}.$$
(9)

Then, in particular, the extension x_{123} on C_{123} is coherent if and only if $x_{123} \in [x'_{123}, x''_{123}]$, where $x'_{123} = \max\{0, x_{12} + x_{13} - x_1, x_{12} + x_{23} - x_2, x_{13} + x_{23} - x_3\}$, $x''_{123} = \min\{x_{12}, x_{13}, x_{23}, 1 - x_1 - x_2 - x_3 + x_{12} + x_{13} + x_{23}\}$.

Then, by Theorem 3 it follows [24, Corollary 1]

Corollary 1. For any coherent assessment $(x_1, x_2, x_3, x_{12}, x_{13}, x_{23})$ on $\{C_1, C_2, C_3, C_{12}, C_{13}, C_{23}\}$ the extension x_{123} on C_{123} is coherent if and only if $x_{123} \in [x'_{123}, x''_{123}]$, where

$$\begin{aligned} x_{123}' &= \max\{0, x_{12} + x_{13} - x_1, x_{12} + x_{23} - x_2, x_{13} + x_{23} - x_3\}, \\ x_{123}'' &= \min\{x_{12}, x_{13}, x_{23}, 1 - x_1 - x_2 - x_3 + x_{12} + x_{13} + x_{23}\}. \end{aligned}$$
 (10)

We recall that in case of logical dependencies, the set of all coherent assessments may be smaller than that one associated with the case of logical independence. However (see [24, Theorem 16]) the set of coherent assessments is the same when $H_1 = H_2 = H_3 = H$ (where possibly $H = \Omega$; see also [26, p. 232]) and a corollary similar to Corollary 1 also holds in this case. For a similar result based on copulas see [12].

3 Representation by Frank t-norms for $(A|H) \land (B|K)$

We recall that for every $\lambda \in [0, +\infty]$ the Frank t-norm $T_{\lambda} : [0, 1]^2 \to [0, 1]$ with parameter λ is defined as

$$T_{\lambda}(u,v) = \begin{cases} T_{M}(u,v) = \min\{u,v\}, & \text{if } \lambda = 0, \\ T_{P}(u,v) = uv, & \text{if } \lambda = 1, \\ T_{L}(u,v) = \max\{u+v-1,0\}, & \text{if } \lambda = +\infty, \\ \log_{\lambda}(1 + \frac{(\lambda^{u}-1)(\lambda^{v}-1)}{\lambda-1}), & \text{otherwise.} \end{cases}$$
(11)

We recall that T_{λ} is continuous with respect to λ ; moreover, for every $\lambda \in [0, +\infty]$, it holds that $T_L(u, v) \leq T_{\lambda}(u, v) \leq T_M(u, v)$, for every $(u, v) \in [0, 1]^2$ (see, e.g., [28],[29]). In the next result we study the relation between our notion of conjunction and t-norms.

Theorem 4. Let us consider the conjunction $(A|H) \wedge (B|K)$, with A, B, H, Klogically independent and with P(A|H) = x, P(B|K) = y. Moreover, given any $\lambda \in [0, +\infty]$, let T_{λ} be the Frank t-norm with parameter λ . Then, the assessment $z = T_{\lambda}(x, y)$ on $(A|H) \wedge (B|K)$ is a coherent extension of (x, y) on $\{A|H, B|K\}$; moreover $(A|H) \wedge (B|K) = T_{\lambda}(A|H, B|K)$. Conversely, given any coherent extension $z = \mathbb{P}[(A|H) \wedge (B|K)]$ of (x, y), there exists $\lambda \in [0, +\infty]$ such that $z = T_{\lambda}(x, y)$.

Proof. We observe that from Theorem 2, for any given λ , the assessment $z = T_{\lambda}(x, y)$ is a coherent extension of (x, y) on $\{A|H, B|K\}$. Moreover, from (11) it holds that $T_{\lambda}(1, 1) = 1$, $T_{\lambda}(u, 0) = T_{\lambda}(0, v) = 0$, $T_{\lambda}(u, 1) = u$, $T_{\lambda}(1, v) = v$. Hence,

$$T_{\lambda}(A|H,B|K) = \begin{cases} 1, & \text{if } AHBK \text{ is true,} \\ 0, & \text{if } \bar{A}H \text{ is true or } \bar{B}K \text{ is true,} \\ x, & \text{if } \bar{H}BK \text{ is true,} \\ y, & \text{if } \bar{K}AH \text{ is true,} \\ T_{\lambda}(x,y), & \text{if } \bar{H}\bar{K} \text{ is true,} \end{cases}$$
(12)

and, if we choose $z = T_{\lambda}(x, y)$, from (3) and (12) it follows that $(A|H) \wedge (B|K) = T_{\lambda}(A|H, B|K)$.

Conversely, given any coherent extension z of (x, y), there exists λ such that $z = T_{\lambda}(x, y)$. Indeed, if $z = \min\{x, y\}$, then $\lambda = 0$; if $z = \max\{x + y - 1, 0\}$, then $\lambda = +\infty$; if $\max\{x + y - 1, 0\} < z < \min\{x, y\}$, then by continuity of T_{λ} with respect to λ it holds that $z = T_{\lambda}(x, y)$ for some $\lambda \in]0, \infty[$ (for instance, if z = xy, then $z = T_1(x, y)$) and hence $(A|H) \wedge (B|K) = T_{\lambda}(A|H, B|K)$. \Box

Remark 3. As we can see from (3) and Theorem 4, in case of logically independent events, if the assessed values x, y, z are such that $z = T_{\lambda}(x, y)$ for a given λ , then the conjunction $(A|H) \wedge (B|K) = T_{\lambda}(A|H, B|K)$. For instance, if $z = T_1(x, y) = xy$, then $(A|H) \wedge (B|K) = T_1(A|H, B|K) = (A|H) \cdot (B|K)$. Conversely, if $(A|H) \wedge (B|K) = T_{\lambda}(A|H, B|K)$ for a given λ , then $z = T_{\lambda}(x, y)$. Then, the set Π given in (5) can be written as $\Pi = \{(x, y, z) : (x, y) \in [0, 1]^2, z = T_{\lambda}(x, y), \lambda \in [0, +\infty]\}$.

4 Conjunction of (A|H) and (A|K)

In this section we examine the conjunction of two conditional events in the particular case when A = B, that is $(A|H) \wedge (A|K)$. By setting P(A|H) = x, P(A|K) = y and $\mathbb{P}[(A|H) \wedge (A|K)] = z$, it holds that

$$(A|H) \land (A|K) = AHK + x\overline{H}AK + y\overline{K}AH + z\overline{H}\overline{K} \in \{1, 0, x, y, z\}.$$

Theorem 5. Let A, H, K be three logically independent events, with $H \neq \emptyset$, $K \neq \emptyset$. The set Π of all coherent assessments (x, y, z) on the family $\mathcal{F} = \{A|H, A|K, (A|H) \land (A|K)\}$ is given by

$$\Pi = \{(x, y, z) : (x, y) \in [0, 1]^2, T_P(x, y) = xy \le z \le \min\{x, y\} = T_M(x, y)\}.$$
(13)

Proof. Let $\mathcal{M} = (x, y, z)$ be a prevision assessment on \mathcal{F} . The constituents associated with the pair $(\mathcal{F}, \mathcal{M})$ and contained in $H \vee K$ are: $C_1 = AHK$, $C_2 = \overline{A}HK$, $C_3 = \overline{A}\overline{H}K$, $C_4 = \overline{A}H\overline{K}$, $C_5 = A\overline{H}K$, $C_6 = AH\overline{K}$. The associated points Q_h 's are $Q_1 = (1, 1, 1)$, $Q_2 = (0, 0, 0)$, $Q_3 = (x, 0, 0)$, $Q_4 = (0, y, 0)$, $Q_5 = (x, 1, x)$, $Q_6 = (1, y, y)$. With the further constituent $C_0 = \overline{H}\overline{K}$ it is associated the point $Q_0 = \mathcal{M} = (x, y, z)$. Considering the convex hull \mathcal{I} (see Figure 1) of Q_1, \ldots, Q_6 , a necessary condition for the coherence of the prevision assessment $\mathcal{M} = (x, y, z)$ on \mathcal{F} is that $\mathcal{M} \in \mathcal{I}$, that is the following system must be solvable

$$(\varSigma) \begin{cases} \lambda_1 + x\lambda_3 + x\lambda_5 + \lambda_6 = x, \ \lambda_1 + y\lambda_4 + \lambda_5 + y\lambda_6 = y, \ \lambda_1 + x\lambda_5 + y\lambda_6 = z \\ \sum_{h=1}^6 \lambda_h = 1, \ \lambda_h \ge 0, \ h = 1, \dots, 6. \end{cases}$$

First of all, we observe that solvability of (Σ) requires that $z \leq x$ and $z \leq y$, that is $z \leq \min\{x, y\}$. We now verify that (x, y, z), with $(x, y) \in [0, 1]^2$ and $z = \min\{x, y\}$, is coherent. We distinguish two cases: (i) $x \leq y$ and (ii) x > y. Case (i). In this case $z = \min\{x, y\} = x$. If y = 0 the system (Σ) becomes

$$\lambda_1 + \lambda_6 = 0, \ \lambda_1 + \lambda_5 = 0, \ \lambda_1 = 0, \ \lambda_2 + \lambda_3 + \lambda_4 = 1, \ \lambda_h \ge 0, \ h = 1, \dots, 6.$$

which is clearly solvable. In particular there exist solutions with $\lambda_2 > 0, \lambda_3 > 0, \lambda_4 > 0$, by Theorem 1, as the set I_0 is empty the solvability of (Σ) is sufficient for coherence of the assessment (0,0,0). If y > 0 the system (Σ) is solvable and a solution is $\Lambda = (\lambda_1, \ldots, \lambda_6) = (x, \frac{x(1-y)}{y}, 0, \frac{y-x}{y}, 0, 0)$. We observe that, if x > 0, then $\lambda_1 > 0$ and $I_0 = \emptyset$ because $C_1 = HK \subseteq H \lor K$, so that $\mathcal{M} = (x, y, x)$ is coherent. If x = 0 (and hence z = 0), then $\lambda_4 = 1$ and $I_0 \subseteq \{2\}$. Then, as the sub-assessment P(A|K) = y is coherent, it follows that the assessment $\mathcal{M} = (0, y, 0)$ is coherent too.

Case (ii). The system is solvable and a solution is $\Lambda = (\lambda_1, \ldots, \lambda_6) = (y, \frac{y(1-x)}{x}, \frac{x-y}{x}, 0, 0, 0)$. We observe that, if y > 0, then $\lambda_1 > 0$ and $I_0 = \emptyset$ because $C_1 = HK \subseteq H \lor K$, so that $\mathcal{M} = (x, y, y)$ is coherent. If y = 0 (and hence z = 0), then $\lambda_3 = 1$ and $I_0 \subseteq \{1\}$. Then, as the sub-assessment P(A|H) = x is coherent, it follows that the assessment $\mathcal{M} = (x, 0, 0)$ is coherent too. Thus, for every $(x, y) \in [0, 1]^2$, the assessment $(x, y, \min\{x, y\})$ is coherent and, as $z \leq \min\{x, y\}$, the upper bound on z is $\min\{x, y\} = T_M(x, y)$.

We now verify that (x, y, xy), with $(x, y) \in [0, 1]^2$ is coherent; moreover we will show that (x, y, z), with z < xy, is not coherent, in other words the lower bound for z is xy. First of all, we observe that $\mathcal{M} = (1-x)Q_4 + xQ_6$, so that a solution of (Σ) is $\Lambda_1 = (0, 0, 0, 1-x, 0, x)$. Moreover, $\mathcal{M} = (1-y)Q_3 + yQ_5$, so that another solution is $\Lambda_2 = (0, 0, 1-y, 0, y, 0)$. Then $\Lambda = \frac{\Lambda_1 + \Lambda_2}{2} = (0, 0, \frac{1-y}{2}, \frac{1-x}{2}, \frac{y}{2}, \frac{x}{2})$ is a solution of (Σ) such that $I_0 = \emptyset$. Thus the assessment (x, y, xy) is coherent for every $(x, y) \in [0, 1]^2$. In order to verify that xy is the lower bound on z we observe that the points Q_3, Q_4, Q_5, Q_6 belong to a plane π of equation: yX + xY - Z = xy, where X, Y, Z are the axis' coordinates. Now, by considering the function f(X, Y, Z) = yX + xY - Z, we observe that for each constant k the equation f(X, Y, Z) = k represents a plane which is parallel to π and coincides with π when k = xy. We also observe that $f(Q_1) = f(1, 1, 1) =$ $x + y - 1 = T_L(x, y) \leq xy = T_P(x, y), f(Q_2) = f(0, 0, 0) = 0 \leq xy = T_P(x, y),$ and $f(Q_3) = f(Q_4) = f(Q_5) = f(Q_6) = xy = T_P(x, y)$. Then, for every $\mathcal{P} = \sum_{h=1}^{6} \lambda_h Q_h$, with $\lambda_h \geq 0$ and $\sum_{h=1}^{6} \lambda_h = 1$, that is $\mathcal{P} \in \mathcal{I}$, it holds that $f(\mathcal{P}) = f\left(\sum_{h=1}^{6} \lambda_h Q_h\right) = \sum_{h=1}^{6} \lambda_h f(Q_h) \leq xy$. On the other hand, given any a > 0, by considering $\mathcal{P} = (x, y, xy - a)$ it holds that $f(\mathcal{P}) = f(x, y, xy - a) =$ xy + xy - xy + a = xy + a > xy. Therefore, for any given a > 0 the assessment (x, y, xy - a) is not coherent because $(x, y, xy - a) \notin \mathcal{I}$. Then, the lower bound on z is $xy = T_P(x, y)$. Finally, the set of all coherent assessments (x, y, z) on \mathcal{F} is the set Π in (13).

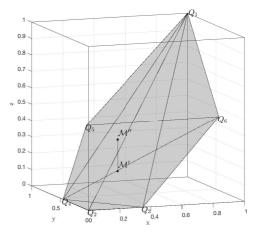


Fig. 1. Convex hull \mathcal{I} of the points $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6$. $\mathcal{M}' = (x, y, z'), \mathcal{M}'' = (x, y, z'')$, where $(x, y) \in [0, 1]^2$, z' = xy, $z'' = \min\{x, y\}$. In the figure the numerical values are: x = 0.35, y = 0.45, z' = 0.1575, and z'' = 0.35.

Based on Theorem 5, we can give an analogous version for the Theorem 4 (when A = B).

Theorem 6. Let us consider the conjunction $(A|H) \land (A|K)$, with A, H, K logically independent and with P(A|H) = x, P(A|K) = y. Moreover, given any $\lambda \in [0, 1]$, let T_{λ} be the Frank t-norm with parameter λ . Then, the assessment $z = T_{\lambda}(x, y)$ on $(A|H) \land (A|K)$ is a coherent extension of (x, y) on $\{A|H, A|K\}$; moreover $(A|H) \land (A|K) = T_{\lambda}(A|H, A|K)$. Conversely, given any coherent extension $z = \mathbb{P}[(A|H) \land (A|K)]$ of (x, y), there exists $\lambda \in [0, 1]$ such that $z = T_{\lambda}(x, y)$.

The next result follows from Theorem 5 when H, K are incompatible.

Theorem 7. Let A, H, K be three events, with A logically independent from both H and K, with $H \neq \emptyset$, $K \neq \emptyset$, $HK = \emptyset$. The set Π of all coherent assessments (x, y, z) on the family $\mathcal{F} = \{A|H, A|K, (A|H) \land (A|K)\}$ is given by $\Pi = \{(x, y, z) : (x, y) \in [0, 1]^2, z = xy = T_P(x, y)\}.$

Proof. We observe that

$$(A|H) \land (A|K) = \begin{cases} 0, & \text{if } \bar{A}\bar{H}K \lor \bar{A}H\bar{K} \text{ is true,} \\ x, & \text{if } \bar{H}AK \text{ is true,} \\ y, & \text{if } AH\bar{K} \text{ is true,} \\ z, & \text{if } \bar{H}\bar{K} \text{ is true.} \end{cases}$$

Moreover, as $HK = \emptyset$, the points Q_h 's are (x, 0, 0), (0, y, 0), (x, 1, x), (1, y, y), which coincide with the points Q_3, \ldots, Q_6 of the case $HK \neq \emptyset$. Then, as shown in the proof of Theorem 5, the condition $\mathcal{M} = (x, y, z)$ belongs to the convex hull of (x, 0, 0), (0, y, 0), (x, 1, x), (1, y, y) amounts to the condition z = xy. \Box

Remark 4. From Theorem 7, when $HK = \emptyset$ it holds that $(A|H) \land (A|K) = (A|H) \cdot (A|K) = T_P(A|H, A|K)$, where x = P(A|H) and y = P(A|K).

5 Further Results on Frank t-norms

In this section we give some results which concern Frank t-norms and the family $\mathcal{F} = \{\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_{12}, \mathcal{C}_{13}, \mathcal{C}_{23}, \mathcal{C}_{123}\}$. We recall that, given any t-norm $T(x_1, x_2)$ it holds that $T(x_1, x_2, x_3) = T(T(x_1, x_2), x_3)$.

5.1 On the Product t-norm

Theorem 8. Assume that the events $E_1, E_2, E_3, H_1, H_2, H_3$ are logically independent, with $H_1 \neq \emptyset, H_2 \neq \emptyset, H_3 \neq \emptyset$. If the assessment $\mathcal{M} = (x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123})$ on $\mathcal{F} = \{\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_{12}, \mathcal{C}_{13}, \mathcal{C}_{23}, \mathcal{C}_{123}\}$ is such that $(x_1, x_2, x_3) \in [0, 1]^3$, $x_{ij} = T_1(x_i, x_j) = x_i x_j$, $i \neq j$, and $x_{123} = T_1(x_1, x_2, x_3) = x_1 x_2 x_3$, then \mathcal{M} is coherent. Moreover, $\mathcal{C}_{ij} = T_1(\mathcal{C}_i, \mathcal{C}_j) = \mathcal{C}_i \mathcal{C}_j$, $i \neq j$, and $\mathcal{C}_{123} = T_1(\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3) = \mathcal{C}_1 \mathcal{C}_2 \mathcal{C}_3$.

Proof. From Remark 2, the coherence of \mathcal{M} amounts to the inequalities in (9). As $x_{ij} = T_1(x_i, x_j) = x_i x_j$, $i \neq j$, and $x_{123} = T_1(x_1, x_2, x_3) = x_1 x_2 x_3$, the inequalities (9) become

 $\max\{0, x_1(x_2 + x_3 - 1), x_2(x_1 + x_3 - 1), x_3(x_1 + x_2 - 1)\} \leq x_1 x_2 x_3 \leq (14)$ $\leq \min\{x_1 x_2, x_1 x_3, x_2 x_3, (1 - x_1)(1 - x_2)(1 - x_3) + x_1 x_2 x_3\}.$

Thus, by recalling that $x_i + x_j - 1 \leq x_i x_j$, the inequalities are satisfied and hence \mathcal{M} is coherent. Moreover, from (3) and (7) it follows that $\mathcal{C}_{ij} = T_1(\mathcal{C}_i, \mathcal{C}_j) = \mathcal{C}_i \mathcal{C}_j$, $i \neq j$, and $\mathcal{C}_{123} = T_1(\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3) = \mathcal{C}_1 \mathcal{C}_2 \mathcal{C}_3$.

5.2 On the Minimum t-norm

Theorem 9. Assume that the events $E_1, E_2, E_3, H_1, H_2, H_3$ are logically independent, with $H_1 \neq \emptyset, H_2 \neq \emptyset, H_3 \neq \emptyset$. If the assessment $\mathcal{M} = (x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123})$ on $\mathcal{F} = \{C_1, C_2, C_3, C_{12}, C_{13}, C_{23}, C_{123}\}$ is such that $(x_1, x_2, x_3) \in [0, 1]^3$, $x_{ij} = T_M(x_i, x_j) = \min\{x_i, x_j\}$, $i \neq j$, and $x_{123} = T_M(x_1, x_2, x_3) = \min\{x_1, x_2, x_3\}$, then \mathcal{M} is coherent. Moreover, $C_{ij} = T_M(\mathcal{C}_i, \mathcal{C}_j) = \min\{\mathcal{C}_i, \mathcal{C}_j\}$, $i \neq j$, and $C_{123} = T_M(\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3) = \min\{\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3\}$.

Proof. From Remark 2, the coherence of \mathcal{M} amounts to the inequalities in (9). Without loss of generality, we assume that $x_1 \leq x_2 \leq x_3$. Then $x_{12} = T_M(x_1, x_2) = x_1$, $x_{13} = T_M(x_1, x_3) = x_1$, $x_{23} = T_M(x_2, x_3) = x_2$, and $x_{123} = T_M(x_1, x_2, x_3) = x_1$. The inequalities (9) become

$$\max\{0, x_1, x_1 + x_2 - x_3\} = x_1 \leqslant x_1 \leqslant x_1 = \min\{x_1, x_2, 1 - x_3 + x_1\}.$$
 (15)

Thus, the inequalities are satisfied and hence \mathcal{M} is coherent. Moreover, from (3) and (7) it follows that $\mathcal{C}_{ij} = T_M(\mathcal{C}_i, \mathcal{C}_j) = \min\{\mathcal{C}_i, \mathcal{C}_j\}, i \neq j$, and $\mathcal{C}_{123} = T_M(\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3) = \min\{\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3\}.$

Remark 5. As we can see from (15) and Corollary 1, the assessment $x_{123} = \min\{x_1, x_2, x_3\}$ is the unique coherent extension on C_{123} of the assessment $(x_1, x_2, x_3, \min\{x_1, x_2\}, \min\{x_1, x_3\}, \min\{x_2, x_3\})$ on $\{C_1, C_2, C_3, C_{12}, C_{13}, C_{23}\}$. We also notice that, if $C_1 \leq C_2 \leq C_3$, then $C_{12} = C_1$, $C_{13} = C_1$, $C_{23} = C_2$, and $C_{123} = C_1$. Moreover, $x_{12} = x_1$, $x_{13} = x_1$, $x_{23} = x_2$, and $x_{123} = x_1$.

5.3 On Lukasiewicz t-norm

We observe that in general the results of Theorems 8 and 9 do not hold for the Lukasiewicz t-norm (and hence for any given Frank t-norm), as shown in the example below. We recall that $T_L(x_1, x_2, x_3) = \max\{x_1 + x_2 + x_3 - 2, 0\}$.

Example 1. The assessment $(x_1, x_2, x_3, T_L(x_1, x_2), T_L(x_1, x_3), T_L(x_2, x_3), T_L(x_1, x_2, x_3))$ on the family $\mathcal{F} = \{C_1, C_2, C_3, C_{12}, C_{13}, C_{23}, C_{123}\}$, with $(x_1, x_2, x_3) = (0.5, 0.6, 0.7)$ is not coherent. Indeed, by observing that $T_L(x_1, x_2) = 0.1 \ T_L(x_1, x_3) = 0.2, \ T_L(x_2, x_3) = 0.3, \ \text{and} \ T_L(x_1, x_2, x_3) = 0, \ \text{formula (9) becomes max}\{0, 0.1 + 0.2 - 0.5, 0.1 + 0.3 - 0.6, 0.2 + 0.3 - 0.7\} \leq 0 \leq \min\{0.1, 0.2, 0.3, 1 - 0.5 - 0.6 - 0.7 + 0.1 + 0.2 + 0.3\}, \ \text{that is:} \max\{0, -0.2\} \leq 0 \leq \min\{0.1, 0.2, 0.3, -0.2\}; \ \text{thus the inequalities are not satisfied and the assessment is not coherent.}$

More in general we have

Theorem 10. The assessment $(x_1, x_2, x_3, T_L(x_1, x_2), T_L(x_1, x_3), T_L(x_2, x_3))$ on the family $\mathcal{F} = \{C_1, C_2, C_3, C_{12}, C_{13}, C_{23}\}$, with $T_L(x_1, x_2) > 0$, $T_L(x_1, x_3) > 0$, $T_L(x_2, x_3) > 0$ is coherent if and only if $x_1 + x_2 + x_3 - 2 \ge 0$. Moreover, when $x_1 + x_2 + x_3 - 2 \ge 0$ the unique coherent extension x_{123} on C_{123} is $x_{123} = T_L(x_1, x_2, x_3)$.

10 Angelo Gilio and Giuseppe Sanfilippo

Proof. We distinguish two cases: (i) $x_1 + x_2 + x_3 - 2 < 0$; (ii) $x_1 + x_2 + x_3 - 2 \ge 0$. Case (i). From (8) the inequality $1 - x_1 - x_2 - x_3 + x_{12} + x_{13} + x_{23} \ge 0$ is not satisfied because $1 - x_1 - x_2 - x_3 + x_{12} + x_{13} + x_{23} = x_1 + x_2 + x_3 - 2 < 0$. Therefore the assessment is not coherent.

Case (*ii*). We set $x_{123} = T_L(x_1, x_2, x_3) = x_1 + x_2 + x_3 - 2$. Then, by observing that $0 < x_i + x_j - 1 \leq x_1 + x_2 + x_3 - 2$, $i \neq j$, formula (9) becomes $\max\{0, x_1 + x_2 + x_3 - 2\} \leq x_1 + x_2 + x_3 - 2 \leq \min\{x_1 + x_2 - 1, x_1 + x_3 - 1, x_2 + x_3 - 1, x_1 + x_2 + x_3 - 2\}$, that is: $x_1 + x_2 + x_3 - 2 \leq x_1 + x_2 + x_3 - 2$. Thus, the inequalities are satisfied and the assessment $(x_1, x_2, x_3, T_L(x_1, x_2), T_L(x_1, x_3), T_L(x_2, x_3), T_L(x_1, x_2, x_3))$ on $\{C_1, C_2, C_3, C_{12}, C_{13}, C_{23}, C_{123}\}$ is coherent and the sub-assessment $(x_1, x_2, x_3, T_L(x_1, x_3), T_L(x_2, x_3))$ on \mathcal{F} is coherent too. \Box

A result related with Theorem 10 is given below.

Theorem 11. If the assessment $(x_1, x_2, x_3, T_L(x_1, x_2), T_L(x_1, x_3), T_L(x_2, x_3), T_L(x_1, x_2, x_3))$ on the family $\mathcal{F} = \{C_1, C_2, C_3, C_{12}, C_{13}, C_{23}, C_{123}\}$, is such that $T_L(x_1, x_2, x_3) > 0$, then the assessment is coherent.

Proof. We observe that $T_L(x_1, x_2, x_3) = x_1 + x_2 + x_3 - 2 > 0$; then $x_i > 0$, i = 1, 2, 3, and $0 < x_i + x_j - 1 \le x_1 + x_2 + x_3 - 2$, $i \neq j$. Then formula (9)) becomes: $\max\{0, x_1 + x_2 + x_3 - 2\} \le x_1 + x_2 + x_3 - 2 \le$ $\le \min\{x_1 + x_2 - 1, x_1 + x_3 - 1, x_2 + x_3 - 1, x_1 + x_2 + x_3 - 2\}$, that is: $x_1 + x_2 + x_3 - 2 \le x_1 + x_2 + x_3 - 2 \le x_1 + x_2 + x_3 - 2$. Thus, the inequalities are satisfied and the assessment is coherent. \Box

6 Conclusions

We have studied the relationship between the notions of conjunction and of Frank t-norms. We have shown that, under logical independence of events and coherence of prevision assessments, for a suitable $\lambda \in [0, +\infty]$ it holds that $\mathbb{P}((A|H) \wedge (B|K)) = T_{\lambda}(x, y)$ and $(A|H) \wedge (B|K) = T_{\lambda}(A|H, B|K)$. Then, we have considered the case A = B, by determining the set of all coherent assessment (x, y, z) on $(A|H, B|K, (A|H) \wedge (A|K))$. We have shown that, under coherence, for a suitable $\lambda \in [0, 1]$ it holds that $(A|H) \wedge (A|K) = T_{\lambda}(A|H, A|K)$. We have also studied the particular case where A = B and $HK = \emptyset$. Then, we have considered the conjunction of three conditional events and we have shown that the prevision assessments produced by the Product t-norm, or the Minimum t-norm, are coherent. Finally, we have examined the Lukasiewicz t-norm and we have shown, by a counterexample, that coherence in general is not assured. We have given some conditions for coherence when the prevision assessments are based on the Lukasiewicz t-norm. Future work should concern the deepening and generalization of the results of this paper.

Acknowledgments. We thank three anonymous referees for their useful comments.

References

- Biazzo, V., Gilio, A.: A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. International Journal of Approximate Reasoning 24(2-3), 251–272 (2000)
- Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under coherence: Complexity and algorithms. Annals of Mathematics and Artificial Intelligence 45(1-2), 35–81 (2005)
- Biazzo, V., Gilio, A., Sanfilippo, G.: Generalized coherence and connection property of imprecise conditional previsions. In: Proc. IPMU 2008, Malaga, Spain, June 22 - 27. pp. 907–914 (2008)
- Biazzo, V., Gilio, A., Sanfilippo, G.: Coherent conditional previsions and proper scoring rules. In: Advances in Computational Intelligence. IPMU 2012, CCIS, vol. 300, pp. 146–156. Springer Heidelberg (2012)
- Coletti, G., Gervasi, O., Tasso, S., Vantaggi, B.: Generalized bayesian inference in a fuzzy context: From theory to a virtual reality application. Computational Statistics and Data Analysis 56(4), 967 – 980 (2012)
- Coletti, G., Petturiti, D., Vantaggi, B.: Possibilistic and probabilistic likelihood functions and their extensions: Common features and specific characteristics. Fuzzy Sets and Systems 250, 25–51 (2014)
- Coletti, G., Scozzafava, R.: Probabilistic logic in a coherent setting. Kluwer, Dordrecht (2002)
- Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: A unifying view. Fuzzy Sets and Systems 144, 227–249 (2004)
- Coletti, G., Scozzafava, R., Vantaggi, B.: Coherent conditional probability, fuzzy inclusion and default rules. In: Yager, R., Abbasov, A.M., Reformat, M.Z., Shahbazova, S.N. (eds.) Soft Computing: State of the Art Theory and Novel Applications, pp. 193–208. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)
- Coletti, G., Scozzafava, R., Vantaggi, B.: Possibilistic and probabilistic logic under coherence: Default reasoning and System P. Mathematica Slovaca 65(4), 863–890 (2015)
- Dubois, D.: Generalized probabilistic independence and its implications for utility. Operations Research Letters 5(5), 255 – 260 (1986)
- Durante, F., Klement, E.P., Quesada-Molina, J.J.: Bounds for trivariate copulas with given bivariate marginals. Journal of Inequalities and Applications 2008(1), 9 pages (2008), article ID 161537
- de Finetti, B.: La logique de la probabilité. In: Actes du Congrès International de Philosophie Scientifique, Paris, 1935. pp. IV 1–IV 9 (1936)
- de Finetti, B.: Theory of probability, vol. 1, 2. John Wiley & Sons, Chichester (1970/1974)
- Flaminio, T., Godo, L., Ugolini, S.: Towards a probability theory for product logic: States, integral representation and reasoning. International Journal of Approximate Reasoning 93, 199 – 218 (2018)
- Gilio, A.: Probabilistic reasoning under coherence in System P. Annals of Mathematics and Artificial Intelligence 34, 5–34 (2002)
- 17. Gilio, A.: Generalizing inference rules in a coherence-based probabilistic default reasoning. International Journal of Approximate Reasoning 53(3), 413–434 (2012)
- Gilio, A., Pfeifer, N., Sanfilippo, G.: Transitivity in coherence-based probability logic. Journal of Applied Logic 14, 46–64 (2016)

- 12 Angelo Gilio and Giuseppe Sanfilippo
- Gilio, A., Sanfilippo, G.: Coherent conditional probabilities and proper scoring rules. In: Proc. of ISIPTA'11. pp. 189–198. Innsbruck (2011)
- Gilio, A., Sanfilippo, G.: Conditional random quantities and iterated conditioning in the setting of coherence. In: van der Gaag, L.C. (ed.) ECSQARU 2013, LNCS, vol. 7958, pp. 218–229. Springer, Berlin, Heidelberg (2013)
- Gilio, A., Sanfilippo, G.: Conjunction, disjunction and iterated conditioning of conditional events. In: Synergies of Soft Computing and Statistics for Intelligent Data Analysis, AISC, vol. 190, pp. 399–407. Springer, Berlin (2013)
- Gilio, A., Sanfilippo, G.: Quasi conjunction, quasi disjunction, t-norms and tconorms: Probabilistic aspects. Information Sciences 245, 146–167 (2013)
- Gilio, A., Sanfilippo, G.: Conditional random quantities and compounds of conditionals. Studia Logica 102(4), 709–729 (2014)
- Gilio, A., Sanfilippo, G.: Generalized logical operations among conditional events. Applied Intelligence 49(1), 79–102 (2019)
- Gilio, A., Sanfilippo, G.: Probability propagation in selected Aristotelian syllogisms. In: Kern-Isberner, G., Ognjanović, Z. (eds.) ECSQARU 2019, this volume. LNCS, Springer (2019)
- Joe, H.: Multivariate Models and Multivariate Dependence Concepts. Chapman and Hall/CRC, New York (1997)
- Kaufmann, S.: Conditionals right and left: Probabilities for the whole family. Journal of Philosophical Logic 38, 1–53 (2009)
- 28. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer (2000)
- Klement, E.P., Mesiar, R., Pap, E.: Triangular norms: Basic notions and properties. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, pp. 17 – 60. Elsevier Science B.V., Amsterdam (2005)
- Lad, F., Sanfilippo, G., Agró, G.: Completing the logarithmic scoring rule for assessing probability distributions. AIP Conf. Proc. 1490(1), 13–30 (2012)
- Lad, F., Sanfilippo, G., Agró, G.: Extropy: complementary dual of entropy. Statistical Science 30(1), 40–58 (2015)
- Lad, F., Sanfilippo, G., Agró, G.: The duality of entropy/extropy, and completion of the kullback information complex. Entropy 20(8) (2018)
- McGee, V.: Conditional probabilities and compounds of conditionals. Philosophical Review 98, 485–541 (1989)
- Navara, M.: Triangular norms and measures of fuzzy sets. In: Klement, E.P., Mesiar (eds.) Logical, algebraic, analytic and probabilistic aspects of triangular norms, pp. 345–390. Elsevier (2005)
- Sanfilippo, G.: Lower and upper probability bounds for some conjunctions of two conditional events. In: SUM 2018, LNCS, vol. 11142, pp. 260–275. Springer International Publishing, Cham (2018)
- Sanfilippo, G., Pfeifer, N., Over, D., Gilio, A.: Probabilistic inferences from conjoined to iterated conditionals. International Journal of Approximate Reasoning 93(Supplement C), 103 – 118 (2018)