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Balancing Schedules Using Maximum Leximin?

Federico Toffano and Nic Wilson

Insight Centre for Data Analytics, School of CS and IT
University College Cork, Cork, Ireland

{federico.toffano,nic.wilson}@insight-centre.org

Abstract. We consider the problem of assigning, in a fair way, time
limits for processes in manufacturing a product, subject to a deadline
where the duration of each activity can be uncertain. We focus on an
approach based on choosing the maximum element according to a leximin
ordering, and we prove the correctness of a simple iterative procedure for
generating this maximally preferred element. Our experimental testing
illustrates the efficiency of our approach.

Keywords: Fair division · Preferences · Scheduling under uncertainty

1 Introduction

We consider a network representing the manufacturing processes required to
make a particular product. Each of the n edges represents one of the activities
(i.e., processes) involved, and the network structure implies precedence con-
straints between the activities, allowing activities to be in series or in parallel.
We assume an overall time limit D, and we wish to assign a time limit (i.e.,
maximum duration) durj ≥ 0 to each activity j in a way that is consistent with
the overall time limit, i.e., so that the makespan (the length of the longest path)
is at most D, when the length of edge j is equal to durj .

Computing such time limits can be useful in a number of ways: given a
delayed order, we can understand which are the activities most to blame by
considering their lateness defined as Cj −durj , where Cj is the completion time
of activity j. With repeated data and considering the probability distribution
of the duration of each activity, we can see which activities are most often to
blame, which may motivate more detailed exploration of why this is the case.
This analysis can also help to identify the most critical activities, so that one
can assign more or less resources to a specific job. It can also give us information
about how reasonable the overall deadline D is.

We aim to assign the time limits durj to be slack-free and balanced, given
the overall time limit D (and potentially other constraints on the individual
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time limits). Slack-free means that it is impossible to increase the limits whilst
still satisfying the constraints. If the time limits vector is not slack-free then the
durations of activities could exceed these time limits whilst still being consistent
with the constraints.

Being balanced is a more complex notion, but the fundamental idea is be-
ing fair to the different activities. We introduce parameterised forms of each
time limit durj = fj(α), chosen so that for any given value of α, and for
any activities i and j, a time limit of fi(α) for the duration of activity i is
an equally reasonable requirement as a time limit fj(α) for the duration of
activity j. These functions fj , which we call commensuracy functions, are as-
sumed to be continuous and strictly increasing. Given these functions fj , a col-
lection of parameters r(j) : j ∈ {1, . . . , n}, generates a collection of time limits
durj = fj(r(j)) : j ∈ {1, . . . , n}, so that it is sufficient to choose the vector r of
parameters. We sometimes abbreviate r(j) to rj .

Linear Case: We first consider the simple case where all the activities are in
series. In this case, we must have

∑n
j=1 durj ≤ D, or in terms of a parameters

vector r,
∑n
j=1 fj(rj) ≤ D. Then r is slack-free if and only if

∑n
j=1 fj(rj) = D.

Since there is only one complete path, all the n activities are similar in the sense
described above, so to also satisfy the basic balance property we need that for
all j = 1, . . . , n, rj = α, for the unique value of α such that

∑n
j=1 fj(α) = D.

For more general networks, the situation is more complicated. It will typically
not be possible to set the values of r to be all equal, without breaking the slack-
free property. It would mean potentially penalising an activity j whose duration
is greater than fj(rj), even though the overall time limit D (the makespan
limit) is still maintained. However, we do not want to penalise any activities
unnecessarily.

Thus, the input of the problem is a graph G, where with each edge j, rep-
resenting an activity, is associated a commensuracy function fj , and an overall
time limit D. The output is a balanced and slack-free deadline durj for each
activity j.

In this paper we focus on balancing schedules by using a standard notion
of fairness, based on maximising leximin, which is a refinement of maximising
the minimum value (see e.g., [24, 13] for a deep investigation of fairness in many
different contexts). The final output is fair in the sense that there is no way to
increase the parameter rj of an activity j (and therefore the corresponding time
limit fj(rj)) without decreasing another parameter ri which is lower or equal.

A standard form of algorithm for obtaining the max leximin element for
many problems is sometimes referred to as the water filling algorithm1; the idea
is to increase the levels of each component together until one of the constraints
becomes tight; this gives a maximin solution; the components in tight constraints
are then fixed (since reducing any such component will give a solution with worse
min value, and increasing any such component will give a vector that fails to
satisfy the tight constraint). The non-fixed components are increased again until

1 This is different from the classic water pouring/filling algorithms for allocating
power [17].
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a new constraint involving one of them becomes tight, and so on. We prove
the correctness of this algorithm in a rather general setting, which makes no
assumption of convexity of the spaces (in contrast with the unifying framework
in [18]).

Different Forms of Commensuracy Function: There are different approaches
for generating the commensuracy functions fj . One kind of method involves
making use of a probability distribution over the durations of activity j (or an
approximation of this based on past data). For instance, one might define fj(α)
to be equal to µj + ασj , where µj is the mean of the distribution of the jth du-
ration, and σj is its standard deviation. Alternatives include fj(α) = µj + ασ2

j ;
or the quantile function: fj(α) is the value d such that the probability that the
duration is less than or equal to d is equal to α.

We first, in Section 2, give an example to illustrate the method and our
notation. In Section 3 we define some notation that we use throughout the paper.
Section 4 describes the maximum leximin method for balancing the schedules,
and defines a simple iterative method that we prove generates the unique most
balanced schedule. Other balancing methods are also possible, but may lack
some natural properties. Section 5, describes the experimental testing, with the
related work being discussed in Section 6, and Section 7 concluding.

2 Running Example

Fig. 1: Activities graph Table 1: parameters

e1 e2 e3 e4 e5
µj 5 5 5 4 4

σj 1 1 3 2 2

Consider the graph in Figure 1, where each edge ej is associated with the
commensuracy function fj(rj) = µj + rjσj . Assuming a global deadline D = 20,
and the parameters of the activities shown in Table 1, we want to compute
a slack-free and balanced vector r. Starting with rj = 0 for each activity j,
we increase the values of all the parameters rj at the same rate until we find
the first complete path π1 with length D. In this example, given the assign-
ment r = (1, 1, 1, 1, 1), the path π1 = {e1, e2, e3} has length D(= 20); we can
then fix the values rj of the activities in π1 (i.e. r(1) = r(2) = r(3) = 1) and
keep increasing the remaining non-fixed rj . Repeating this procedure until all
the parameters are fixed, we obtain a slack-free assignment r that is balanced
w.r.t. (with respect to) the commensuracy functions fj . In the current example
this requires three iterations: the first to fix the parameters of π1, the second to
fix r(4) = 4 (π2 = {e4, e3}), and the third to fix r(5) = 5 (π3 = {e1, e5}). The
final assignment is therefore r = (1, 1, 1, 4, 5) with associated time limits vector
dur = (6, 6, 8, 12, 14).
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3 Formal Definitions

Graphical structure: We assume a finite directed acyclic graph G containing a
source node and a sink node and n edges, each of which we label with a different
value in {1, . . . , n}. Apart from the source (with only out-edges) and sink (with
only in-edges), every node has at least one in-edge and at least one out-edge. A
complete path is defined to be a path from source to sink; we identify this with
its set of edges π. The assumptions above imply that every edge is in at least
one complete path. We write the set of complete paths as CG . As discussed in
Section 1, each edge is intended to represent an activity required for making a
product, with the topology encoding precedence constraints.

Commensuracy Functions fj: For each j ∈ {1, . . . , n}, we assume a strictly
monotonic continuous function fj from closed interval I to the non-negative
reals. We write I = [LI , UI ], where we make some assumptions on I below.

Assignments: A complete assignment is a function from {1, . . . , n} to I. The
set of all complete assignments is written as CA. Given a complete assignment r,
we consider fj(rj) as the length of edge j in the graph G, which we also consider
as the time limit (maximum duration) of the jth activity.

An assignment is a function b from some subset B of {1, . . . , n} to I. We write
Dom(b) = B, and write AS as the set of all assignments. A partial assignment is
an element of PA = AS \CA, i.e., a function from a proper subset of {1, . . . , n}
to I. For convenience we define ♦ as the empty assignment, i.e., the (trivial)
function from ∅ to I.

Consider two assignments a : A → I and b : B → I, where A ⊆ B. We say
that a is the projection of b to A if for all j ∈ A, a(j) = b(j). We write a = b↓A.
We also then say that b extends a. If, in addition, a 6= b then b strictly extends
a. For instance (see the running example in Section 2), complete assignment
(1, 1, 1, 4, 5) strictly extends partial assignment (1, 1, 1, , ).

Pareto Dominance: Consider two complete assignments r and s. We write
r = s if and only if for all j ∈ {1, . . . , n}, r(j) ≥ s(j). We say that r Pareto-
dominates s if r = s and r 6= s, and write r 	 s. We say that r is Pareto-
undominated in a set T ⊆ CA if r ∈ T and there exists no element of T that
Pareto-dominates r.

Length of Path: With the graphical case of CG , for assignment s and π ∈ CG
such that π ⊆ Dom(s), we define Lens(π) =

∑
j∈π fj(sj). This is the length of

π, given s. We also define Makespan(r) = maxπ∈CG Lenr(π), which is the length
of the longest complete path, given complete assignment r.

Consistent and Slack-Free Assignments

We will consider a somewhat more general setting than that purely based on
constraints on the maximum lengths of paths, enabling our approach to be more
generally applicable. We can add, for instance, upper bounds on time limits and
on the lengths of incomplete paths, representing e.g., completion of a part of
the product (implemented using a modified makespan relative to an internal
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node in the graph) as well as more complex constraints, which may cause the
set of consistent complete assignments (and also the set of feasible duration
vectors) to be non-convex. This can include upper bounds on more complex
sums and averages, such as OWAs (ordered weighted averages) [21, 7], and use
of soft minimums to represent such constraints as either Part-1 is completed
early or Part-2 is. (In addition, direct constraints on the complete assignments
in the preference space may well lead to a non-convex space of feasible duration
vectors, via non-linear commensuracy functions.)

We are especially interested in an upper bound constraint on the makespan,
leading to a constraint for each complete path π that can be written as Lenr(π)−
D ≤ 0. The left-hand-side is a continuous function of r that is strictly increasing
in each component of π. We consider more general constraints of this form.

We assume a set C of non-empty subsets of {1, . . . , n}, such that every j ∈
{1, . . . , n} is in some element of C, and associated with each π ∈ C is a continuous
function Hπ that maps assignments with domain π to real numbers, and that is
strictly increasing w.r.t. each argument in π. We use Hπ to express constraints,
for example, a time limit on a sub-path. For complete assignment r we also write
Hπ(r) as an abbreviation for Hπ(r↓π).

We also have a value Lj associated with each j ∈ {1, . . . , n} (the lower bound
for component j), and we assume, without loss of generality, that Lj ≥ LI .

Let r ∈ CA be a complete assignment and let π ∈ C. We say that r satisfies
the lower bound constraints if for all j ∈ {1, . . . , n}, r(j) ≥ Lj . We say that r
satisfies [the constraint for] π if Hπ(r) ≤ 0.

We also say that π is tight w.r.t. r if Hπ(r) = 0. We define UT(r) to be the
union of all π ∈ C such that π is tight w.r.t. r.

In the running example, for each complete path π, Hπ(r) = Lenr(π)−D ≤ 0
is the constraint representing the upper bound limit D for the sum of the dura-
tions of the activities in the path π under the assignment r. Hπ3

(1, 1, 1, 4, 4) =
Hπ3

(1, , , , 4) = f1(1) + f5(4) − 20 = −2, with π3 = {e1, e5}. Thus, π3 is not
tight w.r.t. (1, 1, 1, 4, 4). We have UT(1, 1, 1, 4, 4) = {e1, e2, e3, e4}.
Defining consistency, R and S: We say that complete assignment r is consis-
tent if r satisfies the lower bound constraints and each π ∈ C. We write S for the
set of consistent complete assignments. Partial assignment b is said to be consis-
tent if there exists an element of S extending b. We say that consistent complete
assignment r is slack-free if for all j ∈ {1, . . . , n} there exists some π ∈ C con-
taining j that is tight with respect to r; in other words, if UT(r) = {1, . . . , n}.
It can be shown that r in S is slack-free if and only if r is Pareto-undominated
in S. We write R for the set of slack-free consistent complete assignments.

Assumptions on LI , UI and on the lower bounds: We assume that the
empty assignment ♦ is consistent, i.e., that S is non-empty. Because of the
monotonicity of each Hπ, this is equivalent to the assumption that rL ∈ S,
where, for all j ∈ {1, . . . , n}, rL(j) is defined to be Lj . We also assume that
every partial assignment can be extended to a complete assignment not in S.
This is equivalent to the assumption that for each i ∈ {1, . . . , n}, riL /∈ S, for riL
defined by riL(i) = UI and riL(j) = Lj for j ∈ {1, . . . , n} \ {i}.
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The Case of CG: When the set of constraints is Hπ(r) = Lenr(π)−D ≤ 0 for
each complete path π ∈ CG , then, the definition of S simplifies to: r ∈ S ⇐⇒ r
satisfies the lower bound constraints and Makespan(r) ≤ D. This helps compu-
tationally since it enables us to deal with the exponential number of constraints
in a compact way. For this case, we can show a further characterisation2 of the
set R of consistent slack-free complete assignments: for complete assignment r
satisfying the lower bound constraints, r ∈ R if and only if every element of CG
is tight w.r.t. r.

Proposition 1. Suppose π ∈ CG is a complete path and π ⊆ UT(r) for some
complete assignment r ∈ S. Then, π is tight w.r.t. r, i.e., Lenr(π) = D. For
r ∈ S, we have r ∈ R if and only if every element of CG is tight w.r.t. r.

4 Leximin Maximising: Iterative Method

We aim to find a most balanced consistent slack-free complete assignment r. For
the process graph G, we then can define the time limit of activity j to be fj(rj).
The basic idea is to maximise the minimum value (over all the n co-ordinates
of r). However, there are many such vectors; it is thus natural to iterate this
process, which leads to leximin maximising.

4.1 Most Balanced Schedule

Given complete assignment r, define r↑ to be the vector in IRn formed by per-
muting the co-ordinates of r in such a way that r↑(1) ≤ r↑(2) ≤ · · · ≤ r↑(n).

We define the leximin order relation ≤lexm by s ≤lexm r if and only if either
s↑ = r↑, or there exists some i ∈ {1, . . . , n} such that s↑(i) < r↑(i), and for all
j < i, s↑(j) = r↑(j). It follows easily that ≤lexm is a total pre-order (a transitive
and complete relation); also, if r is a complete assignment, and r′ is generated
from r by permuting the n co-ordinates in some way, then r and r′ are equivalent
in the order. We always have r = s ⇒ r ≥lexm s. The maximal leximin r in S
are all those vectors r ∈ S such that for all s ∈ S, r ≥lexm s.

The main result of this section, Theorem 1, implies that there exists a unique
leximin-maximal element in R (and also in S), and this can be obtained through
a sequence of maximisations over one-dimensional sets. This allows efficient im-
plementation, as discussed in Section 5.

4.2 The Basic Iteration Operation

We will define an operation that takes a consistent partial assignment b and
generates an assignment b∗ that strictly extends b. Iterating this operation will

2 For space reasons, almost all the proofs have been omitted; they can be found in
the longer version [20], which also contains auxiliary results and many more details
about the implementation and experimental testing.
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lead to a complete assignment in S, which we prove later (in Theorem 1) to be
the unique maximum leximin complete assignment extending b.

Notation bα, b̃, Zb, γ(b), Fix(b): We will define a method for extending a

consistent partial assignment b to a complete assignment b̃ in S. For partial
assignment b ∈ PA and α ∈ I we first define bα to be the complete assignment
extending b given by, for j ∈ {1, . . . , n}\Dom(b), bα(j) = max(α,Lj). For partial
assignment b ∈ PA we define Zb to be the set of all α ∈ I such that bα ∈ S. This
is non-empty if and only if b is consistent. Our assumption about UI implies that
UI /∈ Zb.

For consistent partial assignment b, we define γ(b) to be the supremum of Zb.

We also define b̃ to be bγ(b). We write UT( b̃ ) as Fix(b); these are the variables

that are in some π that is tight w.r.t. b̃ (and they are fixed given b at the end of
each stage of the iterative sequence described in Section 4.3).

The lemma below, giving some basic properties, can be proved making use
of the fact that Hπ(bα) is an increasing continuous function of α.

Lemma 1. Suppose that b ∈ PA is a consistent partial assignment. Then, γ(b) ∈
Zb and b̃ ∈ S. Also, there exists π ∈ C such that π 6⊆ Dom(b) and π is tight

w.r.t. b̃. Thus, Fix(b) 6⊆ Dom(b).

Definition of b∗: For consistent partial assignment b ∈ PA, we define b∗ to be
the projection of b̃ to Dom(b) ∪ Fix(b). Thus, Dom(b∗) = Dom(b) ∪ Fix(b).

In the running example with I = [0, 10] and b2 = (1, 1, 1, , ), we have

Dom(b2) = {e1, e2, e3}, bα2 = (1, 1, 1, α, α), γ(b2) = 4, b̃2 = (1, 1, 1, 4, 4), Fix(b2) =
{e1, e2, e3, e4}, and (b2)∗ = (1, 1, 1, 4, ).

Proposition 2. Assume that partial assignment b is consistent. Then b∗ is
consistent and strictly extends b. If Dom(b∗) 6= {1, . . . , n} then b̃∗ 	 b̃ and
Fix(b∗) % Fix(b).

The following proposition gives key properties related to leximin dominance.
Regarding (i), the point is that for all j ∈ Fix(b) there exists a π ∈ C that is

tight w.r.t. b̃, and also with respect to any extension of b∗. Strict monotonicity
of Hπ implies that we cannot increase the value of any such j from its value in
b∗ without violating the constraint π. Thus, r is equal to b̃ on Fix(b), and so, r
extends b∗ (since it extends b).

(ii) includes an interesting (very partial) converse of the property r = s ⇒
r ≥lexm s. The rough idea is that if r ∈ S and r extends b and r 6= bα then there
exists j ∈ {1, . . . , n} \ Dom(b) such that r(j) < α, which leads to bα >lexm r.

Then, using α = γ(b) and so, bα = b̃, we can chain (ii) and (i) to obtain (iii).

Proposition 3. Let r be an element of S that extends assignment b.

(i) If for all j ∈ Dom(b∗), r(j) ≥ b∗(j) then r extends b∗.
(ii) For any α such that bα ∈ S, r ≥lexm bα ⇐⇒ r = bα.

(iii) If r ≥lexm b̃ then r extends b∗.
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4.3 The Iterative Sequence Generated from b

Given consistent partial assignment b, we define a sequence of assignments,
b1, b2, . . . , bm, in an iterative fashion, as follows:

Define b1 = b. Assume now that bi has been defined, for some i ≥ 1. If bi is
consistent and Dom(bi) 6= {1, . . . , n}, we let bi+1 equal (bi)∗; otherwise, we end
the sequence with i, and let m = i. We call b1, b2, . . . , bm the iterative sequence
of assignments generated from b1, and we say that bm is its result.

We are mainly interested in the case in which the initial partial assignment b1
is the empty assignment ♦. However, allowing other b1 enables a simple represen-
tation of a situation in which certain of the components are fixed in advance, i.e.,
some of the durations are fixed. Table 2 shows the iterative sequence of assign-
ments generated from b1 = ♦ in the running example, where bm = b4 = (b3)∗.

Table 2: Progress of the algorithm

i γ(bi) b̃i (bi)∗
1 1 (1, 1, 1, 1, 1) (1, 1, 1, , )

2 4 (1, 1, 1, 4, 4) (1, 1, 1, 4, )

3 5 (1, 1, 1, 4, 5) (1, 1, 1, 4, 5)

Proposition 2 implies that each bi in the sequence is consistent, and strictly
extends the previous element. This implies that the sequence terminates with
some complete assignment t = bm, with each earlier bi being a partial assignment.
The other parts of Proposition 2 can be used to show that t = b̃i and UT(t) ∪
Dom(b1) = {1, . . . , n}.

Proposition 4. Consider the iterative sequence of assignments b1, b2, . . . , bm,
generated by consistent assignment b1, and let t = bm be its result. Then, t is a
complete assignment in S that extends each bi, and for all i = 1, . . . ,m−1, t = b̃i,
and bi is a consistent partial assignment. Also, UT(t) ∪Dom(b1) = {1, . . . , n}.

Propositions 3 and 4 lead to the following theorem, which shows that there is
a uniquely maximally leximin element in S (and inR), and the iterative sequence
can be used as the basis of an algorithmic procedure for finding it.

Theorem 1. The result of the iterative sequence of assignments generated from
b is the unique maximal leximin element in Sb, where Sb is the set of elements
of S that extend b. If b is the empty assignment then the result is in R and is
thus the unique maximal leximin element in S and the unique maximal leximin
element in R.

Proof: Let b1, b2, . . . , bm be the iterative sequence of assignments generated by
b = b1 and with result t = bm. By Proposition 4, t is in Sb, and for all i =
1, . . . ,m− 1, t = b̃i and bi is a consistent partial assignment.

Consider any element r of Sb such that r ≥lexm t. This implies that, for
all i = 1, . . . ,m − 1, r ≥lexm b̃i, because t = b̃i (and thus, t ≥lexm b̃i). Since
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r extends b = b1, Proposition 3(iii) applied iteratively shows that r extends
each bi, for i = 1, . . . ,m, and, in particular, r extends t. Since, t is a complete
assignment, we have r = t.

We have shown that for any r ∈ Sb if r ≥lexm t then r = t. Thus, if r 6= t
then r 6≥lexm t, i.e., t >lexm r. Thus, t is the unique maximally leximin element
in Sb.

Now, consider the case when b is the empty assignment ♦. Since S♦ = S,
assignment t is then the unique maximal leximin element in S. Proposition 4
implies that UT(t) = {1, . . . , n}, and so r ∈ R. Therefore, because R ⊆ S,
assignment t is the unique maximal leximin element in R. 2

A vector t is said to be max-min fair on X ⊆ IRn if and only if for all s ∈ X
and j ∈ {1, . . . , n} if s(j) > t(j) then there exists i ∈ {1, . . . , n} such that
s(i) < t(i) ≤ t(j). Thus, increasing some component t(j) must be at the expense
of decreasing some already smaller component t(i). If there exists a max-min
fair element, then it is unique and equals the unique maximum leximin element
[18]. Theorem 1 can be used to show that there is a max-min fair element in S,
i.e., the max leximin element t. The idea behind the proof is that if max-min
fairness were to fail for t, then one can show that there would exist s and j such
that s(j) > t(j) and for all i ∈ Dom(bk), s(i) ≥ t(i), where k is minimal in the
iterative sequence such that Dom(bk) 3 j. Applying Proposition 3(i) iteratively
would imply that s extends bk, contradicting s(j) > t(j) = bk(j).

Corollary 1. For any consistent partial assignment b, the maximum leximin
element of Sb is max-min fair on Sb.

Corollary 2. For the maximum leximin element r in S, every component is
maximal w.r.t. some constraint, i.e., for each j ∈ {1, . . . , n} there exists π ∈ C
such that j is maximal w.r.t. π. For the graph case when C = CG, for r in S, we
have r is the maximum leximin element in S if and only if r is slack-free and
every component is maximal w.r.t. some constraint.

5 Implementation

We have implemented a version of the water filling algorithm for the graph-based
case using CG , and with both linear and non-linear commensuracy functions fj
(see Section 3). Our algorithm constructs the iterative sequence generated from
the empty assignment ♦ (see Section 4.3). To implement this, we need, for
partial assignment b, to compute b∗ (see Section 4.2), by first computing γ(b),
and setting b∗ to be the projection of bγ(b) to Fix(b), where Fix(b) is determined
using a simple forward and backward dynamic programming algorithm. We use
an obvious binary/logarithmic search algorithm to approximate γ(b) within a
chosen number ε > 0, using the fact that γ(b) is the maximal real β such that
Makespan(bβ) ≤ D. We also implemented a variation of this iterative approach
for computing γ(b), based on iterating over paths: given an upper bound β for
γ(b), we generate the longest path π w.r.t. bβ and then update β to a better
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upper bound β′, defined to be the unique solution of the equation Lenbβ′ (π) = D;
we iterate until Makespan(bβ) = D. In our experimental testing we were able to
solve problems with hundreds of activities in few seconds [20].

6 Related Work

A branch of research, that is somewhat related to our problem of computing time
limits within a network of activities, is that concerned with the minimization of
the tardiness of a set of jobs [22, 4, 9, 3]. The tardiness is defined as max(Ci −
di, 0), where Ci is the completion time for a job and di is the due time. In our
scenario, duri is equivalent to di, and we want to evaluate the tardiness as well;
but in this case di is given as input, and the goal is finding the best scheduling
of jobs in an assembly line where a machine is able to treat only one job at
a time. Flexible constraints for scheduling (under uncertainty) have also been
considered in [5].

Max leximin (and max-min) fairness has been widely studied and applied.
For example, there are applications for balancing social welfare in markets [8],
for a price-based resource allocation scheme [12], for kidney exchange [23], and
for allocating unused classrooms [11]. Optimising leximin on constraint networks
is studied in [2], and for systems of fuzzy constraints in [6]. Regarding the work
which, like our framework, uses continuous variables, there is a substantial lit-
erature related to bandwidth allocation problems, e.g., [18, 10, 19, 1, 15, 14]; see
[16] for a survey of fair optimisation for networks. The most general framework
of this kind seems to be that in [18], showing, under relatively general condi-
tions, that the water filling algorithm generates the unique max leximin, which
equals the max-min fair solution. Although the applications they focus on are
very different from our form of scheduling problem, their theoretical framework
and results still apply if the constraints on durations are linear inequalities, since
their framework assumes convexity (and compactness) of the space of durations.
In contrast, our framework makes no assumption of convexity.

7 Summary and Discussion

We have explored the problem of fairly assigning time limits for processes in man-
ufacturing a product whose duration can be uncertain, subject to a deadline. We
proved that a simple iterative procedure (a version of the water filling algorithm)
can be used to generate the unique most balanced solution, w.r.t. max leximin,
in a very general setting, not making any assumptions of convexity. This allows
a wide range of side constraints to be added to the problem, whilst maintain-
ing the same structure of the algorithm. We go on to prove, in this very general
setting, that the maximum leximin element is still max-min fair, and discuss fur-
ther properties. The experimental results of our implementation indicate that it
is scalable to large problems. In the future, we plan to apply the method for real
industrial problems, and to develop automatic methods for suggesting remedial
actions for problematic schedules.
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