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Preface

While human beings enter in high spirits the era of network-based digital economy 
and enjoy to their hearts’ content the wonderful material and cultural life delivered 
by science and technology, they encounter the problem of cyberspace security, 
which haunts, like a ghost, in both the physical and virtual worlds of the Internet of 
Everything, constituting the “Achilles’ heel” of the network information society and 
the digital economy. This is due to of the four theoretical and engineering security 
problems arising from the related original sources which are difficult to break 
through:

 1. Loopholes: Loopholes result from the hardware and software defects that are 
unavoidable in the current stage of science development, though hardware and 
software are the bedrock of the information era.

 2. Backdoors and Trojans: They are usually planted on the hardware during the 
making or supply process and are impossible to be eradicated due to the totally 
open ecosystem—the global value chain characterized by division of labor 
across countries, industries, and even within a product.

 3. Lack of theoretical and technical means to thoroughly examine the complicated 
information system or control the hardware/software code configuration of 
devices in the foreseeable future.

 4. Backdoors and loopholes polluting the cyberspace from the source. This is due 
to the above-mentioned causes, which lead to ineffective quality assurance and 
supervision during the design, production, maintenance, application, and man-
agement processes.

As the human society has been speeding up the informatization, cyber security 
technologies are not developing synchronously at the same level. On the contrary, 
the ever-increasing technology gap is forcing people to take the opportunistic trend 
that “the informatization is the first priority,” thus opening the Pandora’s box in the 
cyberspace. In addition, there exist too many interest temptations in cyberspace in 
the digital economy, alluring individuals, enterprises, entities, organizations, or 
even states or government organs to launch network attacks for self-interests and 
even take the pursuit for the unrestricted control of the fifth space and absolute 
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 freedom in cyberspace as the national strategy. The pan-cyber terrorism is a serious 
impediment to the continuous prosperity of the modern society, causing people to 
live in unprecedented anxiety and prolonging darkness.

Human beings have never given up their efforts to address the rigorous cyber 
security issue. With the emergence of various security technologies, e.g., intrusion 
detection, intrusion prevention, intrusion tolerance, and encryption and authentica-
tion, especially the introduction of big data, artificial intelligence, blockchain, and 
other analytic techniques and means in recent years, we no longer have to trace the 
sources only after the occurrence of security problems. In other words, we take 
proactive measures for prevention, detection, and response rather than mend the 
fold after a sheep is lost. For example, it is possible to find the vulnerability or suspi-
cious functions of file codes early by software and hardware gene mapping analysis; 
massive problem scene data can be collected and analyzed via big data for the detec-
tion and early warning of hidden attacks; AI can be employed to optimize the state 
explosion problem in the vulnerability analysis process; and the tamper-resistant 
technology can be provided through the blockchain consensus mechanism and the 
timestamp-based chain relations. In addition, in order to offset the advantage of the 
“single attack” launched by the attacker at the static, certain, and similar vulnerabil-
ities of the target system, we can introduce multilevel defense techniques such as 
dynamicity, randomness, diversity, trusted computing, and trusted custom space, in 
the hope of reversing the unbalanced cyber attack and defense game where the 
defender is all the time in an unbalanced and declining position.

Unfortunately, these defensive measures, whether they are passive models based 
on various a priori knowledge or behavioral feature or active models using big data 
intelligence analysis or randomly changing address, data, and instruction, whether 
they are the sandbox technology for online real-time perception or the intelligent 
analysis method for offline/background screening, and whether they are the behav-
ior perception technology using trusted computing or the data tampering-resistant 
technology using blockchain, are, in essence, the “attached” perimeter defense tech-
nologies, irrelevant to the functions and structure of the protected object. There 
exists the lack of necessary feedback control mechanisms or operation just runs like 
a “black box.” Although they have achieved good application results in preventing 
or reducing the availability or exploitability of security defects in the target object 
(without considering performance overhead), they do not perform remarkably or 
fail completely in suppressing “coordinated internal and external” attacks based on 
the hidden or built-in backdoor functions of the target object or in addressing the 
attacks based on “side-channel effects” and hardware construction defects (such as 
CPU’s Meltdown and Spectre). To make matters worse, in most cases, these attached 
perimeter defenses cannot even guarantee the service credibility of their own secu-
rity functions. For example, the bottom-line defense device for encryption and 
authentication cannot give any convincing proof on whether it is possible to be 
“bypassed” by the host system or even has any backdoors or Trojans. It even cannot 
provide any convincing quantitative and measurable indicators on the security of its 
ontological service functions when the host cannot guarantee its credibility.
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It should be emphasized that in the era of network-based digital economy, it has 
become a national strategy for defending cyber sovereignty and protecting data 
resources. All major jurisdictions in the world now regard it as their national strat-
egy to seek a prioritized position in cyberspace, sparing no effort to mobilize 
national resources and even exploiting market forces and trade protection regula-
tions to compete for cyberspace rights and information control. In particular, with 
the help of the first mover technical advantage, the market monopoly status, and the 
control or influence on the design, manufacturing, supply, and maintenance sections 
across the industrial chain, “hidden loopholes, built-in backdoors, and implanted 
Trojans” will become indispensable strategic resources for the so-called active 
defense, which can be almost freely used without the constraints of the current legal 
systems, ethics, or cyber codes of conduct. They can even be combined with con-
ventional firepower weapons to gain an overwhelming strategic edge. This means 
that known unknown risks or unknown unknown security threats will pervade the 
entire industrial chain environment like a horrible plague, polluting and poisoning 
the entire cyberspace. It will not only pose severe challenges to the ultimate human 
ideal of “an intelligent and connected world” but also fundamentally shake the basic 
order and the principle of good faith on which the human society depends for sur-
vival and development in the age of digital economy and network information.

In view of the fact that the underlying conditions on which the traditional perim-
eter defense theory relies are constantly blurring and collapsing, coupled with the 
promotion and application of the “Zero Trust Architecture” supporting new busi-
ness models such as mobile office, the perimeter defense software/hardware facili-
ties are not only unable to guarantee their own service reliability but also fail to 
effectively deal with coordinated internal and external backdoor attacks or attacks 
exploiting other dark features of the target object of the “Zero Trust Architecture.” 
Both the science and industrial communities must transform the traditional cyber 
security concepts, mindsets, and technological development models by abandoning 
the illusion of pursuing utopian “sterile, virus-free” cyberspace. In the “global, 
open, and shared” digital economy and ecology, we strive to innovate the endoge-
nous security theories and methods. As the software/hardware component design 
chain, tool chain, production chain, supply chain, and service chain cannot guaran-
tee their credibility, we are now developing disruptive theories and techniques based 
on system engineering to dispel the attack theories and methods targeted at soft-
ware/hardware code problems at the structural level of the systems. Without relying 
on (but with access to) attached security measures or means, we can endow the 
“structure-determined security” functions in the target system (including the defense 
facilities) through the innovative software/hardware structural technology.

I remember that when I was studying the variable structure high-performance 
computer system 11 years ago, I occasionally watched a video showing the striped 
octopus (also known as the mimic octopus) on an NGC program and was deeply 
fascinated by the unique features of the magical marine creature. While admiring 
the greatness of the creator, I came up with an exciting idea: Is it possible to con-
struct a collaborative computing and processing device with a variable structure 
similar to the mimic function of the octopus, so that the device can change its own 
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structure, operation mechanism, and processing scenario synergistically against dif-
ferent computing models, processing procedures, and resource conditions? Unlike 
the classic computing and processing model put forward by Von Neumann, the 
“structure for computer service”—a software/hardware computing method—can 
not only greatly improve the performance of the area-specific computing processing 
system but also make the parasitic backdoors in the system lose the stability of their 
apparent functions and characteristics due to uncertain changes in the structure. The 
device can, on the one hand, achieve joint optimization and coordinated manage-
ment in effectiveness, performance, and security, and on the other hand, it makes it 
much more difficult to create effective and reliable attack chains. In my mind, the 
mimic computing system should be able to handle diverse, dynamic, and random 
processing scenarios through its active cognition and coordinated management 
functions. The nondeterministic relations between its task function, performance 
goal, and algorithm structure can just make up for the security flaws of staticity, 
certainty, and similarity in conventional information processing systems when 
addressing backdoor attacks. I have named the two types of applications based on 
software and hardware variable structure coordinated computing as “Mimic 
Structure Calculation” (MSC) and “Mimic Structure Defense” (MSD), respectively. 
However, the prerequisite for MSC and MSD to make coordinated variable struc-
ture reactions is the accurate perception or timely recognition of the on-site environ-
ment. Fortunately, MSC only needs to obtain the current running scene or posture 
data to implement structural transformation or scene migration according to the 
preset fitting rules, while MSD must judge whether there is a security threat. This 
may be acceptable when the a priori knowledge or the behavioral characteristics of 
the attacker are available or even the known unknown threats are perceptible, but for 
unknown threats lacking behavioral characteristics, there are philosophical cogni-
tion contradictions and technical feasibility challenges to conquer before a timely 
and reasonable judgment can be made.

Obviously, if we can propose an endogenous security function based on the sys-
tem structure effect and “quantifiable design” and invent an “identification of friend 
or foe (IFF)” mechanism with controllable credibility, we can conditionally convert 
unknown unknown events into known unknown events and then into events that can 
be quantified and represented by probability based on such robustness control 
mechanisms as measurement awareness, error recognition, and feedback iteration. 
Namely, man-made attacks based on individual software/hardware backdoors can 
be normalized to general uncertain disturbances of the target object’s heterogeneous 
redundant structure, so that mature reliability and robust control theories and meth-
ods can be used to handle traditional and nontraditional security issues in a unified 
manner and no longer stay in the period of thinking experiments. Cyber mimic 
defense is the outcome of theoretical exploration and engineering practice of this 
vision that “simplicity is the ultimate sophistication.”

From the perspective of the defender, whether it is an incidental failure of the 
information system or control device or a man-made backdoor attack, it is generally 
an unknown event in nature, where the former is a known unknown event that can 
be expressed by probability in most cases, while the latter is often an unknown 
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unknown event that belongs to the uncertain problems and cannot be expressed by 
probability. Nevertheless, in the scientific sense, being “unknown” is always 
strongly correlated to cognitive scenarios and perceptual means. As our science and 
technology evolves, we may change these scenarios and means, and the “unknown” 
may be transformed into the “known.” For instance, humans had thought that the 
Earth was the center of the solar system before the telescope was invented, while 
life and death were the will of god or devil before the invention of the microscope.

In fact, in the field of reliability engineering, the dissimilarity redundancy struc-
ture (DRS) has been able to, by means of the heterogeneous redundancy scenarios 
and multimode consensus mechanisms under functionally equivalent conditions 
(referred to herein as the “relatively correct” axioms), convert the unknown distur-
bances caused by uncertain physical elements or logic design defects of the random 
nature of a single device in the target system into an “abnormal event” that can be 
perceived by the multimode voting mechanism of the heterogeneous redundant 
architecture and obtain stability robustness and quality robustness through the het-
erogeneous redundant structure, which are measurable and verifiable. However, if it 
is directly used to deal with nonrandom man-made attacks featuring “one-way 
transparency” or “insider-outsider collaboration,” there are security flaws in the 
mechanism such as staticity, certainty, and similarity, especially when the type and 
amount of heterogeneous redundant bodies are limited (relative to large-scale 
redundancy scenarios upon the blockchain consensus mechanism). In theory, an 
attacker mastering certain “common-mode” attack resources can still invalidate the 
dissimilarity redundancy mechanism for “majority ruling or 51% consensus” by 
using the “one fatal hit,” trial and error, exclusion, and other violent attack methods. 
In other words, the structure of DRS does not possess stable robustness when deal-
ing with deliberate attacks based on vulnerabilities and backdoors. Therefore, based 
on the dissimilarity redundancy structure, the author proposes a multi-dimensional 
reconfigurable “DHR” structure with a strategic decision-making, strategic schedul-
ing, and negative feedback control mechanism, which allows the functionally equiv-
alent “uncertain scenario” effect even in the small-scale space of heterogeneous 
redundancy. Under the premise of unchanged apparent service functions, any brute- 
force attacks, whether they are “trial and error” or “coordinated or non-coordinated,” 
against the intra-architecture service elements will be “blocked without being per-
ceived” or “made the attack results difficult to sustain” as long as it can be perceived 
by the multimode ruling segment. Changes in the ruling status or control policies 
will give rise to changes of variables in the feedback control functions, leading to 
changes in the combination of executors in the DHR architecture or changes in the 
executor’s own structure. The basic premise of unchanged background conditions 
will no longer exist for trial-and-error or common-mode attacks.

It should be emphasized that the mimic defense discussed herein does not include 
the trial-and-error attacks that aim at an unrecoverable “downtime,” or DDoS to 
block the target object’s service chain, or cyber attacks that utilize communication 
protocols, procedures, specifications, and other design loopholes and backdoors.

You may easily find out that the cyber mimic defense essentially adopts a unique 
general robust control architecture that integrates high reliability, high credibility, 
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and high availability. Such a defense architecture, supported by the theory of bio- 
mimic camouflage, can produce an uncertain effect for attackers. This endows the 
target object with an endogenous security function that is independent from (but can 
naturally converge with) the effectiveness of attached defense measures. It has 
seven features: First, in the small-scale space, a man-made apparent uncertain attack 
against the individual loopholes of the target object’s heterogeneous redundant 
body can be converted into an event with uncertain effects at the system functional 
level. Second, the event with uncertain effects can be further transformed into a reli-
ability event with controllable probability. Third, the strategic decision-making, 
strategic scheduling, and multi-dimensional reconfigurable feedback control mech-
anism can prevent any form of trial-and-error attack based on its designable, quan-
tifiable, verifiable, and measurable endogenous security effects through mimic 
camouflage Fourth, the coordinated expression based on the relatively correct axiom 
or consensus mechanism makes it possible to offer the IFF feature with controllable 
credibility and without relying on the attacker’s a priori information or behavioral 
characteristics, thereby creating a prerequisite for the application of the traditional 
security defense technology based on the “detection-perception-removal” mecha-
nism. Fifth, it can normalize non-conventional security threats into robust control 
problems under the framework of classical reliability theories and auto-control the-
ories, which can then be handled through mature security defense measures. Sixth, 
despite of the uncertain attack effects on the backdoors above the mimic domain 
(such as those exploiting undetected design flaws or deep-planted backdoors in net-
work protocols), all random failure disturbances and man-made attack disturbances 
within the mimic domain can be managed or suppressed by the general robust con-
trol structure, and the defense effectiveness is subject to quantitative design and 
verifiable metrics. Last but not least, the “difficulty of dynamic multi-target coordi-
nated attacks under the non-cooperative conditions” provided by the mimic struc-
ture will fundamentally turn over the attack theories and methods based on the 
defects in the hardware/software codes of the target object.

We are excited to see that as the practical network information systems and con-
trol device products based on the mimic structure get entry to various application 
fields in recent years, the rule-changing mimic defense principle and its endogenous 
security mechanism are constantly revealing its revolutionary vitality. It is expected 
that in the globalized ecosystem where the credibility of the component supply 
chain or even the industry chain of the target product cannot be guaranteed, the 
innovative DHR architecture can blaze a new trail to address the dilemma of hard-
ware/software component security and credibility from the origin of the product.

The author is deeply convinced that with the rapid evolution of the “open-source, 
diverse, and multiple” industrial and technological ecology in cyberspace, as well as 
the ceaseless improvement of the mimic defense theory and the continuous innova-
tion of the applied technologies, the mimic structure system can, by naturally inte-
grating or accepting the existing or coming information and security technology 
outcomes, achieve significant nonlinear defense gains (as the addition of the rele-
vant security elements increases the heterogeneity in the mimic brackets). The stra-
tegic landscape of cyberspace, which is “easy to attack but hard to defend,” is 
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expected to be reversed from the source of hardware/software products, and the 
unity of “security and openness,” “superiority and maturity,” and “independent con-
trollability and security and credibility” will greatly reduce the severe negative 
impacts of non-tariff barriers (e.g., the reasons involving national security) on global 
free trade and the open industrial ecology at the engineering level. With the incre-
mental deployment and upgrading of the new generation of information systems, 
industrial control devices, network infrastructure, terminal equipment, and even 
basic software and hardware components with the mimic structure and endogenous 
security functions, the basic order and behavioral code of conducts for cyberspace 
will be reshaped, and the sharp confrontation between the informatization develop-
ment and the standardization of cyberspace security order will be relieved, or there 
even exists the possibility of eliminating it.

At that point, it will no longer be an impossible mission for us to reclose the 
“Pandora’s box” in cyberspace and eradicate the “Achilles’ heel” of IT products in 
the original sources, nor is it a wish difficult to be realized in the thinking 
experiments.

When the book was about to be published, the first permanently online and glob-
ally open Network Endogens Security Testbed (NEST) founded by the Purple 
Mountain Laboratory for Internet Communication and Security started the accep-
tance of online public testing on June 26 and welcomed challenges from individuals 
and organizations around the world. The readers of this book are also welcome to 
participate in the experience and challenges!

https://nest.ichunqiu.com/

Zhengzhou, Henan, China  Jiangxing Wu
July 2019
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Brief Introduction (Abstract)

This book, focusing on the most challenging and difficult problem of uncertain 
security threats in cyberspace and starting from the current technological limitations 
in the era, summarizes four basic security issues and three important inferences and 
comes up with the conjecture that the information system can successfully deal with 
uncertain threats from unknown sources if it possesses non-specific and specific 
immune functions like vertebrates. From the axiom perspective of structure- 
determined security, it elaborates on the formation of the concepts and theorem, 
original intention and vision, principles and methods, implementation basis and 
engineering cost, and other theories and methods which remain to be improved 
regarding the “cyberspace mimic defense” which can change the game rules. 
Various kinds of materials and contents including the system application examples, 
the authoritative testing reports, and the principle verification have proved both in 
theory and practice that the effect of indeterminacy generated by the innovative 
dynamic heterogeneous redundant architecture and mimic guise mechanisms 
enables the mimic software and hardware to possess the designable, quantifiable, 
verifiable, and measurable endogenous security efficacy. Without relying on a priori 
knowledge and behavioral characteristics of attackers and other attached defense 
methods except for integration, this approach can properly suppress, manage, and 
control in time general uncertain disturbances caused by attacks from dark func-
tions based on software/hardware object vulnerabilities and backdoors or occasional 
failures within the mimic boundary and provides a “simplified and normalized” 
solution to the problem of conventional security reliability and unconventional 
cyber security threats through innovative robust control mechanisms. As a new 
enabling technology, it enables IT, ICT, and CPS software/hardware products to 
have endogenous security functions. This book has put forward the model of mimic 
architecture and provides a preliminary quantitative analysis and conclusions 
regarding the cyber reliability and anti-attack effects.

The book is designed to be used for scientists, researchers, and engineers in such 
areas as information technology, cybersecurity, and industrial control as well as for 
college faculty and postgraduates.
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Preface

The human society is ushering in an era of digital economy at an unprecedented 
speed. The information network technology driven by the digital revolution has 
penetrated into every corner of the human society, creating a cyberspace which 
expands explosively to interconnect all things. A digital space associating both the 
real world and the virtual world is profoundly changing the ability of human beings 
to understand and transform the nature. Unfortunately, however, the security of 
cyberspace is increasingly becoming one of the most serious challenges in the infor-
mation age or the digital economy era. It is the greediness of man and the periodical 
attributes in the development of science and technology that prevent the virtual 
world created by mankind from becoming a pure land beyond the real human soci-
ety. The world today has its “Achilles’ heel,” for example, unscrupulously spying on 
personal privacy and stealing other people’s sensitive information, arbitrarily tram-
pling on the common codes of conduct of the human society and the security of 
cyberspace, and seeking illegitimate interests or illegal controls.

Despite the variety of cyberspace security risks, the attackers’ means and goals 
are changing with each passing day, imposing unprecedented and far-reaching 
threats to human life and production. The basic technical reasons, though, can be 
simply summarized as the following five aspects. First, the existing scientific and 
technological capabilities of human beings cannot completely get rid of the loop-
holes caused by defects in software/hardware design. Second, the backdoor prob-
lem derived from the ecological context of economic globalization cannot be 
expected to be fundamentally eliminated in a certain period of time. Third, the cur-
rent scientific theories and technical methods are generally not yet able to effec-
tively check out the “dark features,” such as loopholes and backdoors in the software/
hardware systems. Fourth, the abovementioned reasons lead to the lack of effective 
safety and quality control measures for hardware/software products in terms of 
design, production, maintenance, and use management, where the cyber world gets 
severely polluted by the loopholes of technical products as the digital economy or 
social informatization accelerates, even heading toward annihilation. Fifth, the tech-
nical threshold for cyber attacks is relatively low in view of the defensive cost of the 
remedy. It seems that any individual or organization with cyber knowledge or the 
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ability to detect and exploit the hardware/software vulnerabilities of the target sys-
tem can become a “hacker” to trample on the guidelines on cyberspace morals or 
behavior wantonly.

With such a cost disparity in attack-defense asymmetry and such a large interest 
temptation, it is difficult to believe that cyberspace technology pioneers or market 
monopolies will not deliberately take advantage of the opportunities arising from 
globalization, for instance, division of labor across countries, inside an industry and 
even among product components, to apply strategic control methods, such as hidden 
loopholes, preserved backdoors, and implanted Trojans. Then, they can obtain 
improper or illegal benefits other than the direct product profits in the market 
through the user data and sensitive information under their control. As a super threat 
or terrorist force that can affect individuals, businesses, countries, regions, and even 
the global community, dark features such as cyberspace loopholes have become a 
strategic resource, which are not only coveted and exploited by many unscrupulous 
individuals, organized criminal gangs, and terrorist forces but also undoubtedly 
used by stakeholder governments to build up their armed forces and operations for 
the purpose of seeking cyberspace/information supremacy. In fact, cyberspace has 
long been a normalized battlefield, where all parties concerned are trying to outplay 
others. Nowadays, however, the cyberspace is still vulnerable to attacks and yet not 
resilient to defend itself.

The majority of the current active/passive defense theories and methods are 
based on precise threat perception and perimeter defense theory and model charac-
terized by threat perception, cognitive decision-making, and problem removal. In 
fact, in the current situation where intelligent handset or terminal-based mobile 
offices or e-commerce have become the main application mode, as for the target 
object or the attached protection facilities, neither the intranet-based regional 
defense nor the comprehensive ID certification measures based on the “Zero Trust 
Architecture” can completely eliminate negative effects caused by the loopholes or 
backdoors. Thus, in view of the “known unknown” security risks or “unknown 
unknown” security threats, the perimeter defense is not only outdated at the theo-
retical and technological level but also unable to provide suitable engineering means 
in practice for quantifiable defense effects. More seriously, so far, we have not found 
any ideas about the new threat perception that does not rely on attack attributes or 
behavioral information or any new defense methods that are technically effective, 
economically affordable, and universally applicable. The various dynamic defense 
technologies represented by “Moving Target Defense” (MTD, proposed by an 
American) have really achieved good results in reliably disturbing or crumbling the 
attack chains that make use of the vulnerabilities of the target object. However, in 
dealing with dark features hidden in the target system or unknown attacks through 
the hardware/software backdoors, there still exists the problem of ineffective mech-
anisms. Even if the underlying defense measures and mechanisms such as encrypted 
authentication are used, the risks of bypass, short circuit, or reverse encryption 
brought by dark functions from the internal vulnerabilities/backdoors of the host 
object cannot be completely avoided. The WannaCry, a Windows vulnerability- 
based ransomware, discovered in 2017 is a typical case of reverse encryption. In 
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fact, the technical system based on the perimeter defense theory and qualitative 
description has encountered more severe challenges in supporting either the new 
“cloud-network-terminal” application model or the zero trust security framework 
deployment.

Research results in biological immunology tell us that a specific antibody will be 
generated only upon multiple stimulations by the antigen and specific elimination 
can be performed only when the same antigen reinvades the body. This is very simi-
lar to the existing cyberspace defense model, and we may analogize it as “point 
defense.” At the same time, we also notice that a variety of other organisms with 
different shapes, functions, and roles, including biological antigens known as scien-
tifically harmful, coexist in the world of vertebrates. However, there is no dominant 
specific immunity in healthy organisms, which means the absolute majority of the 
invading antigens have been removed or killed by the innate non-specific selection 
mechanism. The magic ability obtained through the innate genetic mechanism is 
named non-specific immunity by biologists, and we might as well compare it to 
“surface defense.” Biological findings also reveal that specific immunity is always 
based on non-specific immunity, with the latter triggering or activating the former, 
while the former’s antibody can only be obtained through acquired effects. Besides, 
since there are qualitative and quantitative differences between biological individu-
als, no genetic evidence for specific immunity has been found to date. At this point, 
we know that vertebrates acquire the ability to resist the invasion of known or 
unknown antigens due to their point-facet and interdependent dual-immune mecha-
nisms. What frustrates us is that humans have not created such a “non-specific 
immune mechanism with clean-sweep properties” in cyberspace; instead, we always 
try to address the task of coping with surface threats in a point defense manner. The 
contrast between rational expectation and harsh reality proves that “failure in block-
ing loopholes” is an inevitable outcome, and it is impossible to strategically get out 
of the dilemma of dealing with them passively.

The key factor causing this embarrassing situation is that the scientific commu-
nity has not yet figured out how non-specific immunity can accurately “identify 
friend or foe.” According to common sense, it is impossible for the biological genes, 
which cannot even carry the effective information generated from biological spe-
cific immunity, to possess all the antigenic information against bacteria, viruses, and 
chlamydia that may invade in the future. Just as the various vulnerability/attack 
information libraries in cyberspace based on behavioral features of the identified 
backdoors or Trojans, it is impossible for today’s library information to include the 
attributes of backdoors or Trojans that may be discovered tomorrow, not to mention 
the information on the form of future attack characteristics. The purpose of our 
questioning is not to find out how the creator can endow vertebrate organisms with 
the non-specific selection ability to remove unknown invading antigens (the author 
believes that with the restraint of operational capability of the biological immune 
cells, the method of coarse-granule “fingerprint comparison” may be used based on 
their own genes and all the invading antigens not in conformity with the genes will 
be wiped out. As an inevitable cost, there exists a low probability of some “missing 
alarms, false alarms, or error alarms” in the coarse-granule fingerprint comparison. 
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Otherwise, vertebrate biological beings will not fall ill or suffer from cancers. And 
it would be unnecessary for extraordinary immune powers to exist. The comparison 
of own credibility and reliability is a prerequisite for the efficacy of the comparison 
mechanism but with an unavoidable risk.) but to know whether there is a similar 
identification friend or foe (IFF) mechanism in cyberspace, and whether there is a 
control structure that can effectively suppress general uncertain disturbances, 
including known unknown risks and unknown unknown threats, to obtain endoge-
nous security effects not relying on (but naturally converging with) the effectiveness 
of any attached defense techniques. With such mechanisms, structures, and effects, 
the attack events based on vulnerability backdoors or virus Trojans can be normal-
ized to conventional reliability issues. In accordance with the mature robust control 
and reliability theories and methods, the information systems or control devices can 
obtain both stability robustness and quality robustness to manage and control the 
impact of hardware/software failures and man-made attacks. In other words, it is 
necessary to find a single solution to address the reliability and credibility issues at 
both the theoretical and methodological level.

First, the four basic security problems in cyberspace are generally regarded as 
the restrictive conditions because the basic security problems will not change when 
the system host or the attached or parasitic organizational forms change or when 
system service functions alter. Hence, we can come up with three important conclu-
sions: security measures may be bypassed in the target system with shared resource 
structure and graded operational mechanisms; attached defense cannot block the 
backdoor function in the target object; and defense measures based on a priori 
knowledge and behavior information and features cannot prevent uncertain threats 
from unknown vulnerabilities and backdoors in a timely manner.

Second, the challenge to be conquered is how to perceive unknown unknown 
threats, i.e., how to achieve the IFF function at low rates of false and missing alarms 
without relying on the a priori knowledge of attackers or the characteristics of attack 
behaviors. In fact, there is no absolute or unquestionable certainty in the philosophi-
cal sense. Being “unknown” or “uncertain” is always relative or bounded and is 
strongly correlated to cognitive space and perceptual means. For example, a com-
mon sense goes like this: “everyone has one shortcoming or another, but it is most 
improbable that they make the same mistake simultaneously in the same place when 
performing the same task independently” (the author calls it a “relatively correct” 
axiom, and the profession also has a wording of the consensus mechanism), which 
gives an enlightening interpretation of the cognitive relationship of “unknown or 
uncertain” relativity. An equivalent logic representation of the relatively correct 
axiom—the heterogeneous redundant structure and the multimode consensus mech-
anism—can transform an unknown problem scene in a single space into a percep-
tible scenario under the consensus mechanism in a functionally equivalent 
multi-dimensional heterogeneous redundant space and the uncertainty problem into 
a reliability problem subject to probability expression and transfer the uncertain 
behavior cognition based on individuals to the relative judgment of the behavior of 
a group (or a set of elements). In turn, the cognitive or consensus results of the 
majority are used as the relatively correct criteria for reliability (this is also the 
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 cornerstone of democracy in human society). It should be emphasized that as long 
as a relative judgment is made, there must be a “Schrödinger’s cat” effect like the 
superposition state in quantum theory. “Right” and “wrong” always exist at the 
same time, while the probability is different. The successful application of a rela-
tively correct axiom in the field of reliability engineering dates back to the 1970s, 
when the first dissimilarity redundancy structure was proposed in flight controller 
design. For a target system based on this structure under certain preconditions, even 
if its software/hardware components have diversely distributed random failures or 
statistically uncertain failures caused by unknown design defects, they can be trans-
formed by the multimode voting mechanism into reliability events that can be 
expressed with probabilities, enabling us to not only enhance system reliability by 
improving component quality but also significantly enhance the reliability and cred-
ibility of the system through innovative structural technology. In the face of uncer-
tain threats exploiting the backdoors of the software/hardware system (or man-made 
attacks lacking in a priori knowledge), the dissimilarity redundancy structure also 
has the same or similar effect as the IFF. Although the attack effect of uncertain 
threats is usually not a probability problem for heterogeneous redundant individu-
als, the reflection of these attacks at the group level often depends on whether the 
attacker can coordinately express consensus on the space-time dimension of multi-
mode output vectors, which is a typical matter of probability. However, in a small- 
scale space and a certain time, a target object based on the dissimilarity redundancy 
structure can suppress general uncertain disturbances, including unknown man- 
made attacks, and has the quality robustness of designable calibration and verifica-
tion metrics. However, the genetic defects of the structure, such as staticity, 
similarity, and certainty, mean that its own backdoors are still available to some 
extent, where trial and error, exclusion, common model coordination, and other 
attack measures often corrupt the stability robustness of the target object.

Third, if viewed from the perspective of robust control, the majority of cyber-
space security incidents can be considered as general uncertain disturbances arising 
from attacks targeted at the backdoors or other vulnerabilities of target objects. In 
other words, since humans are not yet able to control or suppress the dark features 
of hardware/software products, the security and quality problems, which originally 
arise from the design or manufacturing process, are “forced to overflow” as the top 
security pollution in cyberspace due to “the unconquerable technical bottleneck.” 
Therefore, where a manufacturer refuses to promise the safety and quality of its 
software/hardware products, or is not held accountable for the possible conse-
quences caused thereby, seems that it has a good reason to justify its behavior by the 
“universal dilemma.” In the era of economic and technological globalization, to 
restore the sacred promise of product quality and the basic order of commodity 
economy and fundamentally rectify the maliciously polluted cyberspace ecology, 
we need to create a new type of robust control structure that can effectively manage 
and control the trial-and-error attacks and the uncertain effect generated by the feed-
back control mechanism driven by the bio-mimic camouflage strategy, providing 
the hardware/software system with stability robustness and quality robustness 
against general uncertain disturbances.
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Furthermore, even if we can’t expect the endogenous security effects of the gen-
eral robust control structure and the mimic camouflage mechanism to solve all 
cyberspace security problems or even all the security problems of the target object, 
we still expect the innovative general robust structure to naturally converge with or 
accept advances in existing or coming information and security technologies. 
Whether the technology elements introduced is static or dynamic defense, active or 
passive defense, the target object’s defense ability should be enhanced exponen-
tially so as to achieve the integrated economic and technological goal of “service- 
providing, trusted defense, and robustness control.”

In order to help the readers better understand the principles of cyberspace mimic 
defense, the author has summarized its key theoretical points into the following: one 
revolving premise (unknown vulnerabilities and backdoors in cyberspace can lead 
to uncertain threats); one theory-based axiom (conditional awareness of uncertain 
threats can be provided); discovery of one mechanism (with the self-adaptable 
mechanism of “non-decreasing initial information entropy,” uncertain threats can be 
stably prevented); invention of one architecture (the dynamical heterogeneous 
redundant architecture DHR with the general robust control performance has been 
invented); introduction of one mechanism (mimic guise mechanism); creation of 
one effect (difficult to detect accurately); achievement of one function (endogenous 
security function); normalization of dealing with two problems simultaneously 
(making it possible to provide an integrated solution to the problems of conven-
tional reliability and non-conventional cyber security); and production of one non-
linear defense gain (introduction of any security technology can exponentially 
promote defense effects within the architecture.)

Finally, it is necessary to complete the full-process engineering practice through 
the combination of theory and application, covering architecture design, common 
technology development, theoretical verification, application piloting, and industry- 
wide demonstration.

“Cyberspace mimic defense” is just what comes out from the iterative develop-
ment and the unremitting exploration of the abovementioned ideas.

Commissioned by the MOST in January 2016, the STCSM organized more than 
100 experts from a dozen authoritative evaluation agencies and research institutes 
across the country to conduct a crowd test verification and technology evaluation of 
the “mimic defense principle verification system.” The test lasted for more than 
4 months and proved that “the tested system fully meets the theoretical expectations 
and the theorem is universally applicable.”

In December 2017, An Introduction to Cyberspace Mimic Defense was published 
by the Science Press. The book was renamed as The Principle of Cyberspace Mimic 
Defense: General Robust Control and Endogenous Security and republished after 
modification and supplementation in October 2018.

In January 2018, the world’s first mimic domain name server was put into opera-
tion in the network of China Unicom Henan Branch; in April 2018, a variety of 
network devices based on the mimic structure, including web servers, routing/
switching systems, cloud service platforms and firewalls, etc., was systematically 
deployed at the Henan-based Gianet to provide online services; in May 2018, a 
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complete set of information and communication network equipment based on the 
mimic structure was selected as the target facility of the “human-machine war” in 
the first session of the “Cyber Power” International Mimic Defense Championship 
held in Nanjing, China, where it underwent high-intensity confrontational tests 
under new rules. The challengers came from the top 20 domestic teams and 10 
world-class foreign teams. A large number of live network operation data and man- 
machine battle logs persuasively interpret the scientific mechanism of the endoge-
nous security effects generated by the general robust control structure and prove the 
significance of the unprecedented innovation of the mimic defense technology with 
trinity features of high reliability, high availability, and high credibility. In May of 
the same year, nearly 100 domestic research institutes and industrial pioneers co- 
initiated the “Mimetic Technology and Industrial Innovation Alliance,” embarking 
on a new chapter in the history of the cyber information technology and security 
industry.

To help readers better understand the principles of mimic defense, the book is 
made with 14 chapters and 2 volumes. Chapter 1 “Security Threats Oncoming from 
Vulnerabilities and Backdoors” is compiled by Wei Qiang, which begins with an 
analysis of the unavoidable backdoors, with a focus on the dilemma of backdoor/
vulnerability prevention and control, pointing out that the majority of the informa-
tion security incidents in cyberspace are triggered by attackers exploiting the hard-
ware/software backdoors and vulnerabilities. The original intention of transforming 
the defense philosophy was put forward through perception and thinking of these 
details. Chapter 2 “Formal Description of Cyber Attacks” is compiled by Li 
Guangsong, Zeng Junjie, and Wu Chengrong. It provides an overview and attempt 
to summarize the formal description methods of typical network attacks for the time 
being and proposes a method of formal analysis of cyber attacks targeted at complex 
cyber environments featuring dynamic heterogeneous redundancy. Chapter 3 “A 
Brief Analysis of Conventional Defense Technologies” is compiled by Liu Shengli 
and Guang Yan. It analyzes three current cyberspace defense methods from different 
angles, pointing out the four problems of the conventional cyber security framework 
model, especially the defect in the target object and the defense system: a lack of 
precautions against security threats such as possible backdoors. Chapter 4 “New 
Defense Technologies and Ideas” and Chap. 5 “Diversity, Randomness, and 
Dynamicity Analysis” are compiled by Cheng Guozhen and Wu Qi. The two chap-
ters provide a brief introduction to new security defense technologies and ideas such 
as trusted computing, custom trusted space, mobile target defense, and blockchain 
and point out the major problems concerned. They give out a basic analysis of the 
effects and significance of diversity, randomness, and dynamicity of basic defense 
methods on destroying the stability attack chain and put forward the main technical 
challenges. Chapter 6 “Revelation of the Heterogeneous Redundancy Architecture” 
is co-produced by Si Xueming, He Lei, Wang Wei, Yang Benchao, Li Guangsong, 
and Ren Quan, outlining the mechanisms of suppressing the impacts of uncertain 
faults on the reliability of the target system based on heterogeneous redundancy 
techniques and indicating that the heterogeneous redundancy architecture is equiva-
lent to the logical expression of the “relatively correct” axiom and has an intrinsic 
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attribute of transforming an uncertain problem into a controllable event of probabil-
ity. The qualitative and quantitative methods are used to analyze the intrusion toler-
ance properties of the dissimilarity redundancy structure and the challenges of at 
least five aspects, assuming that the introduction of dynamicity or randomness in 
this structure can improve its intrusion tolerance. Chapter 7 “General Robust 
Control and Dynamic Heterogeneous Redundancy Architecture” is co-compiled by 
Liu Caixia, Si Xueming, He Lei, Wang Wei, and Ren Quan, proposing a general 
robust control architecture, called “dynamic heterogeneous redundancy,” for the 
information system and proving through quantitative analysis methods that the 
endogenous defense mechanisms based on the architecture can, without relying on 
any characteristic information of the attacker, force unknown attack behaviors based 
on unknown backdoors of the target object to face the challenge of “dynamic multi- 
target coordinated attack in non-cooperating conditions.” Chapter 8 “Original 
Intention and Vision of Cyberspace Mimic Defense” is written by Zhao Bo et al. It 
aims to apply the biological mimic camouflage mechanism to the feedback control 
loops of the dynamic heterogeneous redundancy architecture to form uncertain 
effects. It is expected that the attacker will be trapped in the cognitive dilemma of 
the defense environment (including the dark functions such as backdoors) within 
the mimic border, so that the cross-domain plural dynamic target coordinated attack 
will be much more difficult. Chapter 9 “Principles of Cyberspace Mimic Defense,” 
Chap. 10 “Implementation of Cyberspace Mimic Defense Projects,” and Chap. 11 
“Bases and Costs of Cyberspace Mimic Defense” are co-compiled by He Lei, Hu 
Yuxiang, Li Junfei, and Ren Quan. The three chapters systematically describe the 
basic principles, methodologies, structures, and operating mechanisms of mimic 
defense, with a preliminary exploration of the engineering implementation of mimic 
defense, a discussion on the technical basis and application costs of mimic defense, 
and an outlook to some urgent scientific and technical concerns. Chapter 12 
“Application Examples of the Mimic Defense Principle” is co-written by Ma 
Hailong, Guo Yudong, and Zhang Zheng, respectively briefing on the verification 
application examples of the mimic defense principle in the route switching system, 
the web server, and the network storage system. Chapter 13 “Testing and Evaluation 
of the Mimic Principle Verification System” is co-compiled by Yi Peng, Zhang 
Jianhui, Zhang Zheng, and Pang Jianmin, respectively introducing the verification 
of the mimic principle in the router scenario and the web server scenario. Chapter 
14 “Application Demonstration and Current Network Testing of Mimic Defense” 
introduces the usage and tests of the mimic structure products, such as routers/
switches, web servers, and domain name servers, in the current networks.

The readers can easily find the logic of the book: point out that the backdoors and 
vulnerabilities are the core of cyberspace security threats, analyze the genetic 
defects of existing defense theories and methods in dealing with uncertain threats, 
exploit the dissimilarity redundancy structure based on the relative correct axiom to 
get enlightenment of converting random failures to probability-controllable reliabil-
ity events without a priori knowledge, propose the dynamic heterogeneous redun-
dancy architecture based on multi-model ruling strategy scheduling and the negative 
feedback control of multi-dimensional dynamic reconstruction, propose to  introduce 
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a mimic camouflage mechanism on the basis of this structure to form uncertain 
effects from the attacker’s perspective, and discover that the general robust control 
architecture, which is similar to the dual mechanism of non-specific and specific 
immunity across vertebrates, has an endogenous security function and unparallelled 
defense effect as well as the expected target function, which can independently deal 
with known unknown security risks or unknown unknown security threats through 
the backdoors within the mimic border, as well as the impacts of conventional 
uncertain disturbances, systematically expounded. The principles, methodologies, 
bases, and engineering costs of cyberspace mimic defense provide the online pilot 
application cases with principle verification and give out the testing and evaluation 
results of the principle verification system. In conclusion, it describes the pilot oper-
ation of several mimic structure products in the real networks and demos.

Undoubtedly, the DHR-based cyberspace mimic defense will inevitably increase 
the design cost, volume power consumption, and operation and maintenance over-
head along with its unique technical advantages. Similar to the “cost-efficiency” 
rule of all security defense technologies, where “protection efficiency and defense 
cost are proportional to the degree of closeness to the target object,” the mimic 
defense is no exception. However, any defense technology is costly and cannot be 
applied ubiquitously. That’s why “deployment in the gateway and defense at the 
core site” becomes a golden rule in military textbooks. The preliminary application 
practice in information communication networks shows that the increased cost of 
applying the mimic defense technology is far from enough to hinder its wide appli-
cation when compared to the overall life-cycle benefit of the target system. In addi-
tion, the continued progress in microelectronics, definable software, reconfigurable 
hardware, virtualization, and other technologies and development tools, the wide-
spread use of open source community models, and the irreversible globalization 
trend have made the market price of the target product highly correlated to the 
application scale only but relatively decoupled from its complexity. The “breaking 
a butterfly on the wheel” approach and the modular integration have become the 
preferred mode for market-leading engineers. Moreover, with the continuous subli-
mation of the “green, efficiency, safety, and credibility” concept, so while pursuing 
higher performance and more flexible functions of information systems or control 
devices, people are placing more emphasis on the cost-effectiveness of applications 
and the credibility of services, shifting from the traditional cost and investment 
concept to the concept of comprehensive investment and application efficiency of 
the system throughout its life cycle (including security protection, etc.). As a result, 
the author believes that with continuous progress made in the theorem and method-
ology of cyberspace mimic defense, the game rules in cyberspace are about to 
undergo profound changes. A new generation of hardware and software products 
with “designable,” verifiable, and quantified endogenous security functions and effi-
cacy is on their way, and a carnival of innovation in the mimic defense technology 
is around the corner.

At present, the mimic defense theory has undergone the phases of logic self- 
consistency, principle verification, and common technology breakthroughs. The tar-
geted application research and development are being carried out according to the 
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relevant industry characteristics. Valuable engineering experience has been acquired, 
and significant progress has been made in some pilot and demonstration application 
projects. New theories and technologies are often incomplete, immature, or not 
refined. And mistakes are unavoidable. The same is undoubtedly true of this book, 
for some technical principles are not fully segregated from the “thought experi-
ment” stage, so the immature and rough expressions are inevitable. In addition, the 
book also lists some scientific and technical problems that need urgent studying and 
solution in theory and practice. However, the author is convinced that any theory or 
technology cannot grow to its maturity only in the study or laboratory, especially the 
cross-domain, game-changing, and subversive theories and techniques, such as 
mimic defense and general robust control, which are strongly related to application 
scenarios, engineering implementation, hierarchical protection, industrial policies, 
etc., and have to undergo rigorous practical testing and extensive application before 
they can produce positive outcomes. As a saying goes, he who casts a brick aims to 
attract jade. This book is just like a brick, the publication of which is intended to 
“attract” better cyber security theories and solutions and maximize the outcome 
through collective efforts. We sincerely appreciate all forms of theoretical analyses 
and technical discussions on our WeChat public account (Mimic Defense) and the 
mimic defense website (http://mimictech.cn). And we wholeheartedly hope that the 
theory and basic methods of mimic defense can bring revolutionary changes to the 
strategic landscape of today’s “easy to attack yet hard to defend” cyberspace and 
that the general robust control structure and its endogenous security mechanism 
characterized by “structure-determined security,” quantifiable design, and test vali-
dation can bring about strong innovation vitality and thriving replacement demand 
for the new generation of IT/ICT/CPS technology and the related industries.

This book can be treated as a textbook for postgraduates major in cyber security 
disciplines or a reference book for the related disciplines. It also serves as an intro-
ductory guide for researchers interested in practicing innovation in mimic defense 
applications or intended to perfect the mimic defense theories and methods. To give 
the readers a full picture of the connection between the chapters thereof and make it 
easier for professionals to read selectively, we attach a “chapter-specific relation 
map” to the contents. 

Zhengzhou, Henan, China  Jiangxing Wu 
March 2019
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