Skip to main content

Evolutionary Algorithm for Pathways Detection in GWAS Studies

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

In genetics, a genome-wide association study (GWAs) involves an analysis of the single-nucleotide polymorphisms (SNPs) that constitute the genome. This analysis is performed on a large set of individuals usually classified as cases and controls. The study of differences in the SNP chains of both groups is known as pathway analysis. The analysis alluded to allows the researcher to go beyond univariate results like those offered by the p-value analysis and its representation by Manhattan plots. Pathway analysis makes it possible to detect weaker single-variant signals and is also helpful in order to understand molecular mechanisms linked to certain diseases and phenotypes. The present research proposes a new algorithm based on evolutionary computation, capable of finding significant pathways in GWA studies. Its performance has been tested with the help of synthetic data sets created with an ad hoc developed genomic data simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez-Donquiles, C., et al.: PoDA algorithm: predictive pathways in colorectal cancer. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 419–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_41

    Chapter  Google Scholar 

  2. Gutiérrez, D.Á., et al.: A multiregressive approach for SNPs identification in prostate cancer. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 400–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_39

    Chapter  Google Scholar 

  3. McCarthy, M., Abecasis, G., Cardon, L., et al.: Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008). https://doi.org/10.1038/nrg2344

    Article  Google Scholar 

  4. Moore, J., Asselbergs, F., Williams, S.: Bioinformatics challenges for genome-wide association studies. Bioinformatics 26, 445–455 (2010). https://doi.org/10.1093/bioinformatics/btp713

    Article  Google Scholar 

  5. Visscher, P., Brown, M., McCarthy, M., Yang, J.: Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012). https://doi.org/10.1016/j.ajhg.2011.11.029

    Article  Google Scholar 

  6. Fan, Y., Song, Y.: Finding the missing heritability of genome-wide association study using genotype imputation. Matters 2, e201604000013 (2016). https://doi.org/10.19185/matters.201604000013

    Article  Google Scholar 

  7. García-Campos, M., Espinal-Enríquez, J., Hernández-Lemus, E.: Pathway analysis: state of the art. Front. Physiol. 6, 383 (2015). https://doi.org/10.3389/fphys.2015.00383

    Article  Google Scholar 

  8. Marees, A., de Kluiver, H., Stringer, S., et al.: A tutorial on conducting genome-wide association studies: quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 27, e1608 (2018). https://doi.org/10.1002/mpr.1608

    Article  Google Scholar 

  9. Alonso Fernández, J., Díaz Muñiz, C., Garcia Nieto, P., de Cos, J.F., Sánchez Lasheras, F., Roqueñí, M.: Forecasting the cyanotoxins presence in fresh waters: a new model based on genetic algorithms combined with the MARS technique. Ecol. Eng. 53, 68–78 (2013). https://doi.org/10.1016/j.ecoleng.2012.12.015

    Article  Google Scholar 

  10. Moore, J.H., White, B.: Genome-wide genetic analysis using genetic programming: the critical need for expert knowledge. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice IV. Genetic and Evolutionary Computation, pp. 11–28. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-49650-4_2

    Chapter  Google Scholar 

  11. Ordóñez Galán, C., Sánchez Lasheras, F., de Cos, J.F., Bernardo Sánchez, A.: Missing data imputation of questionnaires by means of genetic algorithms with different fitness functions. J. Comput. Appl. Math. 311, 704–717 (2017). https://doi.org/10.1016/j.cam.2016.08.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Sánchez Lasheras, J.E., et al.: Classification of prostate cancer patients and healthy individuals by means of a hybrid algorithm combining SVM and evolutionary algorithms. In: de Cos Juez, F.J., et al. (eds.) HAIS 2018. LNCS, pp. 547–557. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-92639-1_46

    Chapter  Google Scholar 

  13. Suárez Sánchez, A., Riesgo Fernández, P., Sánchez Lasheras, F., et al.: Prediction of work-related accidents according to working conditions using support vector machines. Appl. Math. Comput. 218, 3539–3552 (2011). https://doi.org/10.1016/j.amc.2011.08.100

    Article  MathSciNet  Google Scholar 

  14. García Nieto, P., Alonso Fernández, J., Sánchez Lasheras, F., de Cos, J.F., Díaz Muñiz, C.: A new improved study of cyanotoxins presence from experimental cyanobacteria concentrations in the Trasona reservoir (Northern Spain) using the MARS technique. Sci. Total Environ. 430, 88–92 (2012). https://doi.org/10.1016/j.scitotenv.2012.04.068

    Article  Google Scholar 

  15. Rosado, P., Lequerica-Fernández, P., Villallaín, L., et al.: Survival model in oral squamous cell carcinoma based on clinicopathological parameters, molecular markers and support vector machines. Expert Syst. Appl. 40, 4770–4776 (2013). https://doi.org/10.1016/j.eswa.2013.02.032

    Article  Google Scholar 

  16. Vilán Vilán, J., Alonso Fernández, J., García Nieto, P., et al.: Support vector machines and multilayer perceptron networks used to evaluate the cyanotoxins presence from experimental cyanobacteria concentrations in the Trasona reservoir (Northern Spain). Water Resour. Manage. 27, 3457–3476 (2013). https://doi.org/10.1007/s11269-013-0358-4

    Article  Google Scholar 

  17. García Nieto, P., Sánchez Lasheras, F., García-Gonzalo, E., de Cos, J.F.: PM10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: a case study. Sci. Total Environ. 621, 753–761 (2018). https://doi.org/10.1016/j.scitotenv.2017.11.291

    Article  Google Scholar 

  18. R Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.R-project.org/

  19. Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013). https://www.jstatsoft.org/v53/i04/

    Article  Google Scholar 

  20. Szumilas, M.: Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19(3), 227–229 (2010)

    Article  Google Scholar 

  21. Turner, S.D.: qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J. Open Source Softw. 3, 731 (2018). https://doi.org/10.21105/joss.00731

    Article  Google Scholar 

  22. Satagopan, J., Smith, A.: Statistical methods in genomics research. Heart Drug 3, 48–60 (2003). https://doi.org/10.1159/000070907

    Article  Google Scholar 

  23. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  24. Östensson, M.: Statistical methods for genome wide association studies. Chalmers University of Technology and the University of Gothenburg, Göteborg (2012)

    Google Scholar 

  25. Braun, R., Buetow, K.: Pathways of distinction analysis: a new technique for multi-SNP analysis of GWAS data. PLoS Genet. 7(6), e1002101 (2011). https://doi.org/10.1371/journal.pgen.1002101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Sánchez Lasheras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díez Díaz, F., Sánchez Lasheras, F., de Cos Juez, F.J., Martín Sánchez, V. (2019). Evolutionary Algorithm for Pathways Detection in GWAS Studies. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics